A birational lifting of the Lalanne-Kreweras involution on Dyck paths

Mike Joseph
(joint work with Sam Hopkins)

Dalton State College

October 28, 2020

Dyck paths

Definition

A Dyck path of semilength n is a lattice path in \mathbb{Z}^{2} from $(0,0)$ to $(2 n, 0)$ consisting of up steps $(1,1)$ and down steps $(1,-1)$ that never goes below the x-axis.

Example (Dyck path of semilength 10)

The number of Dyck paths of semilength n is $\operatorname{Cat}(n)=\frac{1}{n+1}\binom{2 n}{n}$.

Valleys

Definition
A valley is a \searrow step immediately followed by a \nearrow step.

1 valley

1 valley

2 valleys

Valleys

Definition
A valley is a \searrow step immediately followed by a \nearrow step.

Major index

Consider the positions (from left to right) of each \searrow followed by a \nearrow step. The sum of these is the major index of the Dyck path.

Example ($n=10$)

\# valleys: 4 major index: $3+8+11+15=37$

Major index

Definition

Consider the positions (from left to right) of each \searrow followed by a \nearrow step. The sum of these is the major index of the Dyck path.

maj: 0

maj: 2

maj: 3

maj: 4

maj: 5

maj: 6

maj: 7

Major index

Definition
Consider the positions (from left to right) of each \searrow followed by a \nearrow step. The sum of these is the major index of the Dyck path.

maj: 0

maj: 3

maj: 4
 maj: 6

maj: 6

maj: 4

major index	0	1	2	3	4	5	6	7	8	9	10	11	12
\# Dyck paths	1	0	1	1	2	1	2	1	2	1	1	0	1

The Lalanne-Kreweras involution on Dyck paths

Lalanne and Kreweras studied an involution LK : Dyck $_{n} \rightarrow$ Dyck $_{n}$ for which:
(1) If $p \in \operatorname{Dyck}_{n}$ has v valleys, then $\operatorname{LK}(p)$ has $n-1-v$ valleys.

2 If $p \in \operatorname{Dyck}_{n}$ has major index m, then $\operatorname{LK}(p)$ has major index $n(n-1)-m$.

The Lalanne-Kreweras involution on Dyck paths

(1) Take a Dyck path p.

2 Draw southeast line from each junction of consecutive \nearrow steps.
3 Draw southwest line from each junction of consecutive \searrow steps.
4 Mark the intersection between k th (from left-to-right) southwest line and the k th southeast line.
${ }^{5} \operatorname{LK}(p)$ is the unique Dyck path (drawn upside-down) with valleys at marked points.

Symmetry of valley and major index statistics

(1) If $p \in \operatorname{Dyck}_{n}$ has v valleys, then $\operatorname{LK}(p)$ has $n-1-v$ valleys.
(2) If $p \in \operatorname{Dyck}_{n}$ has major index m, then $\operatorname{LK}(p)$ has major index $n(n-1)-m$.
Example ($n=10$)
\# valleys: 4
major index: $3+8+11+15=37$

\# valleys: 5
major index: $3+6+12+15+17=53$

Antichains of the root poset A_{n}

It will be easier to study the Lalanne-Kreweras involution on the set of antichains of the type A root poset.

Definition
The elements of the type A root poset A_{n} are the intervals $[i, j] \subseteq[n]:=\{1,2, \ldots, n\}$, ordered by containment.

Example $\left(\mathrm{A}_{4}\right)$

Antichains of the root poset A_{n}

There is a simple bijection between Dyck paths of semilength $n+1$ and antichains of A_{n}.

Example

Antichains of the root poset A_{n}

There is a simple bijection between Dyck paths of semilength $n+1$ and antichains of A_{n}.

Example

(1) \# valleys of Dyck path = cardinality of antichain.

Antichains of the root poset A_{n}

There is a simple bijection between Dyck paths of semilength $n+1$ and antichains of A_{n}.

Example

(1) \# valleys of Dyck path $=$ cardinality of antichain.
(2) The major index of the antichain A is $\operatorname{maj}(A)=\sum_{[i, j] \in A}(i+j)$.

Lalanne-Kreweras involution described on antichains of A_{n}

$\operatorname{maj}(A)=\sum_{[i . j] \in A}(i+j)=(1+2)+(4+4)+(5+6)+(6+9)=37$

Lalanne-Kreweras involution described on antichains of A_{n}

Proposition

If $A=\left\{\left[i_{1}, j_{1}\right], \ldots,\left[i_{k}, j_{k}\right]\right\}$ is an antichain of A_{n}, then $\operatorname{LK}(A)=\left\{\left[i_{1}^{\prime}, j_{1}^{\prime}\right], \ldots,\left[i_{n-k}^{\prime}, j_{n-k}^{\prime}\right]\right\}$ where

$$
\begin{aligned}
\left\{i_{1}^{\prime}, \ldots, i_{n-k}^{\prime}\right\} & :=[n] \backslash\left\{j_{1}, \ldots, j_{k}\right\}, \\
\left\{j_{1}^{\prime}, \ldots, j_{n-k}^{\prime}\right\}: & :=[n] \backslash\left\{i_{1}, \ldots, i_{k}\right\} .
\end{aligned}
$$

Lalanne-Kreweras involution described on antichains of A_{n}

Proposition

If $A=\left\{\left[i_{1}, j_{1}\right], \ldots,\left[i_{k}, j_{k}\right]\right\}$ is an antichain of A_{n}, then $\operatorname{LK}(A)=\left\{\left[i_{1}^{\prime}, j_{1}^{\prime}\right], \ldots,\left[i_{n-k}^{\prime}, j_{n-k}^{\prime}\right]\right\}$ where

$$
\begin{aligned}
\left\{i_{1}^{\prime}, \ldots, i_{n-k}^{\prime}\right\} & :=[n] \backslash\left\{j_{1}, \ldots, j_{k}\right\}, \\
\left\{j_{1}^{\prime}, \ldots, j_{n-k}^{\prime}\right\} & :=[n] \backslash\left\{i_{1}, \ldots, i_{k}\right\} .
\end{aligned}
$$

Example ($n=9$)

