Proof of Birational File Homomesy for Minuscule Posets

Soichi OKADA (Nagoya University)

Dynamical Algebraic Combinatorics Banff (online), October 23, 2020

based on arXiv:2004.05364

This talk is being recorded. The slides are available at the workshop website.

Birational Toggle

Let P be a finite poset and let \widehat{P} be the poset obtained from P by adjoining an extra maximal element $\widehat{1}$ and an extra minimal element $\widehat{0}$:

$$\widehat{P} = P \sqcup \{\widehat{1}, \widehat{0}\}.$$

Fix positive real numbers A and B, and extend a map $F:P\to\mathbb{R}_{>0}$ to a map $\widehat{F}:\widehat{P}\to\mathbb{R}_{>0}$ by

$$\widehat{F}(\widehat{1}) = A, \quad \widehat{F}(\widehat{0}) = B.$$

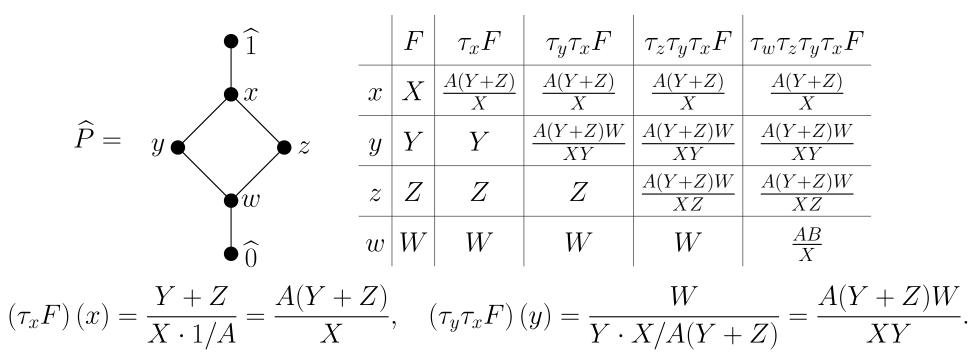
Then, for each $v \in P$, we define the birational toggle $\tau_v = \tau_v^{A,B}$: $(\mathbb{R}_{>0})^P \to (\mathbb{R}_{>0})^P$ at v by

$$\left(\tau_v^{A,B}F\right)(x) = \begin{cases} \frac{\sum_{w \leqslant v} \widehat{F}(w)}{F(v) \sum_{z \geqslant v} 1/\widehat{F}(z)} & \text{if } x = v, \\ F(x) & \text{if } x \neq v. \end{cases}$$

Birational Toggle

$$\left(\tau_v^{A,B}F\right)(x) = \begin{cases} \frac{\sum_{w \lessdot v} \widehat{F}(w)}{F(v) \sum_{z \geqslant v} 1/\widehat{F}(z)} & \text{if } x = v, \\ F(x) & \text{if } x \neq v. \end{cases}$$

Example If $P = [2] \times [2]$, then we have



Birational Rowmotion

Let P be a finite poset and fix positive real numbers A and B. We define the birational rowmotion $\rho = \rho^{A,B} : (\mathbb{R}_{>0})^P \to (\mathbb{R}_{>0})^P$ by

$$\rho^{A,B} = \tau_{v_1}^{A,B} \tau_{v_2}^{A,B} \cdots \tau_{v_n}^{A,B},$$

where (v_1, v_2, \ldots, v_n) is any linear extension of P.

