Proof of Birational File Homomesy for Minuscule Posets

Soichi OKADA
(Nagoya University)
Dynamical Algebraic Combinatorics
Banff (online), October 23, 2020
based on arXiv:2004.05364

This talk is being recorded.
The slides are available at the workshop website.

Birational Toggle

Let P be a finite poset and let \widehat{P} be the poset obtained from P by adjoining an extra maximal element $\widehat{1}$ and an extra minimal element $\widehat{0}$:

$$
\widehat{P}=P \sqcup\{\widehat{1}, \widehat{0}\} .
$$

Fix positive real numbers A and B, and extend a map $F: P \rightarrow \mathbb{R}_{>0}$ to a map $\widehat{F}: \widehat{P} \rightarrow \mathbb{R}_{>0}$ by

$$
\widehat{F}(\widehat{1})=A, \quad \widehat{F}(\widehat{0})=B
$$

Then, for each $v \in P$, we define the birational toggle $\tau_{v}=\tau_{v}^{A, B}$: $\left(\mathbb{R}_{>0}\right)^{P} \rightarrow\left(\mathbb{R}_{>0}\right)^{P}$ at v by

$$
\left(\tau_{v}^{A, B} F\right)(x)= \begin{cases}\frac{\sum_{w \lessdot v} \widehat{F}(w)}{F(v) \sum_{z \gtrdot v} 1 / \widehat{F}(z)} & \text { if } x=v \\ F(x) & \text { if } x \neq v\end{cases}
$$

Birational Toggle

$$
\left(\tau_{v}^{A, B} F\right)(x)= \begin{cases}\frac{\sum_{w \lessdot v} \widehat{F}(w)}{F(v) \sum_{z \gtrdot v} 1 / \widehat{F}(z)} & \text { if } x=v \\ F(x) & \text { if } x \neq v\end{cases}
$$

Example If $P=[2] \times[2]$, then we have

		F	$\tau_{x} F$	$\tau_{y} \tau_{x} F$	$\tau_{z} \tau_{y} \tau_{x} F$	$\tau_{w} \tau_{z} \tau_{y} \tau_{x} F$
	x	X	$\frac{A(Y+Z)}{X}$	$\frac{A(Y+Z)}{X}$	$\frac{A(Y+Z)}{X}$	$\frac{A(Y+Z)}{X}$
	y	Y	Y	$\frac{A(Y+Z) W}{X Y}$	$\frac{A(Y+Z) W}{X Y}$	$\frac{A(Y+Z) W}{X Y}$
	z	Z	Z	Z	$\frac{A(Y+Z) W}{X Z}$	$\frac{A(Y+Z) W}{X Z}$
	w	W	W	W	W	$\frac{A B}{X}$

$\left(\tau_{x} F\right)(x)=\frac{Y+Z}{X \cdot 1 / A}=\frac{A(Y+Z)}{X}, \quad\left(\tau_{y} \tau_{x} F\right)(y)=\frac{W}{Y \cdot X / A(Y+Z)}=\frac{A(Y+Z) W}{X Y}$.

Birational Rowmotion

Let P be a finite poset and fix positive real numbers A and B. We define the birational rowmotion $\rho=\rho^{A, B}:\left(\mathbb{R}_{>0}\right)^{P} \rightarrow\left(\mathbb{R}_{>0}\right)^{P}$ by

$$
\rho^{A, B}=\tau_{v_{1}}^{A, B} \tau_{v_{2}}^{A, B} \cdots \tau_{v_{n}}^{A, B}
$$

where $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is any linear extension of P.
Remark The birational toggle and rowmotion are a birational lift of the combinatorial toggle t_{v} and rowmotion R on the poset $J(P)$ of order ideals of P given by

$$
t_{v}(I)= \begin{cases}I \cup\{v\} & \text { if } v \notin I \text { and } I \cup\{v\} \in J(P), \\ I \backslash\{v\} & \text { if } v \in I \text { and } I \backslash\{v\} \in J(P), \\ I & \text { otherwise },\end{cases}
$$

and
$R(I)=$ the order ideal generated by the minimal elements of $P \backslash I$.

