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Microlocal analysis (MA) in inverse problems
General formulation of linear inverse problem

A[f ] = d .

Some notation/terminology
The wavefront set of f will be WF (f ).
Elements of WF (f ) will be called singularities of f .
A will be a Fourier integral operator (FIO) with canonical relation
ΛA.
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Microlocal analysis (MA) in inverse problems
General formulation of linear inverse problem

A[f ] = d .

MA inversion
If we have WF (d), can we always find WF (f )?

If the answer is yes, we say A is microlocally (MA) invertible.
Microlocal invertibility corresponds with the ability to find the sharp
edges, or high frequency features, of a given image from provided
data.
MA inversion is also related to stability. As a heuristic:

MA inversion possible⇔ Problem is mildly ill-posed.
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Microlocal inversion

Microlocal kernel
If

WF (A[f ]) = ∅

then we say that f is in the microlocal kernel, or µ-kernel, of A.

If A is an FIO, then f ∈ C∞ implies that f is in the µ-kernel of A.
Because of this we understand elements of the µ-kernel only
modulo C∞, and say that the µ-kernel is trivial when it contains
only smooth functions.
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Microlocal inversion

Microlocal kernel
If

WF (A[f ]) = ∅

then we say that f is in the microlocal kernel, or µ-kernel, of A.

The operator A may have an inverse, but still have non-trivial
µ-kernel.
Existence of a non-trivial µ-kernel contradicts the existence of any
stability estimate in the form

‖f‖Hs1 ≤ C‖A[f ]‖Hs2

for any Sobolov spaces Hs1 and Hs2 . In this case I say the
problem is severely ill-posed).
Elements of the µ-kernel will often correspond with artifacts.
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MA in inverse problems reprise

Generic inverse problem

A[f ] = d .

Ideally A has elliptic symbol and ΛA is a one-to-one map (i.e. a graph).
Then we have MA inversion; the µ-kernel is trivial. However ...

Things that can go wrong...
1 There can be singularities of f that are not represented in

ΛA[f ].These singularities are simply not measured in the data, and
cannot be recovered.

2 ΛA can be many-to-one. In this case the singularities of f may be
able to cancel in A[f ] creating a non-trivial µ-kernel.

3 ΛA can be one-to-many so that a single singularity may create
additional singularities in WF (d) ...
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The Normal Operator

To analyze the continuity or stability of an operator A we often consider
the normal operator

NA = A∗A

A∗ is the adjoint; for us with respect to the L2 inner product.
ΛA∗ = Λ−1

A .

Adjoint is microlocal inversion
Because of the last point, when ΛA is one-to-one A∗ realises a
microlocal inversion, and NA is a ΨDO.

Stability estimates in inverse problems can be obtained by
constructing a paramterix for NA when it is a ΨDO.
In inverse problems A∗ is often called “back-projection”.

Now let’s look at what happens when things go wrong!
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Case 1 Example: Limited angle Radon transform.

Example: 2D Radon transform

R[f ](s, θ) =

∫
ω·x=s

f (x) dH1(x) s ∈ R, ω = (cos(θ), sin(θ)) ∈ S1

If θ is restricted to (0, π), then ΛR is one-to-one with elliptic symbol
(maybe a small problem at π ...).
The limited angle case can be modelled by introducing a cut-off
function χ in θ:

Rlim[f ](s, θ) = χ(θ)R[f ](s, θ).

Literature: This example was studied by Frikel and Quinto.
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Case 1 Example: Limited angle Radon transform.

Function f R[f ] Restrict angle to
θ ∈ [0, π/2]

Reconstruction
(FBP)

Removed data correspond with singularities in blurred sections of
dots.
Sharp cut-off introduces singularities in data, which lead to
artefacts.
Streaking can be removed if χ is smooth, but blurring of edges
cannot be fixed without other a priori information.
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Example: Weighted geodesic ray transforms

Weighted geodesic ray transform
(M,g) is an n dimensional Riemannian manifold with boundary.

ν

M

γ
ν

Unit speed γν geodesic
starting at ν.
κ ∈ C∞(SM) a weight defined
on the unit sphere bundle SM
f 7→ X [f ](ν) :=∫

f (γν(t)) κ(γν(t), γ̇ν(t)) dt .

The weighted geodesic ray transform maps functions on M, to
functions on the set of geodesics.
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Case 2 Example: Unweighted geodesic ray transform
with conjugate points
The geodesics are shown in red on the left.