Remark The birational toggle and rowmotion are a birational lift of the combinatorial toggle t_v and rowmotion R on the poset J(P) of order ideals of P given by

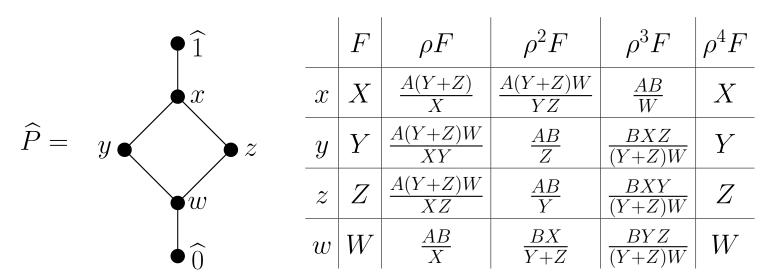
$$t_{v}(I) = \begin{cases} I \cup \{v\} & \text{if } v \notin I \text{ and } I \cup \{v\} \in J(P), \\ I \setminus \{v\} & \text{if } v \in I \text{ and } I \setminus \{v\} \in J(P), \\ I & \text{otherwise,} \end{cases}$$

and

R(I) = the order ideal generated by the minimal elements of $P \setminus I$.

Birational Rowmotion

Example If $P = [2] \times [2]$, then we have



Note that F has a finite order 4 and

$$\begin{split} \prod_{k=0}^{3} \left(\rho^{k}(F)\right)(x) \left(\rho^{k}(F)\right)(w) &= A^{4}B^{4}, \\ \prod_{k=0}^{3} \left(\rho^{k}(F)\right)(y) &= \prod_{k=0}^{3} \left(\rho^{k}(F)\right)(z) = A^{2}B^{2}, \\ F(x) \cdot \left(\rho F\right)(w) &= F(y) \cdot \left(\rho^{2}F\right)(y) = F(z) \cdot \left(\rho^{2}F\right)(z) = F(w) \cdot \left(\rho^{3}F\right)(x) = AB. \end{split}$$

Minuscule Posets

Let \mathfrak{g} be a finite-dimensional simple Lie algebra (over \mathbb{C}). For a dominant integral weight λ , we put

 $L_{\lambda} =$ the set of all weights in V_{λ} ,

where V_{λ} is the irreducible g-module with highest weight λ . A dominant integral weight λ is called minuscule if

$$L_{\lambda} = W\lambda, \quad W =$$
the Weyl group of $W.$

We define the minuscule poset associated to a minuscule weight λ by

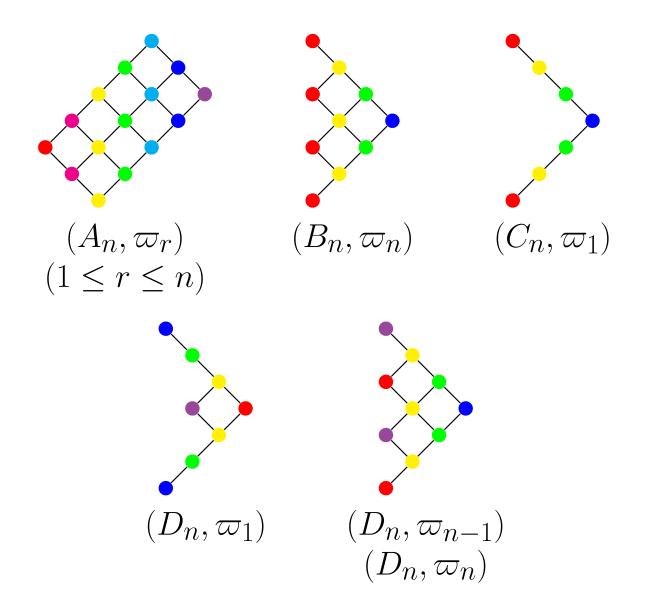
$$P_{\lambda} = \{ \beta^{\vee} \in \Phi_{+}^{\vee} : \langle \beta^{\vee}, \lambda \rangle = 1 \},\$$

where Φ_+^{\vee} is the positive coroot system of \mathfrak{g} . Then there exist a unique map (coloring) $c: P_{\lambda} \to \Pi$, where Π is the set of simple roots, such that that map

