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Introduction
We consider real solutions for the wave-Klein-Gordon system
(02 — A )u(t,z) = Ny (v,0v) + Na(u, dv)
{ (02 — A, + Dv(t,x) = Ny (v,0u) + Na(u, Ou)
with initial conditions
{ (u,v)(0,2) = (uo(x), vo(x))
(Oru, Op) (0, 2) = (ur(x),v1(x)).

(t,x) € [0, +o0) xR,

Here the nonlinearities Nq (-, ) and Na(+,-) are combinations of the
classical quadratic null forms

Qij (9, V) = 0;005 — 0;0:1),
Qoi(9,7) = 0190 — 041 0; 9,
Qo(p,v) = 01p0ph — Vap - V.

e Physical models related to general relativity have shown the
importance of studying such systems.
e Very few results are known at present in low (2) space dimensions.
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Vector fields associated with the WKG system

Translation in the coords direct.: O, 01, 0o
Rotations in x: Gl = 2850k = 28505
Hyperbolic rotations: Qo; = t0; + x;0;
Scaling: S =t0; + 10,

Herelgi;éjSZ,r:‘x]and@:%.vx

e We denote Z := {Q;;,Q0;} Lorentz vector fields.

e We denote Z := {0y, 01, 02, Q2ij, Qi } the full set of vector
fields associated to the symmetries of the linear problem.

4

For a multiindex v = (a, ) we denote Z7 = 9*Z” and define the size
[l = laf + A5

Here h € N ~» balance between Lorentz v.f. and reg. derivatives
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Energy functionals and Functional Spaces

The linear system WKG has an associated conserved energy
Bltiu) = [ +u+ i 402402 do
JR

v

The system linear WKG system is a well-posed linear evolution
in the space H" with norm

1Cult], D130 = llullF + luelZa + vl + o2

where we use the following notation for the Cauchy data in
WKG system at time ¢:
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Higher order functional spaces

The higher order energy spaces for the linear WKG system are the
spaces H"™ endowed with the norm

(o, w1, vo,v1)[3gn =D 1105 (w0, w1, v0,v1) |30,

la<n

where n > 1. We use the energy spaces for the nonlinear system!

Higher order counterparts of the energy functionals:
a) the energy E"(t,u,v) measures the regularity in the function
space H" of the solutions that carry n derivatives,

E"(t,u,0) = Y E(t;0%u,0"v)
jal<n

b) the energy E™(t,u,v) which in addition to regular derivatives,
keeps track of Z vector fields applied to the solution,

EM(t u,v) = Z E (t; Z27u, Z7v)

[v|<n
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Scaling, criticality and local well-posedness

We define the notion of criticality by means of the scaling
symmetry matched at the highest order:

u(t, z) = X tu(\t, \z)
v(t,z) = A lu(Mt, Ax).

This, leads to the critical Sobolev space H*¢ with s, = d/2 + 1.

Hyperbolic quasilinear system

Thus, it is not too difficult to show that in two dimensions
WKG is locally well-posed in H™ for n > 4 (or H3*€ if we do
not restrict ourselves to integers). Lower regularity than that
would require different set of tools.
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Control norms

To describe the lifespan of the solutions we define the control norms
e The following is a scale invariant quantity:
A=) |IDgullz= + Y IDgvllree + llurllzee + [logl| e
|a]=1 |a|=1

This needs to remain small throughout in order to guarantee the
hyperbolicity of the system.

e The following norm (and in particular its smallness) assures the

propagation of higher regularity.

B:= Y |Dgullz=+ Y IIDvllze + lfuellze + fvsel =

lor]<2 lor| <2
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Main question:

Study the long time well-posedness problem for the nonlinear
WKG system for small and localized initial data.
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2d wave-Klein-Gordon

Theorem

Let h > 7. Assume that the initial data (u[0],v[0]) for WKG equation
satisfies

1[0, v[0]) [l 220 + [|28% (u[0], v[0]) 3¢ + [l282 (w[0], v[0]) [l < e<<1.
Then the WKG' equation is almost globally well-posed in H?", with L?
bounds as follows:
and pointwise bounds

0] Se(t+r)7t,  §=03,
ul Set+r) 2 t—r)"2, =13
109 Zu| S e, j=0,2.

e Forthcoming global result, under the same assumptions.

e We used only minimal 22 type decay, but we did not
attempt to fully optimize the choice of h
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What is known about the well-posedness for WKG

3D WKG results:

Gorgiev '90 , Katayama ’12.

Related models:

KG systems - Delort '04, ’09, '12,’15, ’16, Einstein’s field equations,
Dirac-Klein-Gordon system, etc: LeFloch , Ma 14, 16, Wang ’16,
massive Dirac-Klein-Gordon system: Bejenaru-Herr(s),Candy-Herr(1).