This case was considered by Monard, Stefanov, and Uhlmann
(2014).
From a microlocal point of view, the transform of the left and right
give the same information ... singularities cancel out.
In this case the NX is the sum of a ΨDO and an FIO.
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Cancellation of singularities, unweighted case

K

v1p1
γ0 p2 v2

ξ1

ξ2U1 U2

p1 and p2 conjugate along geodesic tangent to v1 and v2.
Then ξ1 and ξ2 map to the same point, say ω, under ΛX .
Let X1 and X2 be microlocal representations of X in conic
neighborhoods V1 and V2 of ξ1 and ξ2 respectively.
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Cancellation of singularities, unweighted case

K

v1p1
γ0 p2 v2

ξ1

ξ2U1 U2

If WF (f ) ⊂ V1 ∪ V2 we can write

f = f1 + f2

where WF (f1) ⊂ V1 and WF (f2) ⊂ V2.
Then reconstruction of WF (f ) is equivalent to microlocally
inverting a system

X1f1 + X2f2 ≈ X f .

Roughly speaking this is one equation for two unknowns which
cannot be solved uniquely.
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Cancellation of singularities, unweighted case

K

v1p1
γ0 p2 v2

ξ1

ξ2U1 U2

Indeed, since X1 (resp. X2) is microlocally elliptic, a parametrix
X−1

1 (resp X−1
2 ) can be constructed.

Thus for example

f1 + X−1
2 X1f1 ∈ µ-kernel(X ).

Note this argument could be used in any case for which ΛA is
many-to-one with elliptic symbol, showing cancellation of
singularities can always occur in such cases.
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Cancellation of singularities, unweighted case

K

v1p1
γ0 p2 v2

ξ1

ξ2U1 U2

In the weighted case, integration along the same geodesic in the
opposite direction may give different information.
Roughly speaking, because of this we get two equations, one for
each direction, for the two unkowns f1 and f2.
Because of this MA inversion may be possible for weighted
transforms, although not when there are three points conjugate to
one another along one geodesic.
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Operators Fij

We define
F21 = X−1

2 X1, F12 = X−1
1 X2.

These are FIOs with canonical relations mapping between V1 to
V2.
With this notation we have (in the unweighted case)

f1 + F21f1, f2 + F12f2 ∈ µ-kernel(X ).

The operators

F ∗12F12, F12F ∗12, F ∗21F21, F21F ∗21

are order zero pseudodifferential operators.
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Operators Fij

Symbols, unweighted case
We have the following formulae for the principal symbols

σp (F ∗12F12) (x , ξ) = σp (F12F ∗12) (x , ξ) = |DtJ(t0)|/|DtJ(0)|,
σp (F ∗21F21) (x , ξ) = σp (F21F ∗21) (x , ξ) = |DtJ(0)|/|DtJ(t0)|.

J(t) is a Jacobi field vanishing at p1 = J(0) and p2 = J(t0), Dt is
the covariant derivative.

The relative size of the Jacobi fields is related to the relative size
of the artifact appearing in a Landweber reconstruction.
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Landweber reconstruction
Expected Landweber reconstruction
Landweber iteration

fn = fn−1 −
1
A
X ∗1

τ
(X fn−1 − d) (Landweber)

If f = f1 is only singular in V1, then we expect the Landweber iteration
will converge to[

f1 − (Id + F ∗21F21)−1f1)
]

+
[
F21(Id + F ∗21F21)−1f1

]

This is the minimal f ∈ L2 such that X f ≈ d that is orthogonal to
the µ-kernel(X ) in a certain sense.
The relative size of the derivatives of the vanishing Jacobi fields at
the two conjugate points can give more precise information on the
size of the artifact.

S. Holman (U. of Manchester) Applications of Microlocal Analysis 14 / 43



Landweber reconstruction

Expected Landweber reconstruction
Landweber iteration

fn = fn−1 −
1
A
X ∗1

τ
(X fn−1 − d) (Landweber)

If f = f1 is only singular in V1, then we expect the Landweber iteration
will converge to[

f1 − (Id + F ∗21F21)−1f1)
]

+
[
F21(Id + F ∗21F21)−1f1

]

If the size of the derivatives of the Jacobi fields is the same, then
this is

≈ 1
2

f1 +
1
2

F21f1.
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Example

Left is phantom, right is reconstruction.
The L2 size of the artifact is the same as the L2 size of the correct
reconstruction.
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Weighted Examples

This is the same metric as previous example, the difference is that
a positive attenuation is added.
Reconstruction method is the same.
The weight removes the artifacts in the reconstruction.
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Weighted Examples

In this example there is a point with two conjugate points along a
single geodesic.
The middle reconstruction is with no weight, the right is with a
weight.
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Contrast with 3D case

The 3D case is different. Recall the 2D example with three conjugate
points along a given geodesic from before.