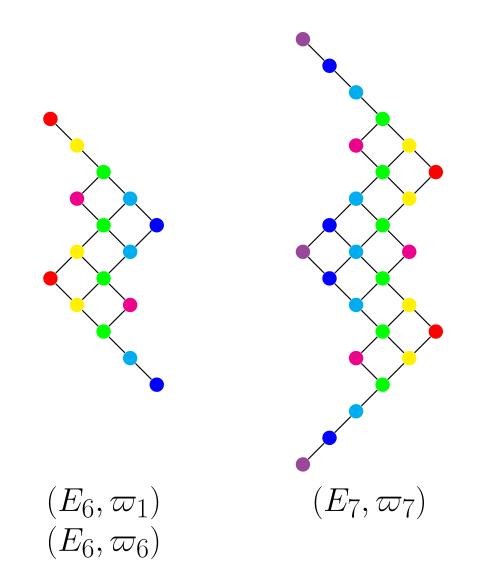
$$J(P_{\lambda}) \ni I \mapsto \lambda - \sum_{v \in I} c(v) \in L_{\lambda}$$

give an isomorphism of posets.

Classification of Minuscule Posets with Colorings (1/2)



Classification of Minuscule Posets with Colorings (2/2)



Results for Birational Rowmotion

Theorem (Grinberg–Roby, Musiker–Roby, Einstein–Propp, Okada) Let P: a minuscule poset associated with a minuscule weight λ of \mathfrak{g} , $c: P \to \Pi$: coloring, $ht: P \to \{1, 2, \dots\}$: height, $\rho = \rho^{A,B}$: the birational rowmotion map on P ($A, B \in \mathbb{R}_{>0}$). Then (1) (periodicity) The order of ρ is equal to the Coxeter number h of \mathfrak{g} . (2) (reciprocity) For $v \in P$, we have $(\rho^{\operatorname{ht}(v)}F)(v) = \frac{AB}{F(w_{\lambda}v)},$ where w_{λ} is the longest element of $W_{\lambda} = \{ w \in W : w\lambda = \lambda \}.$ (3) (file homomesy) For a simple root $\alpha \in \Pi$, we have h-1 $\prod \quad (\rho^k F)(v) = A^{h\langle \varpi^{\vee}, -w_0 \lambda \rangle} B^{h\langle \varpi^{\vee}, \lambda \rangle}.$ $k=0 c(v)=\alpha$

where ϖ^{\vee} is the fundamental coweight corresponding to α .

Remark

- The periodicity (1) was obtained by Grinberg–Roby except for the case (E_7, ϖ_7) . We can use the Musiker–Roby's "A-variables" to settle the E_7 case with the help of computer.
- The proof of the reciprocity (2) is based on a case-by-case analysis. The type A case (rectangle posets) was proved by Grinberg–Roby and Musiker–Roby.
- The homomesy result (3) in type A was proved by Musiker–Roby and Eisenstein–Propp.
- \bullet For a simple root $\alpha,$ we put

$$P^{\alpha} = \{ v \in P : c(v) = \alpha \}, \quad \Phi_{\alpha}(F) = \prod_{v \in P^{\alpha}} F(v),$$

then the statistic Φ_{α} is a birational lift of the refined order ideal cardinality $\#(I \cap P^{\alpha})$. For the combinatorial rowmotion, Rush–Wang gave a uniform proof to the homomesy result (3).

Proof sketch of homomesy (1/3)

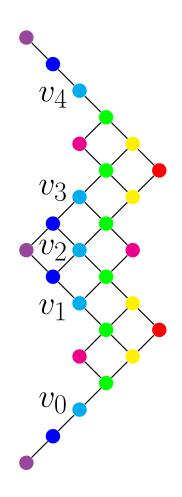
Let P be a minuscule poset with coloring $c: P \to \Pi$ and height $\operatorname{ht}: P \to \{1, 2, \ldots\}$. For $\alpha \in \Pi$ and $F: P \to \mathbb{R}_{>0}$, we put $P^{\alpha} = \{v \in P : c(v) = \alpha\}$, and work with

$$\Psi_{\alpha}(F) = \prod_{v \in P^{\alpha}} \left(\rho^{(\operatorname{ht}(v) - \operatorname{ht}(v_0))/2} F \right)(v),$$

where v_0 is the minimum element of P^{α} , instead of $\Phi_{\alpha}(F) = \prod_{v \in P^{\alpha}} F(v)$.