- $A=\{[1,2],[4,4],[5,6],[6,9]\}$

Lalanne-Kreweras involution described on antichains of A_{n}

Proposition

If $A=\left\{\left[i_{1}, j_{1}\right], \ldots,\left[i_{k}, j_{k}\right]\right\}$ is an antichain of A_{n}, then $\operatorname{LK}(A)=\left\{\left[i_{1}^{\prime}, j_{1}^{\prime}\right], \ldots,\left[i_{n-k}^{\prime}, j_{n-k}^{\prime}\right]\right\}$ where

$$
\begin{aligned}
\left\{i_{1}^{\prime}, \ldots, i_{n-k}^{\prime}\right\} & :=[n] \backslash\left\{j_{1}, \ldots, j_{k}\right\}, \\
\left\{j_{1}^{\prime}, \ldots, j_{n-k}^{\prime}\right\} & :=[n] \backslash\left\{i_{1}, \ldots, i_{k}\right\} .
\end{aligned}
$$

Example ($n=9$)

- $A=\{[1,2],[4,4],[5,6],[6,9]\}$
- $\left\{i_{1}^{\prime}, i_{2}^{\prime}, i_{3}^{\prime}, i_{4}^{\prime}, i_{5}^{\prime}\right\}=\{1,3,5,7,8\}$

Proposition

If $A=\left\{\left[i_{1}, j_{1}\right], \ldots,\left[i_{k}, j_{k}\right]\right\}$ is an antichain of A_{n}, then $\operatorname{LK}(A)=\left\{\left[i_{1}^{\prime}, j_{1}^{\prime}\right], \ldots,\left[i_{n-k}^{\prime}, j_{n-k}^{\prime}\right]\right\}$ where

$$
\begin{aligned}
\left\{i_{1}^{\prime}, \ldots, i_{n-k}^{\prime}\right\} & :=[n] \backslash\left\{j_{1}, \ldots, j_{k}\right\}, \\
\left\{j_{1}^{\prime}, \ldots, j_{n-k}^{\prime}\right\} & :=[n] \backslash\left\{i_{1}, \ldots, i_{k}\right\} .
\end{aligned}
$$

Example ($n=9$)

- $A=\{[1,2],[4,4],[5,6],[6,9]\}$
- $\left\{i_{1}^{\prime}, i_{2}^{\prime}, i_{3}^{\prime}, i_{4}^{\prime}, i_{5}^{\prime}\right\}=\{1,3,5,7,8\}$
- $\left\{j_{1}^{\prime}, j_{2}^{\prime}, j_{3}^{\prime}, j_{4}^{\prime}, j_{5}^{\prime}\right\}=\{2,3,7,8,9\}$

Proposition
If $A=\left\{\left[i_{1}, j_{1}\right], \ldots,\left[i_{k}, j_{k}\right]\right\}$ is an antichain of A_{n}, then $\operatorname{LK}(A)=\left\{\left[i_{1}^{\prime}, j_{1}^{\prime}\right], \ldots,\left[i_{n-k}^{\prime}, j_{n-k}^{\prime}\right]\right\}$ where

$$
\begin{aligned}
& \left\{i_{1}^{\prime}, \ldots, i_{n-k}^{\prime}\right\}:=[n] \backslash\left\{j_{1}, \ldots, j_{k}\right\}, \\
& \left\{j_{1}^{\prime}, \ldots, j_{n-k}^{\prime}\right\}:=[n] \backslash\left\{i_{1}, \ldots, i_{k}\right\} .
\end{aligned}
$$

Example ($n=9$)

- $A=\{[1,2],[4,4],[5,6],[6,9]\}$
- $\left\{i_{1}^{\prime}, i_{2}^{\prime}, i_{3}^{\prime}, i_{4}^{\prime}, i_{5}^{\prime}\right\}=\{1,3,5,7,8\}$
- $\left\{j_{1}^{\prime}, j_{2}^{\prime}, j_{3}^{\prime}, j_{4}^{\prime}, j_{5}^{\prime}\right\}=\{2,3,7,8,9\}$
- $\operatorname{LK}(A)=\{[1,2],[3,3],[5,7],[7,8],[8,9]\}$

Panyushev called $\operatorname{LK}(A)$ the dual antichain of A, apparently unaware this same involution was studied by Lalanne and Kreweras on Dyck paths.

Lalanne-Kreweras involution described on antichains of A_{n}

Antichain rowmotion Row $_{\mathcal{A}}: \mathcal{A}(P) \rightarrow \mathcal{A}(P)$ is a map on the set $\mathcal{A}(P)$ of antichains of a poset P.
(1) Δ^{-1} : Saturate downward (giving an order ideal)
(2) Θ : Take the complement (giving an order filter)
(3) ∇ : Take the minimal elements (giving an antichain)

(1) On $A_{n}, \operatorname{Row}_{\mathcal{A}}^{2(n+1)}$ is the identity.
2) On A_{n}, Row $_{\mathcal{A}}^{n+1}$ is reflection across the center vertical line.

Toggles

Definition

Let $e \in P$. Then the antichain toggle corresponding to e is the map $\tau_{e}: \mathcal{A}(P) \rightarrow \mathcal{A}(P)$ defined by

$$
\tau_{e}(A)= \begin{cases}A \cup\{e\} & \text { if } e \notin A \text { and } A \cup\{e\} \in \mathcal{A}(P), \\ A \backslash\{e\} & \text { if } e \in A, \\ A & \text { otherwise } .\end{cases}
$$

Proposition

- Let P be a graded poset of rank r.
- $P_{i}=\{v \in P: \operatorname{rk}(v)=i\}$.
- $\boldsymbol{\tau}_{i}=\prod_{v \in P_{i}} \tau_{v}$
- $\operatorname{Row}_{\mathcal{A}}=\boldsymbol{\tau}_{r} \circ \cdots \circ \boldsymbol{\tau}_{1} \circ \boldsymbol{\tau}_{0}$

Toggles

Proposition

- Let P be a graded poset of rank r.

