Topologicd Hochschild Cohomology
for schemes
2/w Dmitri Kaledin wendy Lower work in progress?
Cohomology theories for rings
$2 T H / H^{*}$ for rings
3 THAt $^{*}$ for enriched cat ${ }^{5}$
$4 \mathrm{THH})^{*}$ for schemes
5 Computations for $\mathbb{T}^{1} \& \mathbb{P}^{2}$

K a commutative base ring $A$ a $k$-algebra $A^{e}=A Q_{k} A^{O P}$ envebping alg Hochschily cohombogy is

$$
\frac{H H^{*}(A)=E x t_{A^{e}}^{*}(A, A)}{A^{L e}=A \otimes A_{k}^{\| P} \text { derived }}
$$

Shukla cohomology is

$$
\operatorname{Shukla}_{a}^{*}(A)=\underset{A^{\# e}}{E x t^{*}}(A, A)
$$

Deformation theory
$H H^{2}(A)$ is la bijection with $\left\{\begin{array}{l}\text { split finst-srdir } \\ \text { extensions of } A \\ \text { iso }\end{array}\right\}$
ie $k[c] / \Sigma^{2}$ - algebras $\widetilde{A}$
with a $k$-split map

$$
\widetilde{A} \rightarrow \widetilde{A} / \varepsilon \cong A
$$

Upshot
behaves well over a field

Theres a similar story for Shukh colomalogy Motivation
is there a similar story for abehan categeories?
Def (bowen)
A an abehian category

$$
\begin{aligned}
& H H_{a l_{0}}^{*}(A)=H H^{*}(\ln \mid \ln d A) \\
& H H^{*}(x) \sim H H^{*}(\Omega,) \Delta
\end{aligned}
$$

$H_{a}^{a H^{*}}(x) \simeq H H_{a b}^{*}(Q \operatorname{con})$
$a \mathbb{Z}$-linear category
a ka a ring with many objects

Hill doesnt work well hon things aren't linear
over a fielded over a field
Example
$\operatorname{Mod}-\mathbb{Z} / p^{2}$ should te a first-order deformation of Mod- $\mathbb{Z} / p$
need to incorporate non-adAitive features Answer

Mac Lane co homology

Mac lave cohomblogy
Imk not the ooig'nal dif"
Equaratence is dhe fo
Jibladze \& Pcrashivih

$$
H M L^{*}(A)=E x t_{f(A)}^{*}(A, A)
$$

nor-aAtitive fimodules

$$
F(A)=\operatorname{Fun}\left(\operatorname{Free} A, M_{0} d-A\right)
$$

free $f \cdot g=A-m o d s$
$A$-hinod $\longleftrightarrow F(A)$
$M \longmapsto M \otimes_{A}-$

Eventual goal
Use HML to get a good deformation theory for abelian categories ecg. want $H M L^{2} \simeq\left\{1^{s t}\right.$ deformations $\}$
Today focus on the topological approach to HM

2 Topological story
Ides one can \& should doS algesia with ring spectra

$$
\sum x_{i} \xrightarrow{\beta} X_{i+1}
$$

Since the 90 s categories of high y structured spectral with in monodal smash prodlet $\Lambda$

Ring spectra are
monoids in $(S p t, 1)$
example $S_{n}=S^{n}$
S the sphere spectrum
is the hist for $\wedge$
It's a commutative ring so
\& moreover the nodal one
A a ring, HA the
Eilestery-Mac Lara spading is a ring spectrum

$$
\Longrightarrow \exists!S \longrightarrow H A
$$

Def
$T H H^{*}(A)$ is

$$
E x t_{A \wedge_{g} A^{p} p}(A, A)
$$

\& scmilarty for $T+1 H_{x}$
Example (Bükstedt
Franon-Lames-Schuartz
$x$ a finste field

$$
\mathrm{THH}^{*}(k) \cong k[u]
$$

$2 \operatorname{deg} 2$

Example
if $A$ is a $Q$-algebra then $T H H^{*}(A) \simeq H H^{*}(A)$
Evince $\mathbb{E} \wedge_{S \text { ann }} \mathbb{Q} \sim \mathbb{Q}$
Example
If $A$ is an algebra over
a field $k$ then theres
a spectral sequence
$T H H^{q}(K) \otimes H H^{p}(A)$
$\stackrel{\text { arithetiss }}{\Longrightarrow} \operatorname{THP}^{\text {Semedrac }} p+q(A)$

$$
\begin{aligned}
& \text { Th }{ }^{\text {M }} \text { (Proshsush - Woduhalseer) } \\
& H M L_{*} \bumpeq T H H_{*} \\
& \text { Thm } \\
& H M L^{*} \bumpeq T H H H^{*}
\end{aligned}
$$

Key ingrechent
Recent ( $\mu$ sterday!) result of Horel \& Ramzi

$$
\begin{aligned}
& \operatorname{shn} k a_{a}^{2}=H M L^{2} \\
& \left.\operatorname{Shn}_{2}\right|_{a} ^{*} \rightarrow H M L^{*}
\end{aligned}
$$

$3 \mathrm{THH}^{*}$ for emiched categorces
Des a spectral category is a ctegory enriched on. $\left(S_{p} t, \Lambda\right) \cong(\$-\bmod , \Lambda)$ Example
Spt iself is a spectral category (erriciment by interial homs)