Example If P is the minuscule poset of type E_7 and α is the simple root corresponding to \bullet , then

$$\Psi_{\alpha}(F) = F(v_0) \cdot (\rho^2 F)(v_1) \\ \times (\rho^3 F)(v_2) \cdot (\rho^4 F)(v_3) \cdot (\rho^6 F)(v_4).$$



Proof sketch of homomesy (2/3) Key Lemma We have $\Psi_{\alpha}(F) \cdot \Psi_{\alpha}(\rho F)$ $= A^{\delta_{\alpha,\alpha_{\max}}} B^{\delta_{\alpha,\alpha_{\min}}} \prod_{\beta \in \Pi, \beta \neq \alpha} \Psi_{\beta}(\rho^{m(\alpha,\beta)}F)^{-\langle \beta, \alpha^{\vee} \rangle},$

where α_{\max} (resp. α_{\min}) is the color of the maximal (resp. minimum) element of P, and

$$m(\alpha,\beta) = \begin{cases} 1 & \text{if } \min P^{\alpha} < \min P^{\beta}, \\ 0 & \text{if } \min P^{\alpha} > \min P^{\beta}. \end{cases}$$

Proof It is enough to consider the values of $\rho^k F$ on the neighborhood \hat{N}^{α} of P^{α} in the Hasse diagram of \hat{P} . We can analyze the structure of \hat{N}^{α} and prove the claim in a case-by-case manner.

Proof sketch of homomesy (3/3)

Suppose that ρ has a finite order h. We put

$$\widetilde{\Phi}_{\alpha}(F) = \prod_{k=0}^{h-1} \prod_{v \in P^{\alpha}} (\rho^{k}F)(v) = \prod_{k=0}^{h-1} \Psi_{\alpha}(\rho^{k}F),$$
$$\widetilde{\mu}(F) = \sum_{\alpha \in \Pi} \log \widetilde{\Phi}_{\alpha}(F) \cdot \alpha.$$

Key Lemma implies $\prod_{\beta \in \Pi} \widetilde{\Phi}_{\beta}(F)^{\langle \beta, \alpha^{\vee} \rangle} = A^{\delta_{\alpha, \alpha_{\max}} h} B^{\delta_{\alpha, \alpha_{\min}} h}$ and

$$s_{\alpha}\widetilde{\mu}(F) = \widetilde{\mu}(F) - \left(\delta_{\alpha,\alpha_{\max}}h\log A + \delta_{\alpha,\alpha_{\min}}h\log B\right)\alpha.$$

By computing the action of a Coxeter element on $\widetilde{\mu}(F),$ we can show that

$$\widetilde{\mu}(F) = h \log A \cdot \varpi_{\max} + h \log B \cdot \varpi_{\min},$$

where ϖ_{max} (resp. ϖ_{min}) is the fundamental weight corresponding to α_{max} (resp. α_{min}).

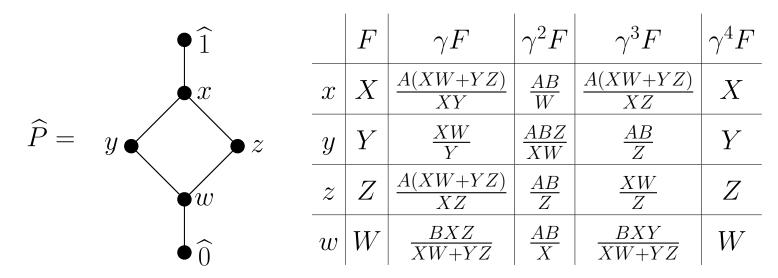
Coxeter-motion

Let P be a minuscule poset with coloring $c: P \to \Pi$. We put $\sigma_{\alpha}^{A,B} = \prod_{c(x)=\alpha} \tau_x^{A,B} \quad (\alpha \in \Pi).$