> - $P_{i}=\{v \in P: \operatorname{rk}(v)=i\}$.
> - $\boldsymbol{\tau}_{i}=\prod_{v \in P_{i}} \tau_{v}$
> - $\operatorname{Row}_{\mathcal{A}}=\boldsymbol{\tau}_{r} \circ \cdots \circ \boldsymbol{\tau}_{1} \circ \boldsymbol{\tau}_{0}$

Example

,

Toggles

Proposition

- Let P be a graded poset of rank r.
- $P_{i}=\{v \in P: \operatorname{rk}(v)=i\}$.
- $\boldsymbol{\tau}_{i}=\prod_{\nu \in P_{i}} \tau_{v}$
- $\operatorname{Row}_{\mathcal{A}}=\boldsymbol{\tau}_{r} \circ \cdots \circ \boldsymbol{\tau}_{1} \circ \boldsymbol{\tau}_{0}$

$$
0
$$

Example

```
o
```


路

Toggles

Proposition
 Poposion

- Let P be a graded poset of rank r.
- $P_{i}=\{v \in P: \operatorname{rk}(v)=i\}$.
- $\boldsymbol{\tau}_{i}=\prod_{\nu \in P_{i}} \tau_{v}$
- $\operatorname{Row}_{\mathcal{A}}=\boldsymbol{\tau}_{r} \circ \cdots \circ \boldsymbol{\tau}_{1} \circ \boldsymbol{\tau}_{0}$

Example
 Example

example

Toggles

Proposition
 - Let P be a graded poset of rank r.

- $P_{i}=\{v \in P: \operatorname{rk}(v)=i\}$.
- $\boldsymbol{\tau}_{i}=\prod_{v \in P_{i}} \tau_{v}$
- $\operatorname{Row}_{\mathcal{A}}=\boldsymbol{\tau}_{r} \circ \cdots \circ \boldsymbol{\tau}_{1} \circ \boldsymbol{\tau}_{0}$

$\circ \cdots \circ \tau_{1} \circ \boldsymbol{\tau}_{0}$

Example

Toggles

Proposition
 - Let P be a graded poset of rank r.

- $P_{i}=\{v \in P: \operatorname{rk}(v)=i\}$.
- $\boldsymbol{\tau}_{i}=\prod_{v \in P_{i}} \tau_{v}$
- $\operatorname{Row}_{\mathcal{A}}=\boldsymbol{\tau}_{r} \circ \cdots \circ \boldsymbol{\tau}_{1} \circ \boldsymbol{\tau}_{0}$

$\circ \cdots \circ \tau_{1} \circ \boldsymbol{\tau}_{0}$

Example

Toggles

Proposition

- Let P be a graded poset of rank r.

Example

> - $P_{i}=\{v \in P: \operatorname{rk}(v)=i\}$.
> - $\boldsymbol{\tau}_{i}=\prod_{v \in P_{i}} \tau_{v}$
> ($\operatorname{Row}_{\mathcal{A}}=\boldsymbol{\tau}_{r} \circ \cdots \circ \boldsymbol{\tau}_{1} \circ \boldsymbol{\tau}_{0}$

Toggles

Proposition

- Let P be a graded poset of rank r.

> - $P_{i}=\{v \in P: \operatorname{rk}(v)=i\}$.
> - $\boldsymbol{\tau}_{i}=\prod_{v \in P_{i}} \tau_{v}$
> - $\operatorname{Row}_{\mathcal{A}}=\boldsymbol{\tau}_{r} \circ \cdots \circ \boldsymbol{\tau}_{1} \circ \boldsymbol{\tau}_{0}$

Example

$$
\square-\ln -
$$

$\mathrm{ROW}_{\mathcal{A}}:$
Row
I

Toggles

O
 路
 解
 E

 \square

(
(
(
(
(
(
(
(
(
(

Dihedral action

Proposition (Panyushev 2009)

$$
\mathrm{LK} \circ \operatorname{Row}_{\mathcal{A}}=\operatorname{Row}_{\mathcal{A}}^{-1} \circ \mathrm{LK}
$$

The cyclic group action of rowmotion extends to a dihedral group action generated by $\operatorname{Row}_{\mathcal{A}}$ and LK.

Example

$\operatorname{Row}_{\mathcal{A}} \downarrow$

$\xrightarrow{\text { LK }}$

Our goal was to find a lifting of the Lalanne-Kreweras involution on A_{n} to the piecewise-linear and birational realms, such that the four main properties generalize to these realms.
(1) LK^{2} is the identity.
(2) $\mathrm{LK} \circ \operatorname{Row}_{\mathcal{A}}=\operatorname{Row}_{\mathcal{A}}^{-1} \circ \mathrm{LK}$
(3) $\operatorname{card}(A)+\operatorname{card}(\operatorname{LK}(A))=n$

4 $\operatorname{maj}(A)+\operatorname{maj}(\operatorname{LK}(A))=n(n+1)$

Chain polytope

We can associate an indicator function to any subset of P.

The convex hull of $\mathcal{A}(P)$ is Stanley's chain polytope $\mathcal{C}(P)$.

Definition (Stanley 1986)
The chain polytope of P is the set $\mathcal{C}(P)$ of $f \in[0,1]^{p}$ such that $\sum_{i=1}^{n} f\left(x_{i}\right) \leq 1$ for all chains $x_{1}<x_{2}<\cdots<x_{n}$.

Example

Piecewise-linear antichain toggle

Definition (J. 2017)
For $g \in \mathcal{C}(P), e \in P, \tau_{e}(g)$ can only differ from g at the value of e.

$$
\left(\tau_{e}(g)\right)(e)=1-\max \left\{\begin{array}{l|l}
\sum_{i=1}^{k} g\left(y_{i}\right) & \begin{array}{c}
\left(y_{1}, \ldots, y_{k}\right) \text { is a maximal } \\
\text { chain in } P \text { that contains } e
\end{array}
\end{array}\right\}
$$

Piecewise-linear antichain rowmotion (or chain polytope rowmotion) is given by

- $P_{i}=\{v \in P: \operatorname{rk}(v)=i\}$.
- $\boldsymbol{\tau}_{i}=\prod_{v \in P_{i}} \tau_{v}$
- $\operatorname{Row}_{\mathcal{C}}=\boldsymbol{\tau}_{r} \circ \cdots \circ \boldsymbol{\tau}_{1} \circ \boldsymbol{\tau}_{0}$