Birational Rowmotion

Example If $P=[2] \times[2]$, then we have

Note that F has a finite order 4 and

$$
\begin{gathered}
\prod_{k=0}^{3}\left(\rho^{k}(F)\right)(x)\left(\rho^{k}(F)\right)(w)=A^{4} B^{4}, \\
\prod_{k=0}^{3}\left(\rho^{k}(F)\right)(y)=\prod_{k=0}^{3}\left(\rho^{k}(F)\right)(z)=A^{2} B^{2}, \\
F(x) \cdot(\rho F)(w)=F(y) \cdot\left(\rho^{2} F\right)(y)=F(z) \cdot\left(\rho^{2} F\right)(z)=F(w) \cdot\left(\rho^{3} F\right)(x)=A B .
\end{gathered}
$$

Minuscule Posets

Let \mathfrak{g} be a finite-dimensional simple Lie algebra (over \mathbb{C}). For a dominant integral weight λ, we put

$$
L_{\lambda}=\text { the set of all weights in } V_{\lambda},
$$

where V_{λ} is the irreducible \mathfrak{g}-module with highest weight λ. A dominant integral weight λ is called minuscule if

$$
L_{\lambda}=W \lambda, \quad W=\text { the Weyl group of } W
$$

We define the minuscule poset associated to a minuscule weight λ by

$$
P_{\lambda}=\left\{\beta^{\vee} \in \Phi_{+}^{\vee}:\left\langle\beta^{\vee}, \lambda\right\rangle=1\right\},
$$

where Φ_{+}^{\vee} is the positive coroot system of \mathfrak{g}. Then there exist a unique map (coloring) $c: P_{\lambda} \rightarrow \Pi$, where Π is the set of simple roots, such that that map

$$
J\left(P_{\lambda}\right) \ni I \mapsto \lambda-\sum_{v \in I} c(v) \in L_{\lambda}
$$

give an isomorphism of posets.

Classification of Minuscule Posets with Colorings (1/2)

Classification of Minuscule Posets with Colorings (2/2)

$$
\begin{aligned}
& \left(E_{6}, \varpi_{1}\right) \\
& \left(E_{6}, \varpi_{6}\right)
\end{aligned}
$$

$\left(E_{7}, \varpi_{7}\right)$

Results for Birational Rowmotion

Theorem (Grinberg-Roby, Musiker-Roby, Einstein-Propp, Okada) Let
P : a minuscule poset associated with a minuscule weight λ of \mathfrak{g},
$c: P \rightarrow \Pi:$ coloring, ht : $P \rightarrow\{1,2, \ldots\}$: height, $\rho=\rho^{A, B}$: the birational rowmotion map on $P\left(A, B \in \mathbb{R}_{>0}\right)$.
Then
(1) (periodicity) The order of ρ is equal to the Coxeter number h of \mathfrak{g}.
(2) (reciprocity) For $v \in P$, we have

$$
\left(\rho^{\mathrm{ht}(v)} F\right)(v)=\frac{A B}{F\left(w_{\lambda} v\right)},
$$

where w_{λ} is the longest element of $W_{\lambda}=\{w \in W: w \lambda=\lambda\}$.
(3) (file homomesy) For a simple root $\alpha \in \Pi$, we have

$$
\prod_{k=0}^{h-1} \prod_{c(v)=\alpha}\left(\rho^{k} F\right)(v)=A^{h\left\langle\varpi^{\vee},-w_{0} \lambda\right\rangle} B^{h\left\langle\varpi^{\vee}, \lambda\right\rangle},
$$

where ϖ^{\vee} is the fundamental coweight corresponding to α.

Remark

- The periodicity (1) was obtained by Grinberg-Roby except for the case $\left(E_{7}, \varpi_{7}\right)$. We can use the Musiker-Roby's " A-variables" to settle the E_{7} case with the help of computer.
- The proof of the reciprocity (2) is based on a case-by-case analysis. The type A case (rectangle posets) was proved by Grinberg-Roby and Musiker-Roby.
- The homomesy result (3) in type A was proved by Musiker-Roby and Eisenstein-Propp.
- For a simple root α, we put

$$
P^{\alpha}=\{v \in P: c(v)=\alpha\}, \quad \Phi_{\alpha}(F)=\prod_{v \in P^{\alpha}} F(v)
$$

then the statistic Φ_{α} is a birational lift of the refined order ideal cardinality $\#\left(I \cap P^{\alpha}\right)$. For the combinatorial rowmotion, Rush-Wang gave a uniform proof to the homomesy result (3).

