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Multiscale decomposition of images

Tadmor, Nezzar & Vese (2004) J




The Rudin-Osher-Fatemi model for denoising

Q C R? fixed bounded domain; 9Q Lipschitz
f € 12(Q) noisy image

ROF model
Ao > 0 fixed parameter. Solve

min {Ao||f — u||§2(ﬂ) +hulgy(q): we?(Q)}

1 is the (unique) minimiser; vg = f — 1 is the remainder

Remark:

ulgyia) =TV =IDul(Q);  [lullsvia) = [Wluia) + Meva)



The role of parameter A

ROF model
Ao > 0 fixed parameter. Solve

min {7\0Hf—u||%2(0) + lulgy () : we?(Q)}

U is the (unique) minimiser; vo = f — 1y is the remainder

@ Ao small: total variation of 1y more penalised N>
1o has smaller total variation (blocky reconstruction); most noise but
also more detailed features are removed

@ ) big: fidelity term ||f — uo|| more penalised >
g is closer to f; more detailed features are preserved, less noise is
removed



The T-N-V multiscale procedure: starting point

@ Start with a (relatively) small Ag > 0. Solve

min {Ao||f —u|® + [ul: uwe L*(Q)}

g is the (unique) minimiser; vg = f — ug is the remainder

f=1ug+vg. Letog=1ug, hencef=og+vg

Remark: here and in what follows

” ’ ” = “ : HLz(Q) and [-|=1"- |BV(Q)



The T-N-V multiscale procedure: second step

@ We have
f=wug+vg. Letog=1ugy, hencef=og+vg
@ Raise the parameter A. Take Ap<A; and replace f by the remainder

vg. Solve
min {Aq][vo —u[? + Jul: uwe L*(Q)}

that is
min {A1]|f — (uo +w)|? + [ul: uwe 3(Q)}

u; is the (unique) minimiser; vi = vo — 1y is the remainder



The T-N-V multiscale procedure: second step

@ We have
f=wug+vg. Letog=1ugy, hencef=og+vg
@ Raise the parameter A. Take Ap<A; and replace f by the remainder

vg. Solve
min {Aq][vo —u[? + Jul: uwe L*(Q)}

that is
min {A1[|f — (o0 + W) + Iul: uwe 3(Q)}

u; is the (unigue) minimiser; vi = vo — 1y is the remainder

f=uy+uw +vi. Letoy =up+uq, hencef =01 +v;



The T-N-V multiscale procedure: iteration

@ Take 0 < A\pg < A1 < ... < An < ....Byinduction, foranyn > 1

define
n—1
On_1= Z w; and v, 1=f—o0, 1, hencef=0, 14+Vvn_1,
i=0
and solve
min {An|[vn_1 —ul® + [ul: we [2(Q)}
that is

min {An||f — (01 + W+ ul: ue L2(Q)}

Uy, is the (unique) minimiser; v, = vi,_1 — Uy, is the remainder
and
n
On = Zui and v, =f—o0,, hence f =0, +vn
1=0



The T-N-V multiscale decomposition

Take 0 < A\g <A1 <...<Ap < ....Foranyn > 0 we have

f=uy+wi+...+uqy +vn =01 +Vn.

Theorem — Tadmor, Nezzar & Vese (2004)
Ao > 0 fixed parameter. Let

An =2"Ag foranyn > 0.
If f € BV(Q) then lim v = 0in L2(Q)
n

that is, f has the following multiscale decomposition

o0
f=limo, = Zui in the L%(Q)) sense
n
i—o

Remark: it holds also for f in some intermediate space between [?(Q))
and BV(Q)



Extension to nonlinear inverse problems

The Calderén inverse problem J




Electrical Impedance Tomography: the conducting body

Q C RN (N > 2) fixed bounded domain; 9Q Lipschitz

0 < ¢p < c; fixed constants

Classes of conductivity tensors

The anisotropic case:
Msym(co, c1) class of symmetric conductivity tensors o, that is,
0 € L°(Q, MY¥N (R)) satisfying the uniform ellipticity condition

0<colny €0o(x) <cilny forae.xe Q
The isotropic case:

Mscar(co, c1) class of scalar conductivities o, that is, o € L*(Q)
satisfying the uniform ellipticity condition

0<cop<o(x)<cy forae.xeQ




The Neumann-to-Dirichlet map

@ Conductivity in Q: 0 € Mgym(co,c1)
@ Prescribed current density on the boundary 0Q):

gc12(0Q) = {q) € 12(0Q) : J Y= 0}

20
@ Electrostatic potential in Q: U solution to the Neumann problem

div(cVU) =0 inQ
oVU-v=g ondQ

J u=20
20

Neumann-to-Dirichlet map
Alo): 12(0Q) — L2(dQ) where

Al0)lgl = Ulyo € L2(0Q) forany g € L2(3Q)




Electrical Impedance Tomography: the inverse problem

Inverse conductivity problem — Calderén (1980)

Determine the conductivity tensor o from electrostatic measurements on
the boundary, that is, by measuring the Neumann-to-Dirichlet map A(o)

The forward operator:

A:M — L(L2(0Q),12(0Q))
o — Ao)

where M = Mgym of M = Mscal

Uniqueness issue

Does the Neumann-to-Dirichlet map A(o) uniquely determine the
conductivity tensor o? Is the forward operator /\ injective?