Piecewise-linear antichain toggle

Definition (J. 2017)
For $g \in \mathcal{C}(P), e \in P, \tau_{e}(g)$ can only differ from g at the value of e.

$$
\left(\tau_{e}(g)\right)(e)=1-\max \left\{\begin{array}{l|l}
\sum_{i=1}^{k} g\left(y_{i}\right) & \begin{array}{c}
\left(y_{1}, \ldots, y_{k}\right) \text { is a maximal } \\
\text { chain in } P \text { that contains } e
\end{array}
\end{array}\right\}
$$

Example

Piecewise-linear antichain toggle

Definition (J. 2017)
For $g \in \mathcal{C}(P), e \in P, \tau_{e}(g)$ can only differ from g at the value of e.

$$
\left(\tau_{e}(g)\right)(e)=1-\max \left\{\begin{array}{l|l}
\sum_{i=1}^{k} g\left(y_{i}\right) & \begin{array}{c}
\left(y_{1}, \ldots, y_{k}\right) \text { is a maximal } \\
\text { chain in } P \text { that contains } e
\end{array}
\end{array}\right\}
$$

Example

Piecewise-linear antichain toggle

Definition (J. 2017)
For $g \in \mathcal{C}(P), e \in P, \tau_{e}(g)$ can only differ from g at the value of e.

$$
\left(\tau_{e}(g)\right)(e)=1-\max \left\{\begin{array}{l|l}
\sum_{i=1}^{k} g\left(y_{i}\right) & \begin{array}{c}
\left(y_{1}, \ldots, y_{k}\right) \text { is a maximal } \\
\text { chain in } P \text { that contains } e
\end{array}
\end{array}\right\}
$$

Example

Piecewise-linear antichain toggle

Definition (J. 2017)
For $g \in \mathcal{C}(P), e \in P, \tau_{e}(g)$ can only differ from g at the value of e.

$$
\left(\tau_{e}(g)\right)(e)=1-\max \left\{\begin{array}{l|l}
\sum_{i=1}^{k} g\left(y_{i}\right) & \begin{array}{c}
\left(y_{1}, \ldots, y_{k}\right) \text { is a maximal } \\
\text { chain in } P \text { that contains } e
\end{array}
\end{array}\right\}
$$

Example

Piecewise-linear antichain toggle

Definition (J. 2017)
For $g \in \mathcal{C}(P), e \in P, \tau_{e}(g)$ can only differ from g at the value of e.

$$
\left(\tau_{e}(g)\right)(e)=1-\max \left\{\begin{array}{l|l}
\sum_{i=1}^{k} g\left(y_{i}\right) & \begin{array}{c}
\left(y_{1}, \ldots, y_{k}\right) \text { is a maximal } \\
\text { chain in } P \text { that contains } e
\end{array}
\end{array}\right\}
$$

Example

Piecewise-linear antichain toggle

Definition (J. 2017)
For $g \in \mathcal{C}(P), e \in P, \tau_{e}(g)$ can only differ from g at the value of e.

$$
\left(\tau_{e}(g)\right)(e)=1-\max \left\{\begin{array}{l|l}
\sum_{i=1}^{k} g\left(y_{i}\right) & \begin{array}{c}
\left(y_{1}, \ldots, y_{k}\right) \text { is a maximal } \\
\text { chain in } P \text { that contains } e
\end{array}
\end{array}\right\}
$$

Example

Piecewise-linear and birational dynamics

Piecewise-linear and birational toggling and rowmotion were originally defined by Einstein and Propp in 2013.

Detropicalization: from the piecewise-linear to the birational realm

	\max	+	-	0	1
Replace with	+	\cdot	$/$	1	C

Definition
For $e \in P$, the birational antichain toggle τ_{e} is:

$$
\left(\tau_{e}(g)\right)(x)= \begin{cases}\frac{C}{\sum_{\left(y_{1}, \ldots, y_{k}\right) \in \mathrm{MC}_{e}(P)} g\left(y_{1}\right) \cdots g\left(y_{k}\right)} & \text { if } x=e \\ g(x) & \text { if } x \neq e\end{cases}
$$

Birational antichain rowmotion (BAR-motion) is given by

- $P_{i}=\{v \in P: \operatorname{rk}(v)=i\}$.
- $\boldsymbol{\tau}_{i}=\prod_{v \in P_{i}} \tau_{v}$
- $\mathrm{BAR}=\boldsymbol{\tau}_{r} \circ \cdots \circ \boldsymbol{\tau}_{1} \circ \boldsymbol{\tau}_{0}$

Birational antichain rowmotion

$$
\left(\tau_{e}(g)\right)(x)= \begin{cases}\frac{C}{\sum_{\left(y_{1}, \ldots y_{k}\right) \in \mathrm{MC}_{e}(P)} g\left(y_{1}\right) \cdots g\left(y_{k}\right)} & \text { if } x=e \\ g(x) & \text { if } x \neq e\end{cases}
$$

Example

Birational antichain rowmotion

$$
\left(\tau_{e}(g)\right)(x)= \begin{cases}\frac{C}{\sum_{\left(y_{1}, \ldots, y_{k}\right) \in \mathrm{MC}_{e}(P)} g\left(y_{1}\right) \cdots g\left(y_{k}\right)} & \text { if } x=e \\ g(x) & \text { if } x \neq e\end{cases}
$$

Example

Birational antichain rowmotion

$$
\left(\tau_{e}(g)\right)(x)= \begin{cases}\frac{C}{\sum_{\left(y_{1}, \ldots, y_{k}\right) \in \mathrm{MC}_{e}(P)} g\left(y_{1}\right) \cdots g\left(y_{k}\right)} & \text { if } x=e \\ g(x) & \text { if } x \neq e\end{cases}
$$

Example

Birational antichain rowmotion

Birational antichain rowmotion

Birational antichain rowmotion

Birational antichain rowmotion

Birational antichain rowmotion

Theorem (Grinberg-Roby 2014)

- On $\mathrm{A}_{n}, \mathrm{BAR}^{2(n+1)}$ is the identity.
- On $\mathrm{A}_{n}, \mathrm{BAR}^{n+1}$ is reflection across the center vertical line.

