Cyclic sieving and orbit harmonics

${\sf Jaeseong}~{\sf Oh}^1 \quad {\sf Brendon}~{\sf Rhoades}^2$

¹Seoul National University ²University of California, San Diego

Dynamical Algebraic Combinatorics (BIRS Online) October 23, 2020

Cyclic Sieving Phenomena

Let $C = \langle c \rangle$ be a cyclic group acting on a finite set X and let $X(q) \in \mathbb{Z}_{>0}[q]$ be a polynomial. We say the triple (X, C, X(q)) exhibits CSP if for all $r \ge 0$ and $\omega = \exp(2\pi i/|C|)$,

$$|X^{c^r}| = X(\omega^r).$$

For example, let $X = \begin{bmatrix} [4] \\ 2 \end{bmatrix}$, $C = \langle c \rangle$ be a cyclic group of order 4 acting on Xas in the figure and let $X(q) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}_{q} = q^4 + q^3 + 2q^2 + q + 1$. Note that

$$|X^{id}| = X(1) = 6, |X^{c}| = X(i) = 0, |X^{c^{2}}| = X(i^{2}) = 2 \text{ and } |X^{c^{3}}| = X(i^{3}) = 0.$$

Thus the triple (X, C, X(q)) exhibits CSP.

Orbit harmonics

- X: a finite set in \mathbb{C}^n which is closed under $\mathfrak{S}_n \times C$, where
 - symmetric group \mathfrak{S}_n acts on \mathbb{C}^n by coordinate permutation
 - C is a finite cyclic group acting on \mathbb{C}^n by root of unity scaling

Orbit harmonics

- X: a finite set in \mathbb{C}^n which is closed under $\mathfrak{S}_n \times C$, where
 - symmetric group \mathfrak{S}_n acts on \mathbb{C}^n by coordinate permutation
 - C is a finite cyclic group acting on \mathbb{C}^n by root of unity scaling

$$I(X) := \{ f \in \mathbb{C}[x_n] : f(x) = 0, \quad \forall x \in X \}.$$

By Lagrange interpolation, we have an isomorphism as \mathfrak{S}_n -modules,

 $\mathbb{C}[X] \cong \mathbb{C}[x_n]/I(X).$

Orbit harmonics

- X: a finite set in \mathbb{C}^n which is closed under $\mathfrak{S}_n \times C$, where
 - symmetric group \mathfrak{S}_n acts on \mathbb{C}^n by coordinate permutation
 - C is a finite cyclic group acting on \mathbb{C}^n by root of unity scaling

$$I(X) := \{ f \in \mathbb{C}[x_n] : f(x) = 0, \quad \forall x \in X \}.$$

By Lagrange interpolation, we have an isomorphism as \mathfrak{S}_n -modules,

 $\mathbb{C}[X] \cong \mathbb{C}[x_n]/I(X).$

For any $f \in \mathbb{C}[x_n]$, let $\tau(f)$ be the top degree component of f. The ideal $T(X) \subseteq \mathbb{C}[x_n]$ is defined by

$$T(X) := \langle \tau(f) : f \in I(X), \quad f \neq 0 \rangle.$$

and we have an isomorphism as \mathfrak{S}_n -modules,

$$\mathbb{C}[X] \cong \mathbb{C}[x_n]/T(X),$$

as $\mathfrak{S}_n \times C$ -module on which C acts on $\mathbb{C}[x_n]/T(X)$ by scaling a root of unity in each variable.

CSP generating theorem

Main theorem (O.-Rhoades 20+)

Let $X \subseteq \mathbb{C}^n$ be a finite set with $\mathfrak{S}_n \times C$ acting on it. For a subgroup $G \subseteq \mathfrak{S}_n$, the triple (X/G, C, (X/G)(q)) exhibits CSP where

 $(X/G)(q) = \operatorname{Hilb}((\mathbb{C}[x_n]/T(X))^G; q),$

where <u>Hilbert series</u> of graded vector space $V = \bigoplus_d V_d$ is defined by

$$\mathsf{Hilb}(V;q) := \sum_{d \ge 0} \dim(V_d) q^d.$$

The key idea of the proof is the isomorphism given in the last slide,

$$\mathbb{C}[X] \cong \mathbb{C}[x_n]/T(X).$$

Since the *C* action is encoded in the grading in $\mathbb{C}[x_n]/T(X)$, we can calculate the number of fixed points of c^r by trace of the action of c^r , and thus by the root of unity evaluation of the Hilbert series.

