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Cyclic Sieving Phenomena

Let C = 〈c〉 be a cyclic group acting on a finite set X and let X (q) ∈ Z≥0[q]
be a polynomial. We say the triple (X ,C ,X (q)) exhibits CSP if for all r ≥ 0
and ω = exp(2πi/|C |),

|X cr | = X (ωr ).

For example, let X =

[
[4]

2

]
, C = 〈c〉 be a cyclic group of order 4 acting on X

as in the figure and let X (q) =

[
4

2

]
q

= q4 + q3 + 2q2 + q + 1. Note that

|X id | = X (1) = 6, |X c | = X (i) = 0, |X c2 | = X (i2) = 2 and |X c3 | = X (i3) = 0.

Thus the triple (X ,C ,X (q)) exhibits CSP.
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Orbit harmonics

X : a finite set in Cn which is closed under Sn × C , where

symmetric group Sn acts on Cn by coordinate permutation

C is a finite cyclic group acting on Cn by root of unity scaling

I (X ) := {f ∈ C[xn] : f (x) = 0, ∀x ∈ X}.

By Lagrange interpolation, we have an isomorphism as Sn-modules,

C[X ] ∼= C[xn]/I (X ).

For any f ∈ C[xn], let τ(f ) be the top degree component of f . The ideal
T (X ) ⊆ C[xn] is defined by

T (X ) := 〈τ(f ) : f ∈ I (X ), f 6= 0〉.

and we have an isomorphism as Sn-modules,

C[X ] ∼= C[xn]/T (X ),

as Sn × C -module on which C acts on C[xn]/T (X ) by scaling a root of unity
in each variable.
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CSP generating theorem

Main theorem (O.–Rhoades 20+)

Let X ⊆ Cn be a finite set with Sn × C acting on it. For a subgroup G ⊆ Sn,
the triple (X/G ,C , (X/G)(q)) exhibits CSP where

(X/G)(q) = Hilb((C[xn]/T (X ))G ; q),

where Hilbert series of graded vector space V =
⊕

d Vd is defined by

Hilb(V ; q) :=
∑
d≥0

dim(Vd)qd .

The key idea of the proof is the isomorphism given in the last slide,

C[X ] ∼= C[xn]/T (X ).

Since the C action is encoded in the grading in C[xn]/T (X ), we can calculate
the number of fixed points of c r by trace of the action of c r , and thus by the
root of unity evaluation of the Hilbert series.
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Injective functional locus

Proposition

For n < k, let In,k = {(a1, . . . , an) ∈ Cn : {a1, . . . , an} ⊆ {ω1, . . . , ωk}} be the
injective functional locus, where ω = exp(2πi/k). Then,

C[xn]/T (In,k) = C[xn]/〈hk−n+1(xn), . . . , hk(xn)〉 and

grFrob(C[xn]/T (In,k); q) =

[
k

n

]
q

∑
T∈SYT (n)

qmaj(T ) · ssh(λ),

pf) We claim that 〈hn−k+1(xn) . . . hn(xn)〉d>k−n ⊆ T (In,k). Consider

(1− ωt) · · ·
(
1− ωkt

)
(1− x1t) · · · (1− xnt)

=
∑
d≥0

∑
a+b=d

(−1)a · ea
(
ω, ω2, . . . , ωk

)
· hb (xn) td .

If (x1, . . . , xn) ∈ In,k , the above gives a polynomial in t of degree k − n. Taking
coefficient of td for d > k − n, we have∑

a+b=d

(−1)a · ea
(
ω, ω2, . . . , ωk

)
· hb (xn) ∈ I (In,k) and hd(xn) ∈ T (In,k).
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A Cyclic sieving phenomenon

Theorem

The triple (

[
[k]

n

]
,Zk ,

[
k

n

]
q

) exhibits CSP, where Zk acts by rotating elements

of subsets.

Proof) Since In,k/Sn =

[
[k]

n

]
and

Hilb((C[xn]/T (In,k))Sn ; q) = the coefficient of s(n) in grFrob(V ; q),

Recall that

grFrob(C[xn]/T (In,k); q) =

[
k

n

]
q

∑
T∈SYT (n)

qmaj(T ) · ssh(T ).

Then the main theorem gives the result.
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Variations on the theme

Various combinatorial loci X
Functional loci (any functions, surjective functions)
Parking locus
Tanisaki locus

Various subgroups G ⊆ Sn

Sn full symmetric group (sieving results for compositions),
Cn a cyclic group (sieving results for necklaces),
Hn/2 a hyperoctahedral group (sieving results for graphs).

Various complex reflection groups other than Sn

e.g. G(r , 1, n), a group of r -colored permutations gives sieving results for
twisted rotation. (recovers results of Barcelo–Reiner–Stanton on colored
permutations and of Alexandersson–Linusson–Potka on binary words)
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Thank you!
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