Our goal was to find a lifting of the Lalanne-Kreweras involution on A_{n} to the piecewise-linear and birational realms, such that the four main properties generalize to these realms.
(1) LK^{2} is the identity.
(2) $\mathrm{LK} \circ \operatorname{Row}_{\mathcal{A}}=\operatorname{Row}_{\mathcal{A}}^{-1} \circ \mathrm{LK}$
(3) $\operatorname{card}(A)+\operatorname{card}(\operatorname{LK}(A))=n$

4 $\operatorname{maj}(A)+\operatorname{maj}(\operatorname{LK}(A))=n(n+1)$

Our goal was to find a lifting of the Lalanne-Kreweras involution on A_{n} to the piecewise-linear and birational realms, such that the four main properties generalize to these realms.
(1) LK^{2} is the identity.
(2) $\mathrm{LK} \circ \operatorname{Row}_{\mathcal{A}}=\operatorname{Row}_{\mathcal{A}}^{-1} \circ \mathrm{LK}$
${ }^{3} \quad \operatorname{card}(A)+\operatorname{card}(\operatorname{LK}(A))=n$
4 $\operatorname{maj}(A)+\operatorname{maj}(\operatorname{LK}(A))=n(n+1)$
It turns out that LK is equivalent to a map called rowvacuation on A_{n} and this allows us to lift LK to the higher realms.

- On any graded poset with rank r, there is an involution antichain rowvacuation
$\operatorname{Rvac}_{\mathcal{A}}:=\left(\boldsymbol{\tau}_{r}\right)\left(\boldsymbol{\tau}_{r} \boldsymbol{\tau}_{r-1}\right) \cdots\left(\boldsymbol{\tau}_{r} \boldsymbol{\tau}_{r-1} \cdots \boldsymbol{\tau}_{2} \boldsymbol{\tau}_{1}\right)\left(\boldsymbol{\tau}_{r} \boldsymbol{\tau}_{r-1} \cdots \boldsymbol{\tau}_{2} \boldsymbol{\tau}_{1} \boldsymbol{\tau}_{0}\right)$
where again τ_{i} is the product of all antichain toggles of rank i elements.
- On any graded poset:
- $\operatorname{Rvac}_{\mathcal{A}}$ is an involution,
- $\operatorname{Rvac}_{\mathcal{A}} \circ \operatorname{Row}_{\mathcal{A}}=\operatorname{Row}_{\mathcal{A}}^{-1} \circ \operatorname{Rvac}_{\mathcal{A}}$.

Rowvacuation is the Lalanne-Kreweras involution

Theorem (Hopkins-J.)
The Lalanne-Kreweras involution LK is $\mathrm{Rvac}_{\mathcal{A}}$ on A_{n}.
Definition (Hopkins-J.)
The piecewise-linear Lalanne-Kreweras involution LK $^{\mathrm{PL}}$ is rowvacuation

$$
\left(\boldsymbol{\tau}_{r}\right)\left(\boldsymbol{\tau}_{r} \boldsymbol{\tau}_{r-1}\right) \cdots\left(\boldsymbol{\tau}_{r} \boldsymbol{\tau}_{r-1} \cdots \boldsymbol{\tau}_{2} \boldsymbol{\tau}_{1}\right)\left(\boldsymbol{\tau}_{r} \boldsymbol{\tau}_{r-1} \cdots \boldsymbol{\tau}_{2} \boldsymbol{\tau}_{1} \boldsymbol{\tau}_{0}\right)
$$

on A_{n}, where we use piecewise-linear toggles.
Definition (Hopkins-J.)
The birational Lalanne-Kreweras involution $L K^{\mathrm{B}}$ is rowvacuation

$$
\left(\boldsymbol{\tau}_{r}\right)\left(\boldsymbol{\tau}_{r} \boldsymbol{\tau}_{r-1}\right) \cdots\left(\boldsymbol{\tau}_{r} \boldsymbol{\tau}_{r-1} \cdots \boldsymbol{\tau}_{2} \boldsymbol{\tau}_{1}\right)\left(\boldsymbol{\tau}_{r} \boldsymbol{\tau}_{r-1} \cdots \boldsymbol{\tau}_{2} \boldsymbol{\tau}_{1} \boldsymbol{\tau}_{0}\right)
$$

on A_{n}, where we use birational toggles.

We get the following because it is true for rowvacuation.
Proposition

- LK^{B} is an involution.
- $\mathrm{LK}^{\mathrm{B}} \circ \mathrm{BAR}=\mathrm{BAR}^{-1} \circ \mathrm{LK}^{\mathrm{B}}$

We get the following because it is true for rowvacuation.
Proposition

- LK^{B} is an involution.
- $\mathrm{LK}^{\mathrm{B}} \circ \mathrm{BAR}=\mathrm{BAR}^{-1} \circ \mathrm{LK}^{\mathrm{B}}$

Q: What about the cardinality and major index?

Piecewise-linear "cardinality"

$$
\operatorname{card}^{\mathrm{PL}}(g)=\sum_{[i, j] \in \mathrm{A}_{n}} g([i, j])
$$

Example ($n=4$)

$\operatorname{card}^{\mathrm{PL}}(g)=.5+0+.1+0+.4+.3+.2+0+.1+.1=1.7$
$\operatorname{card}^{\mathrm{PL}}\left(\mathrm{LK}^{\mathrm{PL}}(g)\right)=0+.4+.1+.1+0+.7+.2+.1+.5+.2=2.3$

Piecewise-linear major index

$$
\operatorname{maj}^{\mathrm{PL}}(g)=\sum_{[i, j] \in \mathrm{A}_{n}}(i+j) g([i, j])
$$

Example $(n=4)$

$$
\begin{gathered}
2(.5)+3(0)+4(.1+0)+5(.4+.3)+6(.2+0)+7(.1)+8(.1)=7.6 \\
2(0)+3(.4)+4(.1+.1)+5(0+.7)+6(.2+.1)+7(.5)+8(.2)=12.4
\end{gathered}
$$

The major indexes add to $20=4(4+1)$.

