Cyclic sieving and orbit harmonics

Jaeseong Oh ${ }^{1}$ Brendon Rhoades ${ }^{2}$
${ }^{1}$ Seoul National University $\quad{ }^{2}$ University of California, San Diego
Dynamical Algebraic Combinatorics (BIRS Online) October 23, 2020

(1) Cyclic sieving and orbit harmonics
(2) Applications of the main theorem

Cyclic Sieving Phenomena

Let $C=\langle c\rangle$ be a cyclic group acting on a finite set X and let $X(q) \in \mathbb{Z}_{\geq 0}[q]$ be a polynomial. We say the triple $(X, C, X(q))$ exhibits CSP if for all $r \geq 0$ and $\omega=\exp (2 \pi i /|C|)$,

$$
\left|X^{c^{r}}\right|=X\left(\omega^{r}\right) .
$$

For example, let $X=\left[\begin{array}{c}{[4]} \\ 2\end{array}\right], C=\langle c\rangle$ be a cyclic group of order 4 acting on X as in the figure and let $X(q)=\left[\begin{array}{l}4 \\ 2\end{array}\right]_{q}=q^{4}+q^{3}+2 q^{2}+q+1$. Note that

$$
\left|X^{i d}\right|=X(1)=6,\left|X^{c}\right|=X(i)=0,\left|X^{c^{2}}\right|=X\left(i^{2}\right)=2 \text { and }\left|X^{c^{3}}\right|=X\left(i^{3}\right)=0 .
$$

Thus the triple $(X, C, X(q))$ exhibits CSP.

Orbit harmonics

X : a finite set in \mathbb{C}^{n} which is closed under $\mathfrak{S}_{n} \times C$, where

- symmetric group \mathfrak{S}_{n} acts on \mathbb{C}^{n} by coordinate permutation
- C is a finite cyclic group acting on \mathbb{C}^{n} by root of unity scaling

Orbit harmonics

X : a finite set in \mathbb{C}^{n} which is closed under $\mathfrak{S}_{n} \times C$, where

- symmetric group \mathfrak{S}_{n} acts on \mathbb{C}^{n} by coordinate permutation
- C is a finite cyclic group acting on \mathbb{C}^{n} by root of unity scaling

$$
I(X):=\left\{f \in \mathbb{C}\left[x_{n}\right]: f(x)=0, \quad \forall x \in X\right\}
$$

By Lagrange interpolation, we have an isomorphism as \mathfrak{S}_{n}-modules,

$$
\mathbb{C}[X] \cong \mathbb{C}\left[x_{n}\right] / I(X)
$$

Orbit harmonics

X : a finite set in \mathbb{C}^{n} which is closed under $\mathfrak{S}_{n} \times C$, where

- symmetric group \mathfrak{S}_{n} acts on \mathbb{C}^{n} by coordinate permutation
- C is a finite cyclic group acting on \mathbb{C}^{n} by root of unity scaling

$$
I(X):=\left\{f \in \mathbb{C}\left[x_{n}\right]: f(x)=0, \quad \forall x \in X\right\}
$$

By Lagrange interpolation, we have an isomorphism as \mathfrak{S}_{n}-modules,

$$
\mathbb{C}[X] \cong \mathbb{C}\left[x_{n}\right] / I(X)
$$

For any $f \in \mathbb{C}\left[x_{n}\right]$, let $\tau(f)$ be the top degree component of f. The ideal $T(X) \subseteq \mathbb{C}\left[x_{n}\right]$ is defined by

$$
T(X):=\langle\tau(f): f \in I(X), \quad f \neq 0\rangle .
$$

and we have an isomorphism as \mathfrak{S}_{n}-modules,

$$
\mathbb{C}[X] \cong \mathbb{C}\left[x_{n}\right] / T(X)
$$

as $\mathfrak{S}_{n} \times C$-module on which C acts on $\mathbb{C}\left[x_{n}\right] / T(X)$ by scaling a root of unity in each variable.

CSP generating theorem

Main theorem (O.-Rhoades 20+)

Let $X \subseteq \mathbb{C}^{n}$ be a finite set with $\mathfrak{S}_{n} \times C$ acting on it. For a subgroup $G \subseteq \mathfrak{S}_{n}$, the triple $(X / G, C,(X / G)(q))$ exhibits CSP where

$$
(X / G)(q)=\operatorname{Hilb}\left(\left(\mathbb{C}\left[x_{n}\right] / T(X)\right)^{G} ; q\right)
$$

where Hilbert series of graded vector space $V=\bigoplus_{d} V_{d}$ is defined by

$$
\operatorname{Hilb}(V ; q):=\sum_{d \geq 0} \operatorname{dim}\left(V_{d}\right) q^{d}
$$

The key idea of the proof is the isomorphism given in the last slide,

$$
\mathbb{C}[X] \cong \mathbb{C}\left[x_{n}\right] / T(X)
$$

Since the C action is encoded in the grading in $\mathbb{C}\left[x_{n}\right] / T(X)$, we can calculate the number of fixed points of c^{r} by trace of the action of c^{r}, and thus by the root of unity evaluation of the Hilbert series.