Global existence of solutions to WKG systems in 3D:

Quasilinear quadratic nonlinearities satisfying suitable conditions,
initial data are small, smooth and compactly support — method by
Tataru ’01 and then used by LeFloch under name: hyperboloidal
foliation method; Ionescu-Pausader’17

2D WKG results:

Global existence of small amplitude solutions in lower space
dimensions — Ma: 17, 19. (semilinear, compactly supported data);
Stingo ’18 (only Qo null forms)
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The scaling vector field S

e The main difficulty on this type of system, compared with
the pure wave or Klein-Gordon systems, is the lack of
symmetry. The conformal Killing vector filed S = x,0, of
the linear wave operator is no longer conformal Killing
with respect to the linear Klein-Gordon operator.

e This prevents any possibility of naive combination of the
methods for wave equations with those for Klein-Gordon
equations.
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Quadratic resonant interactions
Wave equation: dispersion relation

ww (€) = £[¢]

Klein-Gordon equation: dispersion relation

w)ra =EVIE* -1

o Two wave resonant interactions for the wave eq alone occur
only in between parallel waves (null condition helps).

e Two wave resonant interactions for the KG equation alone
or mixed wave - KG never occur.

e However, in the last two cases there is a near resonance for
almost parallel waves in the high frequency limit, which
becomes stronger in a quasilinear setting.
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Quadratic resonances and normal forms
Suppose that Ny and N3 are of €);; type. Then u x v
interactions do not cancel at second order along paralel
directions: they lead to an unbounded bilinear symbol in the
normal form transformation

_ 206 m &N
m:8) = EPme — (6, m)2 T P

— If £ is at frequency ~ 1 and 7 is very large then the symbol
of C(u,v) can become unbounded as the angle in between & and
7 (let’s call it 0) becomes very small:

This says that the normal form introduces a derivative every
time is used. Hence a normal form approach cannot be used!
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Sketch of the proof

Standard approach has two main steps
e (i) vector field fixed time energy estimates,

e (ii) fixed time pointwise bounds derived from energy
estimates (Klainerman-Sobolev inequalities).

e Energy estimates are space-time L? local energy bounds, localized
to dyadic regions C%S, where T' stands for dyadic time, S for the
dyadic distance to the cone, and =+ for the interior/exterior cone.

e Similarly, pointwise bounds are akin to Sobolev embeddings or
interpolation inequalities in the same type of regions.

Crg={(t,z) : S<t—r<28,T<t<2T}, wherel< ST
Crog:={(t,x) : S<r—t<25, T<t<2T}, where1<S ST
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Figure: 1D vertical section of space-time regions C%S
— Metcalfe - Tataru - Tohaneanu

Exterior region: C%*':={T <t <2T, r>> T}, treated directly J
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Prerequisites for the proof

These have to do with the local in time theory for our evolution:

e Local well-posedness in H* (also in H" for n > 4).

¢ Continuation of H* solutions for as long as §%(u,v) remain bdd+
propagation of higher regularity, i.e. bounds in H" Vn.

e Uniform finite speed of propagation as long as |Vv| stays
pointwise small.

Our proof is set up as a bootstrap argument, where the bootstrap
assumption is on pointwise decay bounds for the solution:

|Zu| < Celt — )2,
|0u| < Celt + 1)~ (t — r)~3+5,
|Z09u| < Ce, j=1,2,

07| < Celt+r)" 3t — )"0, j=T.2,
|09v| < Ce(t+r)~t, j=T1,3.
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Part 1 of the proof: Energy Estimates

Energy estimates

Consider a solution (u,v) to WKG in a time interval [0, Tp],
which is a-priori assumed to satisfy the pointwise bootstrap
assumptions.

Then (u,v) satisfies the energy estimates in [0, Tp]:

ERM (4, 0)(t) < (1)C ERR (4, 0)(0),  t € [0, Tp].

e Cisa large constant -depends on C' in our bootstrap
assumption, C' ~ C. However, the implicit constant in
energy estimates cannot depend on C.

e The time Ty is arbitrary!
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Part 2 of the proof: Uniform Bounds

Pointwise bounds

Assume (u,v) a sol to WKG in a time interval [0, Tp], such that
the energy bounds hold

EPM(u,v)(t) S ),  tel0,Ty.

Then we show (u,v) satisfies the pointwise bounds

1Zul 1o < e(t)Ce,
|Ou| < e()Ce(t + )72 (t — 1) 73,
1ZFu| e < ey,  j=T,2,
ul < et + )2t —r)3R, j=23,

|#70] < )t +1)7Y, j=0,3.

Lifespan Tj is again arbitrary
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Conclusion of the proof

In both steps, the time Tj is arbitrary. However, in order to close the
bootstrap argument one needs to recover the bootstrapped
assumptions/ bounds from what we need to show. This requires

TC < C = T < ek,

i.e. our almost global result.

e Previous work in higher D is done in higher regularity setting
(large number of v.f) both in the energy estimates and in the
pointwise bounds, and the argument works as above.

e Both steps require only fixed time bounds, and the pointwise
bounds are akin to an improved form of the Sobolev embeddings.

This approach fails in 2 + 1 dimensions because there is less dispersive
decay, and the problem is strongly quasilinear! Thus, analysis must
be adapted to the light cone geometry!