Proof sketch of homomesy (1/3)

Let P be a minuscule poset with coloring $c: P \rightarrow \Pi$ and height ht: $P \rightarrow\{1,2, \ldots\}$. For $\alpha \in \Pi$ and F : $P \rightarrow \mathbb{R}_{>0}$, we put $P^{\alpha}=\{v \in P: c(v)=\alpha\}$, and work with

$$
\Psi_{\alpha}(F)=\prod_{v \in P^{\alpha}}\left(\rho^{\left(h t(v)-h t\left(v_{0}\right)\right) / 2} F\right)(v),
$$

where v_{0} is the minimum element of P^{α}, instead of $\Phi_{\alpha}(F)=\prod_{v \in P^{\alpha}} F(v)$.
Example If P is the minuscule poset of type E_{7} and α is the simple root corresponding to \bullet, then

$$
\begin{aligned}
\Psi_{\alpha}(F)=F\left(v_{0}\right) & \cdot\left(\rho^{2} F\right)\left(v_{1}\right) \\
& \times\left(\rho^{3} F\right)\left(v_{2}\right) \cdot\left(\rho^{4} F\right)\left(v_{3}\right) \cdot\left(\rho^{6} F\right)\left(v_{4}\right) .
\end{aligned}
$$

Proof sketch of homomesy (2/3)

Key Lemma We have

$$
\begin{aligned}
\Psi_{\alpha}(F) \cdot \Psi_{\alpha}(\rho F) & \\
& =A^{\delta_{\alpha, \alpha_{\max }}} B^{\delta_{\alpha, \alpha_{\min }}} \prod_{\beta \in \Pi, \beta \neq \alpha} \Psi_{\beta}\left(\rho^{m(\alpha, \beta)} F\right)^{-\left\langle\beta, \alpha^{\vee}\right\rangle}
\end{aligned}
$$

where $\alpha_{\max }\left(\right.$ resp. $\left.\alpha_{\text {min }}\right)$ is the color of the maximal (resp. minimum) element of P, and

$$
m(\alpha, \beta)= \begin{cases}1 & \text { if } \min P^{\alpha}<\min P^{\beta} \\ 0 & \text { if } \min P^{\alpha}>\min P^{\beta}\end{cases}
$$

Proof It is enough to consider the values of $\rho^{k} F$ on the neighborhood \widehat{N}^{α} of P^{α} in the Hasse diagram of \widehat{P}. We can analyze the structure of \widehat{N}^{α} and prove the claim in a case-by-case manner.

Proof sketch of homomesy (3/3)

Suppose that ρ has a finite order h. We put

$$
\begin{gathered}
\widetilde{\Phi}_{\alpha}(F)=\prod_{k=0}^{h-1} \prod_{v \in P^{\alpha}}\left(\rho^{k} F\right)(v)=\prod_{k=0}^{h-1} \Psi_{\alpha}\left(\rho^{k} F\right) \\
\widetilde{\mu}(F)=\sum_{\alpha \in \Pi} \log \widetilde{\Phi}_{\alpha}(F) \cdot \alpha
\end{gathered}
$$

Key Lemma implies $\prod_{\beta \in \Pi} \widetilde{\Phi}_{\beta}(F)^{\left\langle\beta, \alpha^{\vee}\right\rangle}=A^{\delta_{\alpha, \alpha_{\max }} h} B^{\delta_{\alpha, \alpha_{\min }}{ }^{h}}$ and

$$
s_{\alpha} \widetilde{\mu}(F)=\widetilde{\mu}(F)-\left(\delta_{\alpha, \alpha_{\max }} h \log A+\delta_{\alpha, \alpha_{\min }} h \log B\right) \alpha .
$$

By computing the action of a Coxeter element on $\widetilde{\mu}(F)$, we can show that

$$
\widetilde{\mu}(F)=h \log A \cdot \varpi_{\max }+h \log B \cdot \varpi_{\min },
$$

where $\varpi_{\max }\left(\right.$ resp. $\varpi_{\min }$) is the fundamental weight corresponding to $\alpha_{\text {max }}$ (resp. $\alpha_{\text {min }}$).

Coxeter-motion

Let P be a minuscule poset with coloring $c: P \rightarrow \Pi$. We put

$$
\sigma_{\alpha}^{A, B}=\prod_{c(x)=\alpha} \tau_{x}^{A, B} \quad(\alpha \in \Pi)
$$

A birational Coxeter-motion $\gamma^{A, B}$ is a composition of all $\sigma_{\alpha}^{A, B}{ }^{\prime} \mathrm{s}$:

$$
\gamma^{A, B}=\sigma_{\alpha_{1}}^{A, B} \cdots \sigma_{\alpha_{n}}^{A, B}, \quad \Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} .
$$

Example If $P=[2] \times[2]$ and $\gamma=\tau_{z} \cdot\left(\tau_{x} \tau_{w}\right) \cdot \tau_{y}$, then we have

