

Memorial Sloan Kettering Cancer Center

Multi-Omics Supervised Integrative Clustering (MOSAIC) on scNMT-seq mouse gastrulation dataset

Arshi Arora BIRSBiointegration 2020 joint work with Dr. Ronglai Shen

June 17, 2020 Arshi Arora Research Biostatistician II Memorial Sloan Kettering Cancer Center

Motivation

*Arora A, Olshen AB, Seshan VE, and Shen R. Pan-cancer identification of clinically relevant genomic subtypes using outcome-weighted integrative clustering. Biorxiv

unsupervised vs supervised clustering via simulation

Typical data set

Kmeans clustering vs simulated truth							
	1	2	3				
1	68	0	0				
2	32	41	28				
3	0	59	72				

MOSAIC 3-class vs simulated truth									
	1	2	3						
1	100	0	0						
2	0	100	0						
3	0	0	100						

3

MOSAIC Workflow

$$\boldsymbol{I}_{\boldsymbol{w}} = \frac{\sum_{m=1}^{M} \boldsymbol{D}_{m}}{M}$$

 D_m = weighted distance matrix of mth data type

Step 2- getDist

getDist

Weighted Distance Matrix

Consider a data type X_m (where, m=1, ..., M data types) of varying samples(N_m) and features (p_m) a_p and b_p are a pair of samples measured for p features

The weighted distance¹ –

$$d_w(\boldsymbol{a}, \boldsymbol{b}) = \sqrt{(\boldsymbol{a} - \boldsymbol{b})^T \boldsymbol{W}(\boldsymbol{a} - \boldsymbol{b})}$$

Where \boldsymbol{W} is a $p \times p$ diagonal weight matrix with $\boldsymbol{W} = diag \{w_1, \dots, w_p\}$.

 $X' = X * W^{1/2}$

$$d_w(a', b') = d_w(b', a') = \sqrt{\sum_{j=1}^p (a_j' - b_j')^2}$$

1. Xing, Eric P., et al. "Distance metric learning with application to clustering with side-information." Advances in neural information processing systems. 2003.

References:

Step 2- getDist – calculation of weights

$$w_{jc} = \log\left[\frac{l(x_{ijc}|\mu_{jc},\sigma_{jc}^2)}{l(x_{ijc}|\mu_{j},\sigma_{j}^2)}\right]$$

$$w_j = \max(w_{j1}, w_{j2}, \dots, w_{jk})$$

Where x_{ijc} , is the expression value of mth datatype for ith sample and jth feature

 μ_{jc} = mean of a feature j only considering samples belonging to cluster c, where c = 1,2,3...k, σ_{jc}^2 = standard deviation of a feature j only considering samples belonging to cluster c

 μ_j = population mean, all samples across all clusters,, σ_j^2 = population standard deviation, considering all samples

Overfitting is avoided by cross-validation

• We did 5-fold cross validation for 50 rounds of cross validation to arrive at a consolidated solution for a particular *k* cluster

Concludes one round of cross-validation

- Perform 50 such rounds with random 5 splits of the data
- Collect 50 cross validated survClust predicted class labels for each k = 2 to 7

scNMT seq Mouse gastrulation – Input data

				features		
			I	missing >50%	6	final
	#cells	features	missing	samples	final features	missing
acc_DHS	826	290	0.19	0	290	0.19
acc_p300	826	138	0.34	0	138	0.34
acc_cgi	826	4459	0.33	0	4459	0.33
acc_CTCF	826	898	0.37	0	898	0.37
acc_promoter	826	16518	0.28	0	5000	0.30
acc_genebody	826	17139	0.14	0	5000	0.24
met_DHS	826	66	0.24	3	63	0.22
met_p300	826	101	0.45	24	77	0.43
met_cgi	826	5536	0.42	511	5000	0.41
met_CTCF	826	175	0.48	51	124	0.46
met_promoter	826	12092	0.40	595	5000	0.42
met_genebody	826	15837	0.22	140	5000	0.24
rna	826	18345	0.00	0	5000	0.00

Results – MOSAIC with Stage

MOSAIC was run on 13 data types wrt stage. For 5 folds and 50 rounds of CV.