We create a similar 3D example by rotating this metric around its axis
of symmetry.
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Constrast with 3D case
Same type problem in 3D (unweighted).

Reconstruction is stable in this case because of geodesics
passing orthogonally to the “gutter” which do not have conjugate
points.
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Case 3 Example: Compton scattering tomography

Background
Compton scattering describes an inelastic collision between a
photon and an electron:

Es =
Eλ

1 + (Eλ/E0) (1− cosω)

I Es is the energy of the scattered photon.
I Eλ is the energy of the incident photon.
I E0 is the electron rest energy.
I ω is scattering angle.

Loss of energy corresponds with scattering angle ω.
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Case 3 Example: Compton scattering tomography

Set-up for a fixed source

source

receiverωscattering
point

For fixed Es and Eλ, the measurement will be an integral of
electron density over the surface of revolution of a circular arc
connecting the source and receiver.
We consider the case when ω < π/2. Then the surface is called a
spindle torus.
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A bit of literature

There is a survey on Compton scattering tomography by Truong
and Nguyen [2012].
In two dimensions we have a transform involving integrals over
circular arcs. In this case there are analytic inversion formulae
(Palamodov [2011]).
More recently there has been quite a bit of work on “cone
transforms” of various types arising from Compton scattering.
Analytic reconstruction formulae have been found in some cases.
(e.g. see Ambartsoumian [2012,2013], Haltmeier [2014],
Kuchment and Terzioglu [2016], ...)
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Our scanning geometry

We considered a specific geometry proposed for three dimensional
Compton scattering tomography.

Source and receiver are at antipodal points on the unit sphere.
Antipodal points are freely chosen on the sphere.
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Spindle transform
Definition: Spindle transform

For 0 < ε1 < ε2 < 1, let Bε1,ε2 ⊂ R3 be defined by

Bε1,ε2 = {x ∈ R3 : ε1 < |x | < ε2}.

Then the spindle transform S : C∞0 (Bε1,ε2)→ C∞((0,1)r × S2
θ) maps f

to its integral over the spindle described by (r , θ) ∈ (0,1)r × S2
θ .

r

θ
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Results on the spindle transform

The spindle transform is not injective because spindles with axis
through the origin are invariant under reflection through the origin.
Because of this, if f ∈ C∞0 (Bε1,ε2) and

g(x) = f (−x),

then
Sf = Sg.

The spindle transform was shown to be injective restricted to a
functions supported in a half-space by Webber and Lionheart
[2018].
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Spindle torus
Implicit equation of spindle torus

(r + |θ × x |)2 + (x · θ)2 = 1 + r2.

x is a point on the spindle torus.
r is tube centre offset.
θ ∈ S2 gives the axis of rotation for the spindle.

r

θ
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Spindle transform

Spindle transform: formula
If we set

h(s, x , θ) =
4|x × θ|2

(1− |x |2)2 − s,

then the spindle transform is given by

Sf (1/s1/2, θ) =

∫
B3
ε1,ε2

δ
(

4|x×θ|2
(1−|x |2)2 − s

)
|∇xh(s, x , θ)|

f (x)dx .

From this we can see that the spindle transform is a Fourier
Integral Operator (FIO).
Microlocal analysis could proceed from this formula, but we take a
slightly different approach ...
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Transformation from spindles to cylinders

The spindle transform is related to a weighted cylinder transform.

Transformation
Set

v(x) =

(√
1 +

1
|x |2
− 1
|x |

)
· x
|x |
, αi = 2εi/(1− ε2i )

and
f̃ (x) = |det(Jv )| f (v(x))

(Jv the Jacobian of x 7→ v(x)). Then

Sf (1/s1/2, θ) =

∫
B3
α1,α2

δ
(
|x |2 − (x · θ)2 − s

)
|∇v h(s, v(x), θ)|

f̃ (x) dx := C f̃ (s, θ)
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Cylinder transform