Injective functional locus

Proposition

For n < k, let $\mathcal{I}_{n,k} = \{(a_1, \ldots, a_n) \in \mathbb{C}^n : \{a_1, \ldots, a_n\} \subseteq \{\omega^1, \ldots, \omega^k\}\}$ be the injective functional locus, where $\omega = \exp(2\pi i/k)$. Then,

$$\mathbb{C}[x_n]/T(\mathcal{I}_{n,k}) = \mathbb{C}[x_n]/\langle h_{k-n+1}(x_n), \dots, h_k(x_n) \rangle \quad \text{and}$$

grFrob($\mathbb{C}[x_n]/T(\mathcal{I}_{n,k}); q$) = $\begin{bmatrix} k \\ n \end{bmatrix}_q \sum_{T \in SYT(n)} q^{maj(T)} \cdot s_{sh(\lambda)},$

Injective functional locus

Proposition

For n < k, let $\mathcal{I}_{n,k} = \{(a_1, \ldots, a_n) \in \mathbb{C}^n : \{a_1, \ldots, a_n\} \subseteq \{\omega^1, \ldots, \omega^k\}\}$ be the injective functional locus, where $\omega = \exp(2\pi i/k)$. Then,

$$\mathbb{C}[x_n]/\mathcal{T}(\mathcal{I}_{n,k}) = \mathbb{C}[x_n]/\langle h_{k-n+1}(x_n), \dots, h_k(x_n) \rangle \quad \text{and}$$

grFrob($\mathbb{C}[x_n]/\mathcal{T}(\mathcal{I}_{n,k}); q$) = $\begin{bmatrix} k \\ n \end{bmatrix}_q \sum_{T \in SYT(n)} q^{maj(T)} \cdot s_{sh(\lambda)};$

pf) We claim that $\langle h_{n-k+1}(x_n) \dots h_n(x_n) \rangle_{d>k-n} \subseteq T(\mathcal{I}_{n,k})$. Consider

$$\frac{(1-\omega t)\cdots(1-\omega^k t)}{(1-x_1t)\cdots(1-x_nt)}=\sum_{d\geq 0}\sum_{a+b=d}(-1)^a\cdot e_a\left(\omega,\omega^2,\ldots,\omega^k\right)\cdot h_b\left(x_n\right)t^d.$$

If $(x_1, \ldots, x_n) \in \mathcal{I}_{n,k}$, the above gives a polynomial in t of degree k - n. Taking coefficient of t^d for d > k - n, we have

$$\sum_{a+b=d} (-1)^a \cdot e_a\left(\omega, \omega^2, \dots, \omega^k\right) \cdot h_b\left(\mathsf{x}_n\right) \in I(\mathcal{I}_{n,k}) \text{ and } h_d(x_n) \in T(\mathcal{I}_{n,k}).$$

A Cyclic sieving phenomenon

Theorem

The triple
$$\binom{\begin{bmatrix} k \\ n \end{bmatrix}}{n}$$
, \mathbb{Z}_k , $\binom{k}{n}_q$) exhibits CSP, where \mathbb{Z}_k acts by rotating elements of subsets.

Proof) Since
$$\mathcal{I}_{n,k}/\mathfrak{S}_n = \begin{bmatrix} [k]\\ n \end{bmatrix}$$
 and

 $\mathsf{Hilb}((\mathbb{C}[x_n]/T(\mathcal{I}_{n,k}))^{\mathfrak{S}_n}; q) = \mathsf{the coefficient of } s_{(n)} \mathsf{ in grFrob}(V; q),$

Recall that

$$\operatorname{grFrob}(\mathbb{C}[x_n]/\mathcal{T}(\mathcal{I}_{n,k});q) = \begin{bmatrix} k \\ n \end{bmatrix}_q \sum_{T \in SYT(n)} q^{\operatorname{maj}(T)} \cdot s_{\operatorname{sh}(T)}.$$

Then the main theorem gives the result.

Variations on the theme

- Various combinatorial loci X
 - Functional loci (any functions, surjective functions)
 - Parking locus
 - Tanisaki locus

Variations on the theme

- Various combinatorial loci X
 - Functional loci (any functions, surjective functions)
 - Parking locus
 - Tanisaki locus
- Various subgroups $G \subseteq \mathfrak{S}_n$
 - \mathfrak{S}_n full symmetric group (sieving results for compositions),
 - C_n a cyclic group (sieving results for necklaces),
 - $H_{n/2}$ a hyperoctahedral group (sieving results for graphs).

Variations on the theme

- Various combinatorial loci X
 - Functional loci (any functions, surjective functions)
 - Parking locus
 - Tanisaki locus
- Various subgroups $G \subseteq \mathfrak{S}_n$
 - \mathfrak{S}_n full symmetric group (sieving results for compositions),
 - C_n a cyclic group (sieving results for necklaces),
 - $H_{n/2}$ a hyperoctahedral group (sieving results for graphs).
- Various complex reflection groups other than G_n
 e.g. G(r, 1, n), a group of r-colored permutations gives sieving results for twisted rotation. (recovers results of Barcelo-Reiner-Stanton on colored permutations and of Alexandersson-Linusson-Potka on binary words)

Thank you!