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Recovering a Lorentzian metric from
particle collisions



Active measurement inverse problem

Question: Can you determine the shape of regions of spacetime
from sending signals and measuring the resulting signals from
interactions in the unknown region?

Known region

Path of -
observer




Known and unknown domains V and W lie in a time-oriented
Lorentzian spacetime (M, g) with dim(M) > 3.

m Lorentzian:
m g has signature (— ++---+).
m e.g. 4D Minkowski: g = —dt? + dx? + dy? + dz°.
m Time oriented: tangent vectors X # 0 to M classified
causally:

m Timelike: g(X,X) <0

X)
m Lightlike: g(X,X) =
m Spatial: g(X, X) > 0



Relativistic setting

m Curves u : [a, b] — M classified causally:
m Timelike: g(/(t), 1(t)) <O
m Lightlike: g(p(t),a(t)) =0
m Spatial: g(n(t), 1(t)) >0

Timelike

Spacelike




m (M, g) is time oriented: classify time/lightlike
vectors/curves/regions as future (+) or past (—).

m Causal future/past of x € M: JE(x)={y e M :
3 lightlike or timelike geodesic from x to y}.

m Chronological future of x € M:
I£(x) = {y € M : 3 timelike geodesic from x to y}.

m Future/past light cone of x € M: L¥(x) = J(x) \ IT(x).




Global hyperbolicity:

m No closed causal paths in (M, g).
mx,yeM, x<y, JT(x)NJ (y) is compact.
m Implies M =R x N, ({t} x N, gl¢}xn) Riemannian.



Goal: Interactions occur in (M, g). Send and measure signals
on (V,g|y). Use this to recover g on unknown domain
W c M.

Known region

Path of .
observer




Results for wave signals



Wave signals

m Belishev-Kurylev (1992): N has boundary, gl xn
independent of t, knowledge of Dirichlet-to-Neumann map for
Ogu = 0 determines g. Tataru ( 1995): extended to g
analytically depends on t.

m Kurylev-Lassas-Uhlmann (2017): If dim(M) =4, V.C M a
known open neighbourhood of a timelike path
w:[=1,1] — M, then the data

(V.glv)and Ly : f = uly

where Ogu + au? = f, ult<o =0, f € C{(V), HfHCg(V) <,
determines W = [~ (u(1)) N /T (u(—1)) and g|w up to
conformal factor.



Kurylev-Lassas-Uhlmann (2017)

m The result of K-L-U used the nonlinearity au? as a tool with
which to gain information.

m The nonlinearity dictates the interaction of the waves.

m Used microlocal techniques to show the interaction of 4 waves
produced a point source spherical wave.

m Showed that you can determine the earliest time which you

observe such a wave in V.
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Extended work

Using similar techniques:
m Wang-Zhou (2016), Lassas-Uhlmann-Wang (2016): Classes of
semilinear wave equations.

m Lassas-Uhlmann-Wang (2017). Einstein-Maxwell equations.

m Kurylev-Lassas-Oksanen-Uhlmann (2018). Linear wave
coupled with Einstein equation.
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Result for particle signals




Active measurement inverse problem

Question: Can we determine a regions of spacetime from sending
sources of particles and measuring the emitted light from the
particle collisions?

Known region

Scattered
particles

Path of
observer

_—Y

Particle sources
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Particle kinematics

m In the absence of forces, particles should travel along
timelike/lightlike geodesics.

m Phase space: for U C M,
Pm(U) :={(x,p) € TU : g(p,p) = —m?, p future-directed}

PU) = | Pm(U).

m>0

m Particles: u: P(U) — (0,00). View as average ensemble of
possible particle states.

Liouville-Vlasov equation:
Xu(x,p) =0 on P(U).

where X = Geodesic vector field.
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Kinematics in the presence of collisions and sources

Relativistic Boltzmann equation:
Xu(x, p) = Alu, u](x, p) + f(x,p) on P(U)
Collision operator:
A1) = [ Ao g, o v, P9V (6 )

/ (x,p,q,P",q")u(x, p)v(x, p)dV(p',q")

m A: TM* — [0,00) is the shock cross-section.

m Look at collisions conserving momentum:
Tp={(x,p,q,0,q) € TM* : p+q=p'+4'}.
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Relativistic Boltzmann Equation

m Gain term:

Againlu, v](x, p) :/ A(x,p,q,p',q" Yu(x, p')v(x, p")dV (P, q').

Top

m Loss term:

Lol ) = (b ) /Z Alx,p, 9,0, 4 W(x, B)AV(S', q').

Xu(x,p) = Alu, u](x, p) + f(x, p) describes behaviour of

plasmas.

particles such as electrons, protons, photons, ... .

m Bose-Einstein condensates.

quasiparticles.

m ect.
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Our setting

m Data: send and measure particles from a known open set
V M.

m Goal: Use the information to determine unknown region
W C M and g|w.

m Consider
Xu(x, p) = Alu, u](x, p) + f(x,p) on P((0,00) x N)
u(x,p) =0 for x € (—00,0) x N.

m Data encoded in the source-to-solution map
dy : CX(JT(V)) = D(LT(V)), f— uly,

where u(x, p) =0 for x € [0,00) x N, and XYu = Afu,u] + f
on P(0,00) x N).
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Relativistic Boltzmann Equation

Local existence of solutions to Boltzmann problem — ¢y

well-defined.

m Existence results for Boltzmann Cauchy problem are known
for certain admissible kernels of A.

m No clear idea of what is a “good” collision operator.
m K. Bichtler (1967): for globally hyperbolic spacetimes and

certain bounds on A(x, p, g, p’, ') and exponentially decaying
data.
m For [[Afu, v]||g < [ul[s]lv]|5:

m D. Bancel (1973). Globally hyperbolic spacetimes.
m H Andréasson (2005).
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Admissible collision kernels

We say A is an admissible collision kernel if

Aec C™® (U(x,p) Z(x,p))-
H There is a uniform C > 0 such that

/z A(x,p,q.p',q")dV(x,p;q,p'.q") < C,

x,p

for every (x, p) € P(M).