2d wave-Klein-Gordon
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Energy estimates

(a) for the linearized equation

(b) for the solution and its higher derivatives

(c) for the vector fields applied to the solution

e The main work goes into the energy estimates for the
linearized system.

e Equations for higher derivatives 9“(u,v) and vector fields
ZB (u,v) are interpreted as the linearized equations with
source terms.

e Source terms are estimated perturbatively using the null
structure and interpolation inequalities.
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Linearized WKG

(U, V) = linearized variables:

(02 — A,)U(t,x) =Ny (v,0V) + N1 (V, 0v) + Na(u, V) + No(U, dv)+F

(02 — Ay + 1)V (t,2) =Ny (v,0U) + N1 (V,0u) + Na(u, 0U) + No(U, du)+G

e Fixed time energy estimate for the homogeneous linearized equations
E(U,V)(t) StEWU,V)(0), tel0,T)]

e Replace linear energy E(U, V) with E94es(U,V): better adapted to lin. pb.

B1esi([ V) .= E (U, V) +/ B1(0v;0U,0V) + By (0u; 0U,0V') dx
R2

and E9s (U, V() < € B9 (U, V)(0), ¢ e [0,T]
e Time dyadic version

sup E1(U V) (t) S (14 eC)E™*H (U, V)(T).
te[T,2T]
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Space-time norms
Additional space-time bound

1 ) 2 . 2 )
sup / { (Vj + &V}) + (Uj + &Ut) + VQ}dxdt,S sup BTN (U,V)(1).
1<5<T) Crs S T T te[T.2T]

e Helps to bound the time derivative of the energy

%Equ““’(a V)= / N(0%u, U, V) + N(9%v,0U, V) da

e Proved using Alinhac’s ghost weight method with weights adapted
to each Crg

Final** space-time norm:

10, V)13pi= supEq“asi(U,V)(t)+sup5*1(||T(U,V)||2ch +IVIZe, )
te(T,2T] 1<S TS TS

**Uniform energy bounds on hyperboloids are also included in X]t, but omitted for simplicity.
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Energy bounds for the inhomogeneous problem

(i) Uniform in time bound

sup BT, V(1) S (14 €C)B™ (U, V)(T) + [|(F, G)llyr
te[T,2T]

(ii) Space-time bound
I, V)llxr < E®{(U,V)(T) + ||(F, G)|lyr-

where the norm Y7 for the source term is given by

1
I(F,G)llyr = sup TH|(F.G)ll12(ce).
1<8<T
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Klainerman-Sobolev inequalities

Theorem

Let h > 7. Assume that the functions (u,v) in Ci satisfy the bounds

127 (u,v)llxr <1, |yl < 2h,

as well as

Then they also satisfy the pointwise bounds

Oul S ()2t — )73,

u) S @) "F (@t —r)"E 0, j=23
|Z&7u| < (t—r)7° j=1,2,
|90 S ()7, 7=0,3.

1270w, @+ Do)llyr <1, [7[<h

Mihaela Ifrim
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Main elements of the proof

e Separate proofs in each of the dyadic regions C;ES.

e Separate arguments for the wave and KG equations

e Use hyperbolic coordinates to represent C%ES as a unit size
region

¢ Differentiate between interior and exterior regions relative
to the cone

e Vector fields give bounds for derivatives along hyperboloids

e Use the equations to capture information about the scaling
derivative

¢ Use Gagliando-Niremberg-Sobolev inequalities or frequency
localized Bernstein’s inequalities on C’%S.

e (optional, more efficient) Use L? bounds on hyperboloids in
the case of Cf.g (inside the cone)
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Pointwise bounds for KG inside the cone
Spherical hyperbolic coordinates in H? x R:
t = e cosh(9)
x1 = €7 sinh(¢) sin(0)
29 = €7 sinh(¢) cos()
The KG equation in the new coordinates:
72 477 GinnZg " sinhg

L? bounds for the KG sol and vf(KG sol) on hyperboloids H intersected with
unit size regions C’;IT:

IZ%ll 22 iy + 12Tl 2 i1y ST la| < 2h,
129Vl L2 () S STETE, la| < 2h.

Here Z includes 0y, 0y, i.e. a unit frame on H. Now use Bernstein/Sobolev and
interpolation inequalities on H N C%'S.
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Pointwise bounds for Wave equation outside the cone
Spherical hyperbolic coordinates in H2,, x R:
t = ¢7 sinh(¢)
x1 = €7 cosh(¢) sin()
x9 = €7 cosh(¢) cos(6),
Wave equation in the new coordinates:
_ 1 sinh(¢)
—O=e2 (07 - 05+ ——5—0; — s + 9y | -
< 77?7 cosh? (¢) o cosh(¢) ¢
L? bounds for the Wave soln and vf(Wave soln) in C74 regions:
12°Zullz S1, o[ <2h
1299, — B5)ulls S S3TH,  Jal <2h
1205 = 39) (D5 + 05 + Vull 2 S S2T72, Ja| < h.

Here Z includes 0y, 0p. Now use Bernstein/Sobolev and interpolation
inequalities on Cg, first two bounds for Zu and last two for (0, — 0y)u.
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Thank you.
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