Analogy
Spectral cats: spertumn
DG cats: DGA
One can talk about modules over a spectral category \& this allows you to define $e_{1_{S}}$ op

$$
T H H(e)=R_{\mathrm{RH}_{\mathrm{om}}^{e}}^{(e, e)}
$$

which is a spectrum
rink Can compute via a bar construction

Thm (Tabhada) $\exists$ a chain of Qhilln equivalunces

$$
\begin{aligned}
& H: \operatorname{dgCat} \mathbb{Z} \rightarrow H \mathbb{Z}_{\text {- }} \text { Cat } \\
& \text { (a) emchel ww } \\
& (H \mathbb{Z} \text {-mor, } 1)
\end{aligned}
$$

This is a many-object version of a result of Shipley
$S \rightarrow H Z$ induces a resturction of scalors a ap $\mathrm{H} \mathbb{Z}-\mathrm{Cat} \xrightarrow{i^{*}} \mathrm{~S}-\mathrm{Cat}$ Def $e$ a dg-Z $-c a t$ $T H H^{*}(e)=T_{H} H^{*}\left(i^{*}+H e\right)$ rkk if $A$ is a ring, regardel as a $1-0 b_{j}$. dy category, get the epeeted answer

4 TH H* for schemes
Def $A$ an abehon cat.

$$
\begin{aligned}
& T+H H_{a b}^{*}(A)=T H+\left(\ln _{\underset{A}{ }} \ln d A\right) \\
& \mathbb{Z} \text {-linear cat }
\end{aligned}
$$

Def $X$ a scheme

$$
\operatorname{THH}^{*}(X):=\operatorname{THH}_{a b}^{*}(Q \operatorname{coh} X)
$$

Warning Should only be expected to behave when $x$ is qeqs

Sanity Check if $R$ is a commutative ring then
THIH (Sue cR)

$$
\begin{aligned}
& \simeq T H H_{a b}\left(Q G h S_{p e c} R\right) \\
& \simeq T H H_{a b}\left(M_{0} d-R\right) \\
& \simeq T H H(R)
\end{aligned}
$$

tine but not obvious!

Thy $\times q$ cqs noetherian

$$
\left.T H H T^{*}(x) \simeq T H H\right|_{d 0} ^{*}(\cos x)
$$

Prot

$$
Q \operatorname{Coh} X=\ln d \operatorname{Coh} X
$$

$$
\text { so } T+t t^{\sharp}(x) \text { is }
$$

$$
T H H^{+}(\ln j Q \operatorname{coh} x)
$$

$$
\simeq T H H_{a b}^{*}\left(Q C_{o h} X\right)
$$

becanse QCoh has enoufh injectives

Punchline $X q$ cps noeth.

$$
\begin{aligned}
\operatorname{THH}(x) & \simeq \operatorname{THH}\left(D^{b} C_{0} h x\right) \\
& \simeq \operatorname{THH}(\operatorname{per} x) \\
& \simeq \operatorname{THH}(D Q 6 h x)
\end{aligned}
$$

Proof idea
Adapt the arguments for $\mathrm{HH}^{*}$ the to via keller Laver, \& Van den Bergh Key point computing THH via the bar Complex gives Limited functoriality

5 Computations
Def $X$ Ins woethenom
a tiling comply is
a compact generator

$$
T \in D^{b} \operatorname{coh} x I^{*}+
$$

such that Ext $(T, T)$
$S$ concentrated in degree zero
Def Say $x$ is +iltable
if it admits a tilting complex

Example $⿻^{n}$ is tillable

$$
(T=O \oplus \cdots \oplus O(n))
$$

Example Grassmannians are tillable
Th ${ }^{m} X$ a tillable schere Jer a fill $K$
then $\exists$ a spectral seq
TH H $^{q}(x) \otimes H H^{p}(x)$

$$
\Longrightarrow T H H^{p+q}(x)
$$

Follows from the analogue for rings

For $\mathbb{P}^{\prime}$ over a finite find $K$ the $E^{2}$ page is

\& the SS degenerates
We get $\operatorname{thh}^{h}\left(\mathbb{T}^{\prime}\right) \simeq$
$\operatorname{thh}^{h}(k) \oplus H H^{\prime}\left(\mathbb{P}^{1}\right) \otimes \operatorname{thh}^{n-1}(k)$ $1,3,1,3,1,3, \ldots$

For $\mathbb{p}^{2}$ over a finite fill we also get degeneration Dimensions are

$$
1,8,11,8,11,8,11 \text {, }
$$

For $\mathbb{p}^{3}$ we hight have an $E^{3}$ differential

$$
\begin{aligned}
& H H^{0}\left(\mathbb{P}^{3}\right) \xrightarrow{\cong} \begin{array}{l}
\cong
\end{array} \text { H }{ }^{\prime}\left(\mathbb{P}^{3}\right) \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{HLI}^{p}(A) \gamma H M L^{q}(K) \\
& \Rightarrow H M L^{p+q}(A) \\
& \Rightarrow \text { aledin-lquen } \\
& T H H^{*}(\mathbb{Z}) \\
& \mathbb{Z} / i \text { deg } 2 i+1 \\
& 0 \text { else }
\end{aligned}
$$