Cylinder transform definition

C f̃ (s, θ) =

∫
B3
α1,α2

δ
(
|x |2 − (x · θ)2 − s

)
|∇v h(s, v(x), θ)|

f̃ (x) dx

s

θ

1/2

Note that C f̃ (s, θ) is a weighted integral of f̃ over the cylinder with
axis through the origin given by θ, and radius s1/2.
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Cylinder transform

Theorem: Cylinder transform as an FIO
The cylinder transform C is a Fourier integral operator order −1 with
canonical relation

ΛC =
{(

(s, α, β), (σ, 2σ(x · θα)(x · θ),2σ(x · θβ)(x · θ)); x ,

2σ(x − (x · θ)θ)
)

: x ∈ B3
α1,α2

, s ∈ (0,∞), σ ∈ R\0, θ ∈ S2,

|x |2 − (x · θ)2 − s = 0
}
,

where (α, β) ∈ R2 provide a local parameterization of θ ∈ S2, θα = ∂αθ
and θβ = ∂βθ.

Note that C suffers from the same problem with symmetry as S,
and CC is two-to-one at most points because of this.
Note there is also an issue at (x , ξ = 2σx) when x · θ = 0. At such
points CC is one-to-many.
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A return to general theory: The Normal Operator

Recall the normal operator

NC = C∗C.

Theorem: NC as a paired Lagrangian operator
The left and right projections of ΛC have blowdown singularities of
order 1 along a codimension 1 submanifold Σ.
We have C∗C ∈ I−2,0(∆,Λ) + I−2,0(∆̃,Λ).
∆ is the diagonal in T ∗B3

α1,α2
× T ∗B3

α1,α2

∆̃ = {(−x ,−ξ; x , ξ) : (x , ξ) ∈ T ∗B3
α1,α2
}

Λ is the flowout of πR(Σ).
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The Flowout

The singular manifold Σ ⊂ ΛC is

Σ = {x · θ = 0} ∩ ΛC .

The flowout Λ is

Λ = {(x , ξ;O(x , ξ)) : x ∈ B3
α1,α2

,

ξ ∈ R3 \ 0, x × ξ = 0, O ∈ ∆(SO3 × SO3)}.

Consequence: If we apply backprojection (C∗) to reconstruct, and
there are radially oriented singularities, then we expect artefacts
will appear on the sphere with that singularity in its normal bundle.
Because the transformation between cylinder and spindle
transforms is radial, the same is true for the spindle transform.
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Numerical Example of NS

Small bead phantom
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Numerical Example of NS

Backprojection reconstruction (NS)

S. Holman (U. of Manchester) Applications of Microlocal Analysis 34 / 43



Reducing Artefacts

Problem causing artefacts

Since NC ∈ I−2,0(∆,Λ) + I−2,0(∆̃,Λ), the artifacts caused by Λ
have the same strength as the image (and its reflection through
the origin).
Same is true for NS .

Proposed solution
Felea, Gaburro, and Nolan [2013] suggested including a
pseudodifferential filter Q

NS 7→ NQ
S := S∗QS.

to reduce artefacts in a similar case.
If Q ∈ Ψ0 is chosen to vanish to appropriate order on the left
projection of Σ, then the strength of the artefacts will be reduced.
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Reducing Artefacts

Pseudodifferential filter
In our case we use

Q = −∆S2 (I −∆S2)−1

Here ∆S2 is the spherical Laplacian.
In practice, we use spherical harmonics to apply Q.
We call this reconstruction filtered backprojection
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Numerical Example of Filtered Backprojection

Filtered backprojection reconstruction (NQ
S )
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Practical Considerations

Arguably unfortunate truth of linear inverse problems
Iterative solvers available from numerical linear algebra work very well.

These can largely be blind to the mathematics of particular
applications except in how they construct the forward model.
Also see Francois Monard’s talk from Tuesday with MCMC
methods, which applies also to nonlinear problems.

How can microlocal analysis inform practical applications?
There is no replacement for proving identifiability, or proofs of
stability.
Stable reconstruction of singularities is still relevant even using
iterative solvers.
Other things as well ... .
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Numerical Example: Radial Phantom

Radial Phantom
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Numerical Example: Radial Phantom

CGLS reconstruction, 1% additive Gaussian noise, Tikhonov
regularisation
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Numerical Example: Plane Phantom

Double decker sandwich phantom
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Numerical Example: Plane Phantom

CGLS reconstruction, 1% additive Gaussian noise

Note layers in sandwich phantom are not radially oriented, and we
have better reconstruction.
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Conclusion

Thank you for your attention!
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