Birational cardinality and major index

$$
\operatorname{card}^{\mathrm{B}}(g)=\prod_{[i, j] \in \mathrm{A}_{n}} g([i, j]) \quad \operatorname{maj}^{\mathrm{B}}(g)=\prod_{[i, j] \in \mathrm{A}_{n}} g([i, j])^{i+j}
$$

Birational cardinality and major index

$$
\begin{aligned}
& \operatorname{card}^{\mathrm{B}}(g)=\prod_{[i, j] \in \mathrm{A}_{n}} g([i, j]) \\
& \operatorname{maj}^{\mathrm{B}}(g)=\prod_{[i, j] \in \mathrm{A}_{n}} g([i, j])^{i+j} \\
& \frac{C}{u x z} \cdot \frac{C}{v(x+y) z} \cdot \frac{C}{w y z} \cdot \frac{(x+y) z}{y} \cdot \frac{(x+y) z}{x} \cdot \frac{x y}{x+y}=\frac{C^{3}}{u v w x y z} \\
& \left(\frac{C}{u x z}\right)^{2}\left(\frac{C}{v(x+y) z}\right)^{4}\left(\frac{C}{w y z}\right)^{6}\left(\frac{(x+y) z}{y}\right)^{3}\left(\frac{(x+y) z}{x}\right)^{5}\left(\frac{x y}{x+y}\right)^{4}=\frac{C^{12}}{u^{2} v^{4} w^{6} x^{3} y^{5} z^{4}}
\end{aligned}
$$

Birational cardinality and major index

Theorem (Hopkins-J.)

For $g \in \mathbb{R}_{\geq 0}^{A_{n}}$,

$$
\begin{aligned}
\operatorname{card}^{\mathrm{B}}(g) \operatorname{card}^{\mathrm{B}}\left(\mathrm{LK}^{\mathrm{B}}(g)\right) & =\prod_{[i, j] \in \mathrm{A}_{n}} g([i, j])\left(\mathrm{LK}^{\mathrm{B}}(g)\right)([i, j]) \\
& =C^{n}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{maj}^{\mathrm{B}}(g) \mathrm{maj}^{\mathrm{B}}\left(\mathrm{LK}^{\mathrm{B}}(g)\right) & =\prod_{[i, j] \in \mathrm{A}_{n}} g([i, j])^{i+j}\left(\operatorname{LK}^{\mathrm{B}}(g)\right)([i, j])^{i+j} \\
& =C^{n(n+1)}
\end{aligned}
$$

Homomesy

Proposition
Under the action of LK on $\mathcal{A}\left(\mathrm{A}_{n}\right)$,
(1) card is homomesic with average $n / 2$,
(2) maj is homomesic with average $n(n+1) / 2$.

Homomesy

Proposition
Under the action of LK on $\mathcal{A}\left(\mathrm{A}_{n}\right)$,
(1) card is homomesic with average $n / 2$,
(2) maj is homomesic with average $n(n+1) / 2$.

Theorem (Hopkins-J.)
These homomesies lift to the piecewise-linear and birational realms.

More refined homomesies

Theorem
For each $1 \leq i \leq n, \quad h_{i}:=\sum_{j=1}^{i} \mathbb{1}_{[j, i]}+\sum_{j=i}^{n} \mathbb{1}_{[i, j]}$
is 1-mesic under the action of LK on $\mathcal{A}\left(\mathrm{A}_{n}\right)$.

More refined homomesies

Theorem
For each $1 \leq i \leq n, \quad h_{i}:=\sum_{j=1}^{i} \mathbb{1}_{[j, i]}+\sum_{j=i}^{n} \mathbb{1}_{[i, j]}$
is 1-mesic under the action of LK on $\mathcal{A}\left(\mathrm{A}_{n}\right)$.

More refined homomesies

Theorem
For each $1 \leq i \leq n, \quad h_{i}:=\sum_{j=1}^{i} \mathbb{1}_{[j, i]}+\sum_{j=i}^{n} \mathbb{1}_{[i, j]}$
is 1-mesic under the action of LK on $\mathcal{A}\left(\mathrm{A}_{n}\right)$.

$$
\begin{aligned}
\operatorname{card} & =\frac{1}{2}\left(h_{1}+h_{2}+h_{3}+\cdots+h_{n}\right) \\
\operatorname{maj} & =h_{1}+2 h_{2}+3 h_{3}+\cdots+n h_{n}
\end{aligned}
$$

The h_{i} statistics are the same as those Einstein, Farber, Gunawan, J., Macauley, Propp, Rubinstein-Salzedo proved to be 1-mesic under a product of toggles on noncrossing partitions (2015).

In the combinatorial realm, these homomesies are straightforward from the antichain description of LK.

Proposition
If $A=\left\{\left[i_{1}, j_{1}\right], \ldots,\left[i_{k}, j_{k}\right]\right\}$ is an antichain of A_{n}, then $\operatorname{LK}(A)=\left\{\left[i_{1}^{\prime}, j_{1}^{\prime}\right], \ldots,\left[i_{n-k}^{\prime}, j_{n-k}^{\prime}\right]\right\}$ where

$$
\begin{aligned}
\left\{i_{1}^{\prime}, \ldots, i_{n-k}^{\prime}\right\}: & =[n] \backslash\left\{j_{1}, \ldots, j_{k}\right\}, \\
\left\{j_{1}^{\prime}, \ldots, j_{n-k}^{\prime}\right\}: & =[n] \backslash\left\{i_{1}, \ldots, i_{k}\right\} .
\end{aligned}
$$

In the birational realm, the proof of these homomesies uses an embedding (due to Grinberg and Roby) of the labelings of A_{n} into the product $[n+1] \times[n+1]$ of two chains.

Rowvacuation homomesies yield rowmotion homomesies

Theorem (Hopkins-J.)
Consider a statistic f that is a linear combination of poset-element indicator functions.

1. If f is homomesic under the action of antichain rowvacuation Rvac $_{\mathcal{A}}$, then f is also homomesic under the action of antichain rowmotion Row ${ }_{\mathcal{A}}$.
2 If f is homomesic under the action of order ideal rowvacuation $\operatorname{Rvac}_{\mathcal{J}}$, then f is also homomesic under the action of order ideal rowmotion $\operatorname{Row}_{\mathcal{J}}$.

The proof is along the same lines as Einstein and Propp's recombination argument.