A >0 and A(x,0,-,-,-) =0.

A supp(x — A(x,-,-,-,-)) is compact.

H d lightlike and future-directed p € T, M with
Ax,p,p'+q —p,p,q) >0, p,q € T.M with ||p'||g >0
and ||/l > 0.
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Local existence for small data

Proposition (B, Kujanpaa, Lassas, Liimatainen)
m K be a compact set in P((0,00) x N).

mA: U(X’p) Y (x,p) = R be an admissible kernel.

Then, there is an open set Q C CL(P) with 0 € Q, such that if

feq,
Xu(x,p) — Alu, u](x,p) = f(x,p) on P((0,00) x N)

u(x,p) =0 on P((—00,0] x N)
has a unique solution u € C(P) with HUHCO < CKHfHCO for

some constant Cyx > 0.
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Theorem setup

(M =R x N,g) is a geodesically complete, globally
hyperbolic, C*°-smooth, Lorentzian manifold.

A n:[-1,1] — (0,00) x N given smooth timelike curve.

Set xT 1= pu(£1).

B There is an open neighbourhood V C (0,00) x N of u such
that (V, g|v) is known.

H ®v : f — u|y the source to solution operator for the
Boltzmann equation, defined for f a neighbourhood of
0 CX(JT(V)).
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Theorem (B, Kujanpaa, Lassas, Liimatainen)

For a given admissible scattering kernel A, the data (V,g|v) and

the map ®\ determines the metric g up to conformal class on the
region W := |~ (xT) N IH(x7).
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Main result proof sketch




Conormal distributions review

(Hormander 18.2.8). Let K C TM be a codimension k

submanifold. We say that u € D'(TM, Q%) is a conormal

distribution to K of order m € R, denoted /™(K) if locally for
m y € R2"2 written y = (y/,y”), dual variable £ = (¢',¢"),
m K={y =0},

we have

m u(x) = fpe e Da(y”, &) de,

with symbol o(u) 1= a € S™T"F ~5 (R2+2-k x RK).
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Conormal distributions

m If u € I™(K), then o(u) € D'(N*K,Qz), where
N*K :={(y,6) € T*TM : y € K, (£,n) =0, Vn € T, K}

is the conormal bundle of K.
m In particular, WF(u) C N*K.
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Proof sketch

mletwpe W:=I1T(xT)n/I(x7).
m Choose X € V.
m Let v be the geodesic from X to wy.

m We construct submanifolds My = {(%,%(0))}, M» C P(V)
with flowouts

/\j = {(X7 P) €TM : (X7 P) = ;Y(y,q)(s)v sc R, (Ya q) € Mj} cCT™m

and projections K; C M satisfying
| /\1 N /\2 = @
| K1 N K2 = (Z)

m Construct sources f;, € I(N*M;), j = 1,2 which behave like
delta distributions supported on M; as n — 0.
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Proof sketch

m Consider the interaction
Xy ey = Alley er, Ueye,] + Fr€1 + €2

m We write ue, ., == 0+ vier + voe2 + vzerep + R(e1, €2), where
Xvi =1, Xvz=Alvi,vs]+ Alvz, v1].

m We show that ® determines the source-to-solution map ®3L
for the problem Xv3 = A[v1, vo] + A[va, v1]:

&' (cfy; 1) — & (0;
O"(0: i, ) = lim (R 1) = @0 1)

e—0 €

= »°1(0).
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Proof sketch

m Consider the light-like signals received in V.

m Analyze the wavefront set of

Vs = 7|]i_r>n0/'\,’_1 (A[X 1y, X o, + A[X oy, XA,

m We show the projection of WF(v3) = UE:O Tw,M for points
wp € W.

m In particular, we determine the first observation of light from
wp to X.

m Kurylev-Lassas-Uhlmann (2017): This determines (W, g|w)
up to conformal factor.
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Summary




m Question: Can you determine regions of spacetime from
sending particle signals and measuring the resulting light
signals from interactions in the unknown region?

m Yes!

m Showed you can recover the structure of a causal diamond W
from knowledge of the structure near the observer and the
source-to-solution map for particle kinematics.

m Key: Nonlinear collision operator was the crucial element
used to captured information about local structure of W.
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Thanks!



Image Citations

m Brain scan: Wikimedia Commons/Sean Novak. (https://en.wikipedia.
org/wiki/Magnetic_resonance_imaging_of_the_brain)

m Seismic: Grace Elton.
(https://www.thinglink.com/scene/727582035165577217)

m VLT: ESO/A. Ghizzi Panizza (www.albertoghizzipanizza.com)

m Guide laser: ESO/G. Hiidepohl

m NASA / WMAP Science Team (
http://map.gsfc.nasa.gov/media/121238/ilc_9yr_mol1l4096.png
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