Promotion, Webs, and Kwebs

Rebecca Patrias

Dynamical Algebraic Combinatorics

October 21, 2020

This talk is being recorded.

Rebecca Patrias

Promotion, Webs, and Kwebs

Webs

Rebecca Patrias

University of St. Thomas

Promotion, Webs, and Kwebs

Webs

Definition (Kuperberg)

An **irreducible web** is a planar, directed graph D with no multiple edges embedded in a disk satisfying the following conditions:

- D is bipartite,
- 2 all of the boundary vertices have degree 1,
- 3 all internal vertices have degree 3, and
- 4 all internal faces of D have at least 6 sides.

Web Invariants

Each web with cyclically labeled boundary vertices corresponds to a polynomial called a **web invariant**.

Web Invariants

Each web with cyclically labeled boundary vertices corresponds to a polynomial called a **web invariant**.

Web invariants

Web invariant [D] is invariant under an SL(3) action.

Consider the matrices $y = (y_{ij})$ and $x = (x_{ij})$. For any $g \in SL(3)$, [D] is invariant under the transformation that simultaneously replaces

- x with gx and
- y with yg^{-1} .

Theorem (Kuperberg)

Let V be a 3-dimensional complex vector space. Web invariants with a fixed boundary pattern with a white vertices and b black vertices form a basis in the ring of invariants $\mathbb{C}[(V^*)^a \times V^b]^{SL(V)}$.

Web invariants

Theorem (Kuperberg)

Let V be a 3-dimensional complex vector space. Web invariants with a fixed boundary pattern with a white vertices and b black vertices form a basis in the ring of invariants $\mathbb{C}[(V^*)^a \times V^b]^{SL(V)}$.

S. Fomin and P. Pylyavskyy constructed a cluster algebra structure on the ring of invariants that interacts well with the web basis in most cases.

Webs and SYT

There is a bijection between webs with n cyclically labeled, black boundary vertices and 3-row, rectangular standard Young tableaux with n boxes. (Khovanov–Kuperberg)

- Make a proper edge coloring using the following preference:
 - prefers 1, then 0, then -1
- Look at edge colors adjacent to boundary vertices.
 - 1 means top row
 - 0 means middle row
 - −1 means bottom row

(Bazier-Matte–Douville–Garver– P.–Thomas–Yildirim)

Webs and SYT

There is a bijection between webs with n cyclically labeled, black boundary vertices and 3-row, rectangular standard Young tableaux with n boxes. (Khovanov–Kuperberg)

- From left to right, connect entry y with the largest entry in the row above that is $\leq y$.
- Form corresponding tripods.
- Resolve crossings.
 - (Tymoczko)

1	2	4
3	5	7
6	8	9

Let D be a web with cyclically labeled boundary vertices and all black boundary vertices. The standard Young tableau associated with counterclockwise rotation of D is given by promotion of the tableau associated with D itself.

Let D be a web with cyclically labeled boundary vertices and all black boundary vertices. The standard Young tableau associated with counterclockwise rotation of D is given by promotion of the tableau associated with D itself.

1	3	5	9
2	6	7	11
4	8	10	12

1	2	4	8
3	5	6	10
7	9	11	12

Let D be a web with cyclically labeled boundary vertices and all black boundary vertices. The standard Young tableau associated with counterclockwise rotation of D is given by promotion of the tableau associated with D itself.

Corollary: Let p(T) denote the promotion of a rectangular, 3-row standard Young tableau with *n* boxes. Then $p^n(T) = T$.

Let D be a web with cyclically labeled boundary vertices and all black boundary vertices. The standard Young tableau associated with counterclockwise rotation of D is given by promotion of the tableau associated with D itself.

Theorem (Russell, P.)

Let D be a web with cyclically labeled boundary vertices. Web rotation corresponds to semistandard/generalized oscillating tableau promotion.

Recall from Oliver's talk:

An *increasing tableau* has strictly increasing rows and columns.

1	2	4	5
2	3	5	6
5	6	8	9

Recall from Oliver's talk:

An *increasing tableau* has strictly increasing rows and columns. K-promotion looks like this:

1	2	3	5
2	4	5	6
3	6	8	9

Recall from Oliver's talk:

An *increasing tableau* has strictly increasing rows and columns. K-promotion looks like this:

•	2	3	5
2	4	5	6
3	6	8	9

Recall from Oliver's talk:

An *increasing tableau* has strictly increasing rows and columns. K-promotion looks like this:

2	•	3	5
•	4	5	6
3	6	8	9

Recall from Oliver's talk:

An *increasing tableau* has strictly increasing rows and columns. K-promotion looks like this:

2	3	•	5
3	4	5	6
•	6	8	9

Recall from Oliver's talk:

An *increasing tableau* has strictly increasing rows and columns. K-promotion looks like this:

2	3	5	•
3	4	•	6
•	6	8	9

Recall from Oliver's talk:

An *increasing tableau* has strictly increasing rows and columns. K-promotion looks like this:

2	3	5	6
3	4	6	•
6	•	8	9

Recall from Oliver's talk:

An *increasing tableau* has strictly increasing rows and columns. K-promotion looks like this:

2	3	5	6
3	4	6	•
6	8	٠	9

Recall from Oliver's talk:

An *increasing tableau* has strictly increasing rows and columns. K-promotion looks like this:

2	3	5	6
3	4	6	9
6	8	9	•

Recall from Oliver's talk:

An *increasing tableau* has strictly increasing rows and columns. K-promotion looks like this:

1	2	4	5
2	3	5	8
5	7	8	9

Q : What are the orbit sizes of rectangular increasing tableaux under K-promotion?

Theorem (P.–Pechenik)

Let T be an $a \times b$ rectangular increasing tableau with largest entry q, and suppose the K-promotion orbit of T has cardinality k. Then k shares a prime divisor with q. (Unless q = a + b - 1, in which case k = 1.)

Conjecture: If T is a 3-row, rectangular, increasing tableau with largest entry q, the K-promotion orbit of T has cardinality dividing q.

Wouldn't it be nice if we could make some webs corresponding to increasing tableaux so that K-promotion corresponds to web rotation?

On-going work with Oliver Pechenik, Jessica Striker, and Julianna Tymoczko

Rebecca Patrias

Promotion, Webs, and Kwebs

Thank you!