Rowvacuation homomesies yield rowmotion homomesies

Theorem (Armstrong-Stump-Thomas 2011) Cardinality is homomesic under $\operatorname{Row}_{\mathcal{A}}$ on $\mathcal{A}\left(\mathrm{A}_{n}\right)$.

Rowvacuation homomesies yield rowmotion homomesies

Theorem (Armstrong-Stump-Thomas 2011) Cardinality is homomesic under $\operatorname{Row}_{\mathcal{A}}$ on $\mathcal{A}\left(\mathrm{A}_{n}\right)$.

Theorem (Propp 2019)
Major index is homomesic under Row $_{\mathcal{A}}$ on $\mathcal{A}\left(\mathrm{A}_{n}\right)$.

Rowvacuation homomesies yield rowmotion homomesies

Theorem (Armstrong-Stump-Thomas 2011)
Cardinality is homomesic under $\operatorname{Row}_{\mathcal{A}}$ on $\mathcal{A}\left(\mathrm{A}_{n}\right)$.
Theorem (Propp 2019)
Major index is homomesic under Row $_{\mathcal{A}}$ on $\mathcal{A}\left(\mathrm{A}_{n}\right)$.
Theorem (Hopkins-J.)
$h_{i}:=\sum_{j=1}^{i} \mathbb{1}_{[j, i]}+\sum_{j=i}^{n} \mathbb{1}_{[i, j]}$ is homomesic under Row $\mathcal{A}_{\mathcal{A}}$ on $\mathcal{A}\left(\mathrm{A}_{n}\right)$.
h_{i} is homomesic on rowmotion orbits

$$
h_{2}=\mathbb{1}_{[1,2]}+2 \cdot \mathbb{1}_{[2,2]}+\mathbb{1}_{[2,3]}
$$

Unsolved problem: birational lifting of the OY-invariant?

Oksana Yakimova discovered a statistic $y: \mathcal{A}\left(\mathrm{A}_{n}\right) \rightarrow \mathbb{Z}_{\geq 0}$ discussed in Panyushev's 2009 paper.

Definition
The OY-invariant $y: \mathcal{A}\left(\mathrm{A}_{n}\right) \rightarrow \mathbb{Z}_{\geq 0}$ is

$$
y(A):=\sum_{e \in A}(|\nabla(F \backslash\{e\})|-|A|+1)
$$

where F is the order filter generated by A and $\nabla(F \backslash\{e\})$ is the set of minimal elements of $F \backslash\{e\}$.

Theorem (Panyushev-Yakimova 2009)
For any $A \in \mathcal{A}\left(\mathrm{~A}_{n}\right)$, we have $y\left(\operatorname{Row}_{\mathcal{A}}(A)\right)=y(A)=y(\operatorname{LK}(A))$.

Unsolved problem: birational lifting of the OY-invariant?
Definition
The OY-invariant $y: \mathcal{A}\left(\mathrm{A}_{n}\right) \rightarrow \mathbb{Z}_{\geq 0}$ is

$$
y(A):=\sum_{e \in A}(|\nabla(F \backslash\{e\})|-|A|+1)
$$

where F is the order filter generated by A and $\nabla(F \backslash\{e\})$ is the set of minimal elements of $F \backslash\{e\}$.

Example

Unsolved problem: birational lifting of the OY-invariant?
Definition
The OY-invariant $y: \mathcal{A}\left(\mathrm{A}_{n}\right) \rightarrow \mathbb{Z}_{\geq 0}$ is

$$
y(A):=\sum_{e \in A}(|\nabla(F \backslash\{e\})|-|A|+1)
$$

where F is the order filter generated by A and $\nabla(F \backslash\{e\})$ is the set of minimal elements of $F \backslash\{e\}$.

Example

$$
y(A)=?+?
$$

Unsolved problem: birational lifting of the OY-invariant?
Definition
The OY-invariant $y: \mathcal{A}\left(\mathrm{A}_{n}\right) \rightarrow \mathbb{Z}_{\geq 0}$ is

$$
y(A):=\sum_{e \in A}(|\nabla(F \backslash\{e\})|-|A|+1)
$$

where F is the order filter generated by A and $\nabla(F \backslash\{e\})$ is the set of minimal elements of $F \backslash\{e\}$.

Example

$$
y(A)=?+?
$$

Unsolved problem: birational lifting of the OY-invariant?
Definition
The OY-invariant $y: \mathcal{A}\left(\mathrm{A}_{n}\right) \rightarrow \mathbb{Z}_{\geq 0}$ is

$$
y(A):=\sum_{e \in A}(|\nabla(F \backslash\{e\})|-|A|+1)
$$

where F is the order filter generated by A and $\nabla(F \backslash\{e\})$ is the set of minimal elements of $F \backslash\{e\}$.

Example

$$
y(A)=?+?
$$

Unsolved problem: birational lifting of the OY-invariant?
Definition
The OY-invariant $y: \mathcal{A}\left(\mathrm{A}_{n}\right) \rightarrow \mathbb{Z}_{\geq 0}$ is

$$
y(A):=\sum_{e \in A}(|\nabla(F \backslash\{e\})|-|A|+1)
$$

where F is the order filter generated by A and $\nabla(F \backslash\{e\})$ is the set of minimal elements of $F \backslash\{e\}$.

Example

$$
y(A)=2+?
$$

Unsolved problem: birational lifting of the OY-invariant?
Definition
The OY-invariant $y: \mathcal{A}\left(\mathrm{A}_{n}\right) \rightarrow \mathbb{Z}_{\geq 0}$ is

$$
y(A):=\sum_{e \in A}(|\nabla(F \backslash\{e\})|-|A|+1)
$$

where F is the order filter generated by A and $\nabla(F \backslash\{e\})$ is the set of minimal elements of $F \backslash\{e\}$.

Example

$$
y(A)=2+0
$$

Unsolved problem: birational lifting of the OY-invariant?
Definition
The OY-invariant $y: \mathcal{A}\left(\mathrm{A}_{n}\right) \rightarrow \mathbb{Z}_{\geq 0}$ is

$$
y(A):=\sum_{e \in A}(|\nabla(F \backslash\{e\})|-|A|+1)
$$

where F is the order filter generated by A and $\nabla(F \backslash\{e\})$ is the set of minimal elements of $F \backslash\{e\}$.