Uniqueness for scalar conductivities

N =3; 0 € Mscar

Kohn & Vogelius (1984) — Sylvester & Uhlmann (1987) — Isakov (1988)
Haberman & Tataru (2013) — Caro & Rogers (2016)

Haberman (2015) o ¢ W3

N =2; 0 € Mscq1, Q simply connected

Nachman (1995)
Astala & Péivarinta (2006) o € L*°

N = 2; 0 € Msym, Q simply connected
Astala, Paivarinta & Lassas (2005) o € L=

If A(o) = A(o7) then J@ quasiconformal mapping
with @ = Id on 0Q) such that 01 = @.(0).

v




Setup of the inverse problem: reconstruction

@ Unknown: G € M, M = Msym(co, c1) or M = Mscqt(co, c1)
e Exact data: Ag = A(0p)

Reconstruction
Numerically reconstruct 6o from (an approximation of) A(dg) J

@ Available (measured) data: A € £(L2(2Q), L2(2Q)) with

IA—Ag| <e, ¢ > 0is the noise level
where || - || = [| - |22 = || 2 (12000) 12(00))
Main issues

e Nonlinearity
o lll-posedness




Variational approach: regularised minimisation problem

Regularised variational problem
L > 0 fixed parameter. Solve

min {||A — A(0)]|2 + poR(0) : o € M}

R regularisation operator; po regularisation coefficient

Choice of the regularisation operator: total variation penalisation

R(o) = |G|Bv(g) = |o]

Hence, for Ag = 1/, solve
min {Ao|A — A(0)[|> + |0l : o€ M}

0p = U iS @ minimiser




Why the L2-2-norm instead of the natural one?

Continuity with respect to G-convergence — R. (2015)
Let on, 0 € Msym(co, c1) such that o, G-converges to o. Then

H/\(O-n) = /\(0')”]_2_1_2 — 0.

Holder continuity with respect to the L* norm
Forany o1, 02 € Msym(co,c1), we have, forsome 0 < 3 < 1 and Co > 0,

[A(01) = Alo2) |22 < Collor — UzHﬁl(Q)-

Remark: the L?-1.2 norm controls the error on the so-called experimental
measurements introduced by Somersalo, Cheney, & Isaacson (1992).
R. (2015): if R(0) is the resistance matrix associated to o, we have

|R(01) —R(0o2)|| < C||A(o1) — A02)]|r2-2



Multiscale approach for nonlinear inverse problems

The Calderoén inverse problem J




Functional setting

@ X Banach space with norm || - ||x
X =LHQ,MEY (R)) or X = LHQ) with norm || + [|r1(q)
@ E C X suitable closed subset
E = M with M = Msym(co, c1) or M = Mscar(co, 1)
@ Y metric space with distance dy

Y = £(L3(0Q),12(20))
with dy induced by its norm || - || = - ||{2-12



Functional setting and starting point

@ A:F — Ycontinuous and A € Y

A M = L(12(Q), L2(Q))
o — Afo)

A € £(L2(2Q),12(9Q)) is the measured Neumann-to-Dirichlet map
Regularisation operator
R=|: ]:X—[0,+o0]

R=11=I"lgy(q): L"Q MR (R)) = [0, +-00]

sym

Solve, for Ag > 0 and ag > 0,

m.n{xo[”/\ Alo ||2—|—a0|0|] +lo]: o e M)

0p = Upg iS @ minimiser




Multiscale procedure: iteration

@ Take 0 < Apg <A1 <...<Ap <...and
0<...<an <...< a1 < ap. Byinduction, for any n > 1 define

n—1
On—-1= E ui
i=0

and solve

min {7\Tt [|]/~\—/\(an1 + u)H2 +an|on_1 —I—ul] +lul: (op_1+u)e J\/[}

U, is a minimiser

and

n
on = E Ui
i=0



Main remark and notation

min {An [H/~\—/\(Gn4 + u)H2 +an|on_1 +ul] +hul: (on1+u)e J\/[}
By taking u = 0 and using a,, < an_1, we observe that foranyn > 1

”K_ A(Un)Hz + anlon| < |’K_ A(O‘n,1)|’2 + an—1lon_1l

Let 12
80 = lim [H/\— Alon)|2 + anlonl]
n
and
€0 = inf{uﬂ—/\(o)u L oe Jv[}
Clearly

g0 < do



Convergence in the data space

Theorem: convergence of A(o,,)
Assume

. . 2"
an < anp_1foranyn > 1, I|Tr1n a, =0 and limsup— < +o0.
n L

Then
E0 = 60
and B _
lim A — A(on)| = €0 = inf{u/\—/\(o)n o€ M}
n

Remark: it is enough to take Ao > 0 fixed parameter and let

ap =0 and A, =2"Ag foranyn >0



Multiscale decomposition in a general setting

Additive case J




General abstract setting

@ X Banach space with norm || - ||x; E C X suitable closed subset
@ Y metric space with distance dy
@ A:E — Ycontinuous and A € Y