	F	γF	$\gamma^{2} F$	$\gamma^{3} F$	$\gamma^{4} F$
x	X	$\frac{A(X W+Y Z)}{X Y}$	$\frac{A B}{W}$	$\frac{A(X W+Y Z)}{X Z}$	X
y	Y	$\frac{X W}{Y}$	$\frac{A B Z}{X W}$	$\frac{A B}{Z}$	Y
z	Z	$\frac{A(X W+Y Z)}{X Z}$	$\frac{A B}{Z}$	$\frac{X W}{Z}$	Z
w	W	$\frac{B X Z}{X W+Y Z}$	$\frac{A B}{X}$	$\frac{B X Y}{X W+Y Z}$	W

Results for Coxeter-motion

Theorem Let

P : a minuscule poset associated with a minuscule weight λ of \mathfrak{g},
$c: P \rightarrow \Pi:$ coloring, ht : $P \rightarrow\{1,2, \ldots\}$: height,
$\gamma=\gamma^{A, B}$: a birational Coxeter-motion map on $P\left(A, B \in \mathbb{R}_{>0}\right)$.
Then
(1) (periodicity) The order of γ is equal to the Coxeter number h of \mathfrak{g}.
(2) (file homomesy) For a simple root $\alpha \in \Pi$, we have

$$
\prod_{k=0}^{h-1} \prod_{c(v)=\alpha}\left(\gamma^{k} F\right)(v)=A^{h\left\langle\varpi^{\vee},-w_{0} \lambda\right\rangle} B^{h\left\langle\varpi^{\vee}, \lambda\right\rangle},
$$

where ϖ^{V} is the fundamental coweight corresponding to α.
Remark Einstein-Propp proved the homomesy result (2) for the birational promotion in type A.

Proof sketch of homomesy

We put put

$$
\Phi_{\alpha}(F)=\prod_{c(v)=\alpha} F(v), \quad \mu(F)=\sum_{\alpha \in \Pi} \log \Phi_{\alpha}(F) \cdot \alpha
$$

Then we have

$$
\Phi_{\alpha}(F) \cdot \Phi_{\alpha}\left(\sigma_{\alpha} F\right)=A^{\delta_{\alpha, \alpha_{\max }}} B^{\delta_{\alpha, \alpha_{\min }}} \prod_{\beta \in \Pi, \beta \neq \alpha} \Phi_{\beta}(F)^{-\left\langle\beta, \alpha^{\vee}\right\rangle}
$$

Hence we have

$$
\mu\left(\sigma_{\alpha} F\right)=s_{\alpha} \mu(F)+\left(\delta_{\alpha, \alpha_{\max }} \log A+\delta_{\alpha, \alpha_{\min }} \log B\right) \alpha
$$

If c is the corresponding Coxeter element, then we have
$\mu(\gamma F)=c \mu(F)+\log A \cdot\left(\varpi_{\max }-c \varpi_{\max }\right)+\log B \cdot\left(\varpi_{\min }-c \varpi_{\min }\right)$, which implies

$$
\sum_{k=0}^{h-1} \mu\left(\gamma^{k} F\right)=h \log A \cdot \varpi_{\max }+h \log B \cdot \varpi_{\min }
$$

Conjecture on Reciprocity (Half-periodicity)

Let P be a minuscule poset. Let $\Pi=\Pi_{1} \sqcup \Pi_{2}$ be a decomposition of the corresponding simple system into a disjoint union of orthogonal subsets (i.e., each Π_{i} consists of pairwise orthogonal simple roots). Then we put

$$
\gamma_{1}^{A, B}=\prod_{\alpha \in \Pi_{1}} \sigma_{\alpha}^{A, B}, \quad \gamma_{2}^{A, B}=\prod_{\beta \in \Pi_{2}} \sigma_{\beta}^{A, B},
$$

and define

$$
\delta^{A, B}=\gamma_{1}^{A, B} \gamma_{2}^{A, B} \gamma_{1}^{A, B} \gamma_{2}^{A, B} \gamma_{1}^{A, B} \ldots \quad(h \text { factors })
$$

where h is the Coxeter number of the corresponding Lie algebra.
Conjecture For any $F \in\left(\mathbb{R}_{>0}\right)^{P}$, we have

$$
\left(\delta^{A, B}(F)\right)(v)=\frac{1}{F(\iota v)} \quad(v \in P),
$$

where ι is the order-reversing involution of P induced from the longest element of W_{λ}.

