Promotion, Webs, and Kwebs

Rebecca Patrias
Dynamical Algebraic Combinatorics

October 21, 2020

This talk is being recorded.

Webs

Webs

Definition (Kuperberg)

An irreducible web is a planar, directed graph D with no multiple edges embedded in a disk satisfying the following conditions:
$1 D$ is bipartite,
2 all of the boundary vertices have degree 1 ,
3 all internal vertices have degree 3 , and
4 all internal faces of D have at least 6 sides.

Web Invariants

Each web with cyclically labeled boundary vertices corresponds to a polynomial called a web invariant.

Web Invariants

Each web with cyclically labeled boundary vertices corresponds to a polynomial called a web invariant.

Web invariants

Web invariant $[D]$ is invariant under an $S L(3)$ action.
Consider the matrices $y=\left(y_{i j}\right)$ and $x=\left(x_{i j}\right)$. For any $g \in S L(3)$, $[D]$ is invariant under the transformation that simultaneously replaces

- x with $g x$ and
- y with $y g^{-1}$.

Theorem (Kuperberg)

Let V be a 3-dimensional complex vector space. Web invariants with a fixed boundary pattern with a white vertices and b black vertices form a basis in the ring of invariants $\mathbb{C}\left[\left(V^{*}\right)^{a} \times V^{b}\right]^{S L(V)}$.

Web invariants

Theorem (Kuperberg)

Let V be a 3-dimensional complex vector space. Web invariants with a fixed boundary pattern with a white vertices and b black vertices form a basis in the ring of invariants $\mathbb{C}\left[\left(V^{*}\right)^{a} \times V^{b}\right]^{S L(V)}$.
S. Fomin and P. Pylyavskyy constructed a cluster algebra structure on the ring of invariants that interacts well with the web basis in most cases.

Webs and SYT

There is a bijection between webs with n cyclically labeled, black boundary vertices and 3-row, rectangular standard Young tableaux with n boxes. (Khovanov-Kuperberg)

- Make a proper edge coloring using the following preference:
- - prefers 1 , then 0 , then -1

■ Look at edge colors adjacent to boundary vertices.

- 1 means top row
- 0 means middle row
- -1 means bottom row
(Bazier-Matte-Douville-Garver-P.-Thomas-Yildirim)

Webs and SYT

There is a bijection between webs with n cyclically labeled, black boundary vertices and 3-row, rectangular standard Young tableaux with n boxes. (Khovanov-Kuperberg)

- From left to right, connect entry y with the largest entry in the row above that is $\leq y$.
■ Form corresponding tripods.
■ Resolve crossings. (Tymoczko)

1	2	4
3	5	7
6	8	9

Theorem (Petersen-Pylyavskyy-Rhoades)

Let D be a web with cyclically labeled boundary vertices and all black boundary vertices. The standard Young tableau associated with counterclockwise rotation of D is given by promotion of the tableau associated with D itself.

Theorem (Petersen-Pylyavskyy-Rhoades)

Let D be a web with cyclically labeled boundary vertices and all black boundary vertices. The standard Young tableau associated with counterclockwise rotation of D is given by promotion of the tableau associated with D itself.

1	3	5	9
2	6	7	11
4	8	10	12

1	2	4	8
3	5	6	10
7	9	11	12

Theorem (Petersen-Pylyavskyy-Rhoades)

Let D be a web with cyclically labeled boundary vertices and all black boundary vertices. The standard Young tableau associated with counterclockwise rotation of D is given by promotion of the tableau associated with D itself.

Corollary: Let $p(T)$ denote the promotion of a rectangular, 3-row standard Young tableau with n boxes. Then $p^{n}(T)=T$.

Theorem (Petersen-Pylyavskyy-Rhoades)

Let D be a web with cyclically labeled boundary vertices and all black boundary vertices. The standard Young tableau associated with counterclockwise rotation of D is given by promotion of the tableau associated with D itself.

Theorem (Russell, P.)

Let D be a web with cyclically labeled boundary vertices. Web rotation corresponds to semistandard/generalized oscillating tableau promotion.

K-Promotion on increasing tableaux

Recall from Oliver's talk:

An increasing tableau has strictly increasing rows and columns.

1	2	4	5
2	3	5	6
5	6	8	9

K-Promotion on increasing tableaux

Recall from Oliver's talk:

An increasing tableau has strictly increasing rows and columns. K-promotion looks like this:

1	2	3	5
2	4	5	6
3	6	8	9

K-Promotion on increasing tableaux

Recall from Oliver's talk:

An increasing tableau has strictly increasing rows and columns. K-promotion looks like this:

\bullet	2	3	5
2	4	5	6
3	6	8	9

K-Promotion on increasing tableaux

Recall from Oliver's talk:

An increasing tableau has strictly increasing rows and columns. K-promotion looks like this:

2	\bullet	3	5
\bullet	4	5	6
3	6	8	9

K-Promotion on increasing tableaux

Recall from Oliver's talk:

An increasing tableau has strictly increasing rows and columns. K-promotion looks like this:

2	3	\bullet	5
3	4	5	6
\bullet	6	8	9

K-Promotion on increasing tableaux

Recall from Oliver's talk:

An increasing tableau has strictly increasing rows and columns. K-promotion looks like this:

2	3	5	\bullet
3	4	\bullet	6
\bullet	6	8	9

K-Promotion on increasing tableaux

Recall from Oliver's talk:

An increasing tableau has strictly increasing rows and columns. K-promotion looks like this:

2	3	5	6
3	4	6	\bullet
6	\bullet	8	9

K-Promotion on increasing tableaux

Recall from Oliver's talk:

An increasing tableau has strictly increasing rows and columns. K-promotion looks like this:

2	3	5	6
3	4	6	\bullet
6	8	\bullet	9

K-Promotion on increasing tableaux

Recall from Oliver's talk:

An increasing tableau has strictly increasing rows and columns. K-promotion looks like this:

2	3	5	6
3	4	6	9
6	8	9	\bullet

K-Promotion on increasing tableaux

Recall from Oliver's talk:

An increasing tableau has strictly increasing rows and columns. K-promotion looks like this:

1	2	4	5
2	3	5	8
5	7	8	9

Q: What are the orbit sizes of rectangular increasing tableaux under K-promotion?

Theorem (P.-Pechenik)

Let T be an $a \times b$ rectangular increasing tableau with largest entry q, and suppose the K-promotion orbit of T has cardinality k. Then k shares a prime divisor with q. (Unless $q=a+b-1$, in which case $k=1$.)

Conjecture: If T is a 3-row, rectangular, increasing tableau with largest entry q, the K-promotion orbit of T has cardinality dividing q.

Wouldn't it be nice if we could make some webs corresponding to increasing tableaux so that K-promotion corresponds to web rotation?

On-going work with Oliver Pechenik, Jessica Striker, and Julianna Tymoczko

Thank you!