Regularisation operator

R=|:]:X — [0, +o0c] such that
@ |0j=0and|—ul=Ju] VueX
@ [u; +u| < fwf+lual Vug,up €X
@ {ueX: |ul < +oo}densein X

@ |- | sequentially lower semicontinuous on X, with respect to the
convergence in X

@ {u e X: |u|l < b}sequentially compactin X VbeR




Examples of admissible regularisations

Q C RN (N > 1) fixed bounded domain; 9Q Lipschitz

e BV regularisation:
X =L'Q), withnorm || - [|11(q); E C X suitable closed subset

R(u) = ul = |ullpviq) YueLl'(Q)

e W12 regularisation:
X =L1?(Q), withnorm || - [|12(q); E C X suitable closed subset

R(w) = [ul = [ullywreo) = [ullizia) + [Vullizia) VueL*(Q)

o C%* regularisation, 0 < ot < 1:
X = C%(Q), with the sup norm; E C X suitable closed subset

R(U.) = |u| = HU.HCo,oc(Q) = H‘U—HLOO(Q) + IulCO,LX(Q) Yue Co(ﬁ)



Example: denoising of images or signals

Setting:

@ X Banach space with norm || - ||x; E C X suitable closed subset
@ Y metric space with distance dy

@ A:E — Y continuous and A € Y

@ Regularisation R =1-|: X — [0, +o0]

Denoising of images or signals:
Q Cc RN, N > 1, fixed bounded domain; 0Q Lipschitz

e X =1%(Q), withnorm || - [[;2(q); E=X=L1*(Q)
@ Y = X = L?(Q) with distance induced by its norm

e A=1d:1%(Q) » [2(Q)and A = f € 12(Q)

@ As regularisation, with small modifications,

R=1-1=1"lpy0) : L3(Q) = [0, +oo]



The T-N-V multiscale decomposition: reprise

Ao > 0 fixed parameter. Let
A =2"A¢ and a, =0 foranyn >0.
For any n > 0 we have
f=uy+wi+...+uUqp +Vn =01 +Vn.
Theorem — Modin, Nachman & R. (2019)

If f € 12(Q) then limv, =0in L%(Q),
n
that is, f has the following multiscale decomposition

o0
f=limo, = Zui in the L?(Q)) sense
n
im0

Remark: it holds for any dimension N > 1



Multiscale approach for the Calderdn problem

Convergence in the unknowns space J




Convergence in the unknowns space

We know that
lim [|A = A(0)]| = €0 = inf{y|7\— Alo)|: o€ M}
Remark: if IiTan On = O in L or in the G-convergence sense, then
IA = A0o0)]| = €0 = min{H/~\— Alo)||: o€ M}
Necessary condition:
3 min{||7\—/\(o)|| L oc M}

Question: is this a sufficient condition?



Main properties of G-convergence

Properties of G-convergence
@ Msym is (sequentially) compact with respect to G-convergence

@ /\is (sequentially) continuous with respect to G-convergence

Consequence: the necessary condition
I min{ A= A(0)]: o€ Moy}
is satisfied.

Remark: M. 1 is not (sequentially) compact with respect to
G-convergence



G-convergence result

Theorem: G-convergence of the decomposition

Let M = Mgym = Msym(co, €1).
Assume

. . 2"
an < ap—iforanyn>1, lima, =0 and limsup— < +4o0.
n

n n

By the multiscale procedure, we construct

n
on = E Ui
i=0

Then 3 a subsequence {on, }x and 3 0o, € Msym such that

on, G-converges to 0, as k — oo and

A(0s) = min{”/‘— A(0)]|: o€ Msym}

v



Assumption for convergence in L

M =Mscar = Mscar(co, €1), R=|.|=]- |Bv(Q) J

Remark: the necessary condition is NOT sufficient, we need a stronger
assumption

Crucial assumptions
@ Assume 3 6 € Msca1 NBV(Q) (i.e. with 015y (o) < +00) such that

IA=A@)) = min{|A=A(0)]| : & € Mcar} = o
that is
3 min { |O'|BV( : 0€ Mseq and ||/\ A(0)]| = €0} =Ro < 400
mn

@a,<a, 1forn>1, lima,=0 and limsup < +o00.
n

n AnAn




The main theorem: convergence of o,

Let S be the set of optimal solutions
S:{Gemscal: ||/\ A || =& and|G|Bv —RO}
Remark: S is sequentially compact in L}(Q)

Theorem

Under the crucial assumptions, 3 a subsequence {0y, }x and 3 0, € S
such that
Ooo = |i21 on, InLHQ),

Finally, if S = { G } then

o0

Z inL'(Q

i=0

(e.g. N =2 and A = A(og) with 0g = & € Mscqr N BV(Q))