A birational Coxeter-motion $\gamma^{A,B}$ is a composition of all $\sigma_{\alpha}^{A,B}$'s:

$$\gamma^{A,B} = \sigma^{A,B}_{\alpha_1} \cdots \sigma^{A,B}_{\alpha_n}, \quad \Pi = \{\alpha_1, \dots, \alpha_n\}.$$

Example If $P = [2] \times [2]$ and $\gamma = \tau_z \cdot (\tau_x \tau_w) \cdot \tau_y$, then we have



Results for Coxeter-motion

Theorem Let

P: a minuscule poset associated with a minuscule weight λ of \mathfrak{g} , $c: P \to \Pi$: coloring, $\operatorname{ht} : P \to \{1, 2, \dots\}$: height, $\gamma = \gamma^{A,B}$: a birational Coxeter-motion map on P ($A, B \in \mathbb{R}_{>0}$).

Then

(1) (periodicity) The order of γ is equal to the Coxeter number h of \mathfrak{g} . (2) (file homomesy) For a simple root $\alpha \in \Pi$, we have

$$\prod_{k=0}^{h-1} \prod_{c(v)=\alpha} (\gamma^k F)(v) = A^{h\langle \varpi^{\vee}, -w_0 \lambda \rangle} B^{h\langle \varpi^{\vee}, \lambda \rangle},$$

where ϖ^{\vee} is the fundamental coweight corresponding to α . Remark Einstein–Propp proved the homomesy result (2) for the bira-

tional promotion in type A.

Proof sketch of homomesy

We put put

$$\Phi_{\alpha}(F) = \prod_{c(v)=\alpha} F(v), \quad \mu(F) = \sum_{\alpha \in \Pi} \log \Phi_{\alpha}(F) \cdot \alpha.$$

Then we have

$$\Phi_{\alpha}(F) \cdot \Phi_{\alpha}(\sigma_{\alpha}F) = A^{\delta_{\alpha,\alpha_{\max}}} B^{\delta_{\alpha,\alpha_{\min}}} \prod_{\beta \in \Pi, \beta \neq \alpha} \Phi_{\beta}(F)^{-\langle \beta, \alpha^{\vee} \rangle}.$$

Hence we have

$$\mu(\sigma_{\alpha}F) = s_{\alpha}\mu(F) + (\delta_{\alpha,\alpha_{\max}}\log A + \delta_{\alpha,\alpha_{\min}}\log B)\alpha$$

If c is the corresponding Coxeter element, then we have
$$\mu(\gamma F) = c\mu(F) + \log A \cdot (\varpi_{\max} - c\varpi_{\max}) + \log B \cdot (\varpi_{\min} - c\varpi_{\min}),$$
which implies

$$\sum_{k=0}^{h-1} \mu(\gamma^k F) = h \log A \cdot \varpi_{\max} + h \log B \cdot \varpi_{\min}.$$

Conjecture on Reciprocity (Half-periodicity)

Let P be a minuscule poset. Let $\Pi = \Pi_1 \sqcup \Pi_2$ be a decomposition of the corresponding simple system into a disjoint union of orthogonal subsets (i.e., each Π_i consists of pairwise orthogonal simple roots). Then we put

$$\gamma_1^{A,B} = \prod_{\alpha \in \Pi_1} \sigma_{\alpha}^{A,B}, \quad \gamma_2^{A,B} = \prod_{\beta \in \Pi_2} \sigma_{\beta}^{A,B},$$

and define

$$\delta^{A,B} = \gamma_1^{A,B} \gamma_2^{A,B} \gamma_1^{A,B} \gamma_2^{A,B} \gamma_1^{A,B} \dots \quad (h \text{ factors}),$$

where h is the Coxeter number of the corresponding Lie algebra.

Conjecture For any $F \in (\mathbb{R}_{>0})^P$, we have

$$\left(\delta^{A,B}(F)\right)(v) = \frac{1}{F(\iota v)} \quad (v \in P),$$

where ι is the order-reversing involution of P induced from the longest element of $W_{\lambda}.$