Injective functional locus

Proposition

For $n<k$, let $\mathcal{I}_{n, k}=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}:\left\{a_{1}, \ldots, a_{n}\right\} \subseteq\left\{\omega^{1}, \ldots, \omega^{k}\right\}\right\}$ be the injective functional locus, where $\omega=\exp (2 \pi i / k)$. Then,

$$
\begin{gathered}
\mathbb{C}\left[x_{n}\right] / T\left(\mathcal{I}_{n, k}\right)=\mathbb{C}\left[x_{n}\right] /\left\langle h_{k-n+1}\left(x_{n}\right), \ldots, h_{k}\left(x_{n}\right)\right\rangle \quad \text { and } \\
\operatorname{grFrob}\left(\mathbb{C}\left[x_{n}\right] / T\left(\mathcal{I}_{n, k}\right) ; q\right)=\left[\begin{array}{l}
k \\
n
\end{array}\right]_{q} \sum_{T \in S Y T(n)} q^{\operatorname{maj}(T)} \cdot s_{s h(\lambda)},
\end{gathered}
$$

Injective functional locus

Proposition

For $n<k$, let $\mathcal{I}_{n, k}=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}:\left\{a_{1}, \ldots, a_{n}\right\} \subseteq\left\{\omega^{1}, \ldots, \omega^{k}\right\}\right\}$ be the injective functional locus, where $\omega=\exp (2 \pi i / k)$. Then,

$$
\begin{gathered}
\mathbb{C}\left[x_{n}\right] / T\left(\mathcal{I}_{n, k}\right)=\mathbb{C}\left[x_{n}\right] /\left\langle h_{k-n+1}\left(x_{n}\right), \ldots, h_{k}\left(x_{n}\right)\right\rangle \text { and } \\
\operatorname{grFrob}\left(\mathbb{C}\left[x_{n}\right] / T\left(\mathcal{I}_{n, k}\right) ; q\right)=\left[\begin{array}{l}
k \\
n
\end{array}\right] \sum_{q \in S Y T(n)} q^{\operatorname{maj}(T)} \cdot s_{s h(\lambda)}
\end{gathered}
$$

pf) We claim that $\left\langle h_{n-k+1}\left(x_{n}\right) \ldots h_{n}\left(x_{n}\right)\right\rangle_{d>k-n} \subseteq T\left(\mathcal{I}_{n, k}\right)$. Consider

$$
\frac{(1-\omega t) \cdots\left(1-\omega^{k} t\right)}{\left(1-x_{1} t\right) \cdots\left(1-x_{n} t\right)}=\sum_{d \geq 0} \sum_{a+b=d}(-1)^{a} \cdot e_{a}\left(\omega, \omega^{2}, \ldots, \omega^{k}\right) \cdot h_{b}\left(x_{n}\right) t^{d}
$$

If $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{I}_{n, k}$, the above gives a polynomial in t of degree $k-n$. Taking coefficient of t^{d} for $d>k-n$, we have

$$
\sum_{a+b=d}(-1)^{a} \cdot e_{a}\left(\omega, \omega^{2}, \ldots, \omega^{k}\right) \cdot h_{b}\left(x_{n}\right) \in I\left(\mathcal{I}_{n, k}\right) \text { and } h_{d}\left(x_{n}\right) \in T\left(\mathcal{I}_{n, k}\right)
$$

A Cyclic sieving phenomenon

Theorem

The triple $\left(\left[\begin{array}{c}{[k]} \\ n\end{array}\right], \mathbb{Z}_{k},\left[\begin{array}{l}k \\ n\end{array}\right]_{q}\right)$ exhibits CSP, where \mathbb{Z}_{k} acts by rotating elements of subsets.

Proof) Since $\mathcal{I}_{n, k} / \mathfrak{S}_{n}=\left[\begin{array}{c}{[k]} \\ n\end{array}\right]$ and
$\operatorname{Hilb}\left(\left(\mathbb{C}\left[x_{n}\right] / T\left(\mathcal{I}_{n, k}\right)\right)^{\mathfrak{S}_{n}} ; q\right)=$ the coefficient of $s_{(n)}$ in $\operatorname{grFrob}(V ; q)$,
Recall that

$$
\operatorname{grFrob}\left(\mathbb{C}\left[x_{n}\right] / T\left(\mathcal{I}_{n, k}\right) ; q\right)=\left[\begin{array}{l}
k \\
n
\end{array}\right]_{q} \sum_{T \in S Y T(n)} q^{\operatorname{maj}(T)} \cdot s_{s h(T)}
$$

Then the main theorem gives the result.

Variations on the theme

- Various combinatorial loci X
- Functional loci (any functions, surjective functions)
- Parking locus
- Tanisaki locus

Variations on the theme

- Various combinatorial loci X
- Functional loci (any functions, surjective functions)
- Parking locus
- Tanisaki locus
- Various subgroups $G \subseteq \mathfrak{S}_{n}$
- \mathfrak{S}_{n} full symmetric group (sieving results for compositions),
- C_{n} a cyclic group (sieving results for necklaces),
- $H_{n / 2}$ a hyperoctahedral group (sieving results for graphs).

Variations on the theme

- Various combinatorial loci X
- Functional loci (any functions, surjective functions)
- Parking locus
- Tanisaki locus
- Various subgroups $G \subseteq \mathfrak{S}_{n}$
- \mathfrak{S}_{n} full symmetric group (sieving results for compositions),
- C_{n} a cyclic group (sieving results for necklaces),
- $H_{n / 2}$ a hyperoctahedral group (sieving results for graphs).
- Various complex reflection groups other than \mathfrak{S}_{n} e.g. $G(r, 1, n)$, a group of r-colored permutations gives sieving results for twisted rotation. (recovers results of Barcelo-Reiner-Stanton on colored permutations and of Alexandersson-Linusson-Potka on binary words)

Thank you!