stage			
E4.5	E5.5	E6.5	E7.5
104(12.59%)	108(13.08%)	271(32.81%)	343(41.53%)

A k was picked as follows –

- Highest adjusted Mutual Information (MI)
- Lowest Standardized Pooled Within Sum of Squares (SPWSS)

Memorial Sloan Kettering Cancer Center

MOSAIC on RNA data type with Stage

RNA 5-class MOSAIC vs stage, top500

RNA MOSAIC solution vs kmeans

	E4.5	E5.5	E6.5	E7.5
1	0	24	45	6
2	0	0	187	100
3	104	0	0	0
4	0	0	31	237
5	0	84	8	0

AMI = 0.55, AMI for lineage 0.56

	E4.5	E5.5	E6.5	E7.5
1	0	0	30	228
2	3	7	74	20
3	58	0	0	0
4	0	77	125	89
5	43	24	42	6

AMI = 0.34, add AMI for lineage =0.51

	Ectoderm	Endoderm	Epiblast	ExE_ecto derm	Mesoder m	Primitive _endode rm	Primitive _Streak	Visceral_endod erm	NA
E4.5	0	0	60	0	0	43	0	0	1
E5.5	0	0	84	0	0	0	0	24	0
E6.5	0	0	146	8	28	0	43	45	1
E7.5	43	81	44	0	141	0	33	0	1

met_CTCF;AMI=0.24

Integrating 5 data types and stage as outcome

Data type	AMI	Features
RNA	0.56	5000
met_promoter	0.49	5000
met_genebody	0.36	5000
met_cgi	0.32	5000
acc_DHS	0.29	290

Overlap between top 1000 genes

Integrating 5 data types and stage as outcome – AMI tracks close to rna

Integrated solution

A	AMI = 0.53, stage									
	E4.5	E5.5	E6.5	E7.5						
1	0	1	211	337						
2	0	83	7	0						
3	1	22	52	6						
4	103	2	1	0						

AMI = 0.62, RNA k5 solution										
rnak5	1	2	3	4	5					
Integ 1	0	280	0	268	1					
2	0	7	0	0	83					
3	72	0	1	0	8					
4	3	0	103	0	0					

AN	/II = 0.33, line	age						
	Ectoderm	Endoderm	Epiblast	ExE_ecto derm	Mesoder m	Primitive _endode rm	Primitive _Streak	Visceral_ endoder m
1	43	75	185	0	169	0	75	0
2	0	0	89	0	0	0	1	0
3	0	6	0	8	0	0	0	66
4	0	0	60	0	0	43	0	3

Results – MOSAIC with Lineage

MOSAIC was run on 13 data types wrt stage. For 5 folds and 50 rounds of CV.

Ectoderm	Endoderm	Eniblast ExE_ectode Meso		Mesoderm	Primitive_en	Primitive_S	Visceral_end	
Letoderin	Liuoueiiii	Lpiblast	rm		doderm	treak	oderm	
43(5.21%)	81(9.81%)	334(40.44%)	8(0.97%)	169(20.46%)	43(5.21%)	76(9.2%)	69(8.35%)	3(0.36%)

Ectoderm	Endoderm	Epiblast	Mesoderm	Primitive_Streak
43(6.12%)	81(11.52%)	334(47.51%)	169(24.04%)	76(10.81%)

RNA MOSAIC with lineage vs kmeans

	Ectoderm	Endoderm	Epiblast	Mesoderm	Primitive_Streak
1	0	2	0	168	12
2	0	0	142	0	0
3	43	0	192	1	61
4	0	79	0	0	3

AMI = 0.65, AMI with stage 0.48

	E4.5	E5.5	E6.5	E7.5
1	0	0	30	228
2	3	7	74	20
3	58	0	0	0
4	0	77	125	89
5	43	24	42	6

AMI for stage =0.34, add AMI for lineage =0.51

Conclusion

- MOSAIC finds supervised clusters, with an outcome of interest in mind. Where kmeans might give mixed results. Supervised clustering is much more efficient and helps in sorting out different signals
- MOSAIC can run with missing data. However interpretations should be made carefully.
- MOSAIC reduces computation space from sample x feature to sample x sample
- Efficient in dealing with noisy features

Future Work:

- Imputation of missing data area where a lot of research has been done.
- In scNMT mouse data, stages have a temporal relationship, perhaps model ordinal relationship.
- Joint modeling of stage and lineage
- Integrated solution can be further improved

References

- Shen, R. et al. Integrative subtype discovery in glioblastoma using iCluster. 7, e35236 (2012).
- Olshen, A.B., Venkatraman, E., Lucito, R. & Wigler, M.J.B. Circular binary segmentation for the analysis of array-based DNA copy number data. 5, 557-572 (2004).
- Xing, E.P., Jordan, M.I., Russell, S.J. & Ng, A.Y. in Advances in neural information processing systems 521-528 (2003).
- Torgerson, W.S. Theory and methods of scaling. (1958).
- Hartigan, J.A. & Wong, M.A.J.J.o.t.R.S.S.S.C. Algorithm AS 136: A k-means clustering algorithm. 28, 100-108 (1979).
- Mardia, K.V.J.C.i.S.-T. & Methods Some properties of clasical multi-dimesional scaling. 7, 1233-1241 (1978).
- Legendre, P. & Gallagher, E.D.J.O. Ecologically meaningful transformations for ordination of species data. 129, 271-280 (2001).
- Tibshirani, R., Walther, G. & Hastie, T.J.J.o.t.R.S.S.S.B. Estimating the number of clusters in a data set via the gap statistic. 63, 411-423 (2001).
- Alexandrov, L.B. et al. Signatures of mutational processes in human cancer. 500, 415 (2013).
- Robertson, A.G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. 171, 540-556. e525 (2017).
- Hoadley, Katherine A., et al. "Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer." *Cell* 173.2 (2018): 291-304.

Thanks! Questions?

Acknowledgements

Ronglai Shen, PhD Associate Attending Biostatistician

Adam B. Olshen, PhD Venkatraman E. Seshan, PhD

EXTRA Slides

Step 2- getDist – calculation of weights

$$w_{jc} = \log \left[\frac{l(x_{ijc} | \mu_{jc}, \sigma_{jc}^2)}{l(x_{ijc} | \mu_j, \sigma_j^2)} \right]$$

$$l(x_{ijc}|\mu_{jc},\sigma_{jc}^{2}) = \sum_{i=1}^{n_{c}} log \left[\frac{1}{\sqrt{2\pi}\sigma_{jc}^{2}} exp \frac{-1}{2} \left\{ \frac{\left(x_{ijc} - \mu_{jc}\right)^{2}}{\sigma_{jc}^{2}} \right\} \right]$$
$$l(x_{ijc}|\mu_{jc},\sigma_{jc}^{2}) = \sum_{i=1}^{n_{c}} log \left[\frac{1}{\sqrt{2\pi}\sigma_{j}^{2}} exp \frac{-1}{2} \left\{ \frac{\left(x_{ijc} - \mu_{j}\right)^{2}}{\sigma_{j}^{2}} \right\} \right]$$

$$w_j = \max(w_{j1}, w_{j2}, \dots, w_{jk})$$

unweighted data

Frequency

Weighted data

Memorial Sloan Kettering Cancer Center

ŧ

MOSAIC on RNA data type with Lineage

cluster lineage stage cluster 2 3 4 0 lineage 计物理 的复数 法保护 此一般 化化合物 化 Ectoderm -1 Endoderm Epiblast ExE ectoderm -2 il et de statistiche Mesoderm Primitive_endoder Primitive_Streak Visceral endoderr NA stage E4.5 E5.5 E6.5 E7.5 2 4 3 43 0 0 0 Ectoderm 79 0 Endoderm 0 142 192 0 **Epiblast** 168 0 1 0 Mesoderm and a second second 12 61 3 0 **Primitive Streak**

RNA 4-class MOSAIC vs lineage, top500

.

Cancer Center

Step 1 – prepare input data

Raw Data

Various molecular platforms

Features

- Continuous data should be standardized across features (columns)
- This ensure that weights are interpretable.

For proportion data – folded square root transformation

$$x_{ij} = \sqrt{x_{ij}} - \sqrt{(1 - x_{ij})}$$

Where i, ith sample , j, jth feature for a particular data type m, where m = met-DHS, ... etc