Example

$$
y(A)=2+0=2
$$

Unsolved problem: birational lifting of the OY-invariant?

$y(A)=1$	$y(A)=1$	$y(A)=1$
y	$y(A)=1$	
$y(A)=0$	$y(A)=0$	y

Unsolved problem: birational lifting of the OY-invariant?

Question: How could we lift the OY-invariant to the higher realms if there is no "antichain" to sum over?

$$
y(A):=\sum_{e \in A}(|\nabla(F \backslash\{e\})|-|A|+1)
$$

Unsolved problem: birational lifting of the OY-invariant?

Question: How could we lift the OY-invariant to the higher realms if there is no "antichain" to sum over?

$$
\begin{gathered}
y(A):=\sum_{e \in A}(|\nabla(F \backslash\{e\})|-|A|+1) \\
y(A)=\sum_{[i, j] \in A_{n}} y_{[i, j]}(A)
\end{gathered}
$$

where

$$
y_{[i, j]}(A):= \begin{cases}|\nabla(F \backslash\{e\})|-|A|+1 & \text { if }[i, j] \in A, \\ 0 & \text { if }[i, j] \notin A .\end{cases}
$$

Unsolved problem: birational lifting of the OY-invariant?

Question: How could we lift the OY-invariant to the higher realms if there is no "antichain" to sum over?

$$
\begin{gathered}
y(A):=\sum_{e \in A}(|\nabla(F \backslash\{e\})|-|A|+1) \\
y(A)=\sum_{[i, j] \in A_{n}} y_{[i, j]}(A)
\end{gathered}
$$

where

$$
y_{[i, j]}(A):= \begin{cases}|\nabla(F \backslash\{e\})|-|A|+1 & \text { if }[i, j] \in A, \\ 0 & \text { if }[i, j] \notin A .\end{cases}
$$

Find an equivalent description of $y_{[i, j]}$ that doesn't ask if $[i, j]$ is in the antichain.

Unsolved problem: birational lifting of the OY-invariant?
We have found a way to lift y to the birational realm! But we do not know how to prove y^{B} is invariant under BAR or $L K^{B}$.

Example (A_{3})

Thank You!

Fixed points
Q: How many antichains $A \in \mathcal{A}\left(\mathrm{~A}_{n}\right)$ satisfy $A=\operatorname{LK}(A)$?

Fixed points

Q : How many antichains $A \in \mathcal{A}\left(\mathrm{~A}_{n}\right)$ satisfy $A=\operatorname{LK}(A)$?
It is easy to see that these are exactly the antichains $\left\{\left[i_{1}, j_{1}\right],\left[i_{2}, j_{2}\right], \cdots,\left[i_{n / 2}, j_{n / 2}\right]\right\}$ in which each of $1,2, \ldots, n$ appear exactly once among $i_{1}, i_{2}, \cdots, i_{n / 2}, j_{1}, j_{2}, \cdots, j_{n / 2}$.

Example (in A_{8})
$A=\{[1,2],[3,5],[4,7],[6,8]\}$

Fixed points
Q: How many antichains $A \in \mathcal{A}\left(\mathrm{~A}_{n}\right)$ satisfy $A=\operatorname{LK}(A)$?
It is easy to see that these are exactly the antichains $\left\{\left[i_{1}, j_{1}\right],\left[i_{2}, j_{2}\right], \cdots,\left[i_{n / 2}, j_{n / 2}\right]\right\}$ in which each of $1,2, \ldots, n$ appear exactly once among $i_{1}, i_{2}, \cdots, i_{n / 2}, j_{1}, j_{2}, \cdots, j_{n / 2}$.

Example (in A_{8})
$A=\{[1,2],[3,5],[4,7],[6,8]\}$
These correspond to standard Young tableaux of the two-rowed rectangle with $n / 2$ columns.

$$
\begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline \\
\hline 2 & 5 & 7 \\
\hline
\end{array}
$$

$$
\#\left\{A \in \mathcal{A}\left(\mathrm{~A}_{n}\right): A=\operatorname{LK}(A)\right\}= \begin{cases}0 & \text { if } n \text { is odd } \\ \operatorname{Cat}\left(\frac{n}{2}\right) & \text { if } n \text { is even. }\end{cases}
$$

Fixed points

 Q: How many antichains $A \in \mathcal{A}\left(\mathrm{~A}_{n}\right)$ are fixed under $\mathrm{LK} \circ \operatorname{Row}_{\mathcal{A}}$? Q: How many antichains $A \in \mathcal{A}\left(\mathrm{~A}_{n}\right)$ are fixed under $\mathrm{LK} \circ$ Row $_{\mathcal{A}}$?\qquad

CO都
er
\qquad
\square
\square

-

-

-

 \qquad
\qquad
\qquad

Fixed points

Q: How many antichains $A \in \mathcal{A}\left(\mathrm{~A}_{n}\right)$ are fixed under $\mathrm{LK} \circ$ Row $_{\mathcal{A}}$? Proposition (Hopkins-J.)

$$
\#\left\{A \in \mathcal{A}\left(\mathrm{~A}_{n}\right): A=\operatorname{LK}\left(\operatorname{Row}_{\mathcal{A}}(A)\right)\right\}=\binom{n+1}{\lfloor(n+1) / 2\rfloor}
$$

Fixed points
Q: How many antichains $A \in \mathcal{A}\left(\mathrm{~A}_{n}\right)$ are fixed under $\mathrm{LK} \circ$ Row $_{\mathcal{A}}$? Proposition (Hopkins-J.)

$$
\#\left\{A \in \mathcal{A}\left(\mathrm{~A}_{n}\right): A=\operatorname{LK}\left(\operatorname{Row}_{\mathcal{A}}(A)\right)\right\}=\binom{n+1}{\lfloor(n+1) / 2\rfloor}
$$

$\binom{n+1}{\lfloor(n+1) / 2\rfloor}$ is also the number of antichains that are symmetric across the center vertical line. We showed that $\mathrm{LK}_{\mathrm{L}} \circ \mathrm{Row}_{\mathcal{A}}$ is conjugate to flip $=\operatorname{Row}_{\mathcal{A}}^{n+1}$ in the toggle group.

