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1 Introduction
e 3rd Order NLS with Raman Scatteing Term

O :oq@iu + iozg(‘?iu + 771 |u\2u
+ 7205 (|ul*u) — iTudy (Jul?), (1)
te|-T,T], xz=e€TT,
u(0,x) = ug(z), =z €. (2)

a;, v4, I'; real constants, af + a3 # 0,
£ 0.



u: |=T,T| x T — C ; slowly varying
envelope of electric field,

The last term on RHS of (1) represents the
effect of Raman scattering.

Assume that

a1 #0 = 2as/301 ¢ Z. (NR)

Pulse with slowly varying envelope in photonic
crystal fiber



V. Agrawal, “Nonlinear Fiber Optics ",
Fourth Edition, Acadmic Press, 2007.

Problem: Is the Cauchy problem of (1)
well-posed in Sobolev spaces H?, in analytic
function space or in the Gevrey class?

e Main Theorems on llI-Posedness

Theorem 1 (Kishimoto-Y.T, 2018)
200 /301 € 24 (aq #0), 1 <s1 <s<s1+1.



Then, dug € H*(T) such that for any 7' > 0
the Cauchy problem of (1) with u(0) = ug has
no solution u € C(|0,T); H**(T)), nor
solution v € C'((—T,0]; H**(T)).

Remark 1 (i) Instead of T, when we consider
(1) on R, it is known that (LWP) holds in
regular Sobolev spaces (Hayashi and Ozawa
(1994), Chihara (1994)). The spectrum of
the Laplacian on T is discrete while it Is
continuous on R. The difference between T



and R comes from the nature of the spectrum
of the Laplacian.

(ii) Even if a; = 0, Theorem 1 holds.

Theorem 2 (Kishimoto-Y.T, 2018)

200 /31 € 4 (a1 #£0), s> 1,

u* € C(|0,T]; H*(T)) ; solution to (1) on
0,T] for some T" > 0. Then,

Ve >0, 0 < V7 <T, dreal analytic function
¢ on T with ||¢||gs < € such that either there
is no solution u to (1) in C([0,7]; H*(T))



with initial condition «(0) = u*(0) + ¢, or
such a solution exists but

sup [Ju(t) —u*(t)||gs > e

te(0,7]
Remark 2 Theorem 2 implies the breakdown
of continuous dependence on initial data. The
assertion of Theorem 2 is weaker than

Theorem 1, while the former can cover a
larger class of initial data than the latter.

e ldea of Proofs for Theorems 1 and 2



Conservation Law of Mass:
lu(t)| 2 = lluollZ2, te[-T,T).

Remark 3 Momentum and energy are not
conserved because of Raman scattering.

(Translation and Gauge Transformation)

2
o(t,z) = u(t,z — = : |u(s)]|72 ds)

< 6—771if5’ ||u(s)||2LQ ds—%if(f Im (O u,u) ds.



Then, (1) can be written as follows.

OV + 1a0,v = a1 02V + i d7v (3)

, 1
Fim (Juf? = —[[o(t)[2:)v

432 [2(0f? = o [0(0)[32)0uv + v?0,7]
I —rkx
| e
a7

X > (ky o+ k2)o(k)v(k2)(ks),

(k1+k2)(k2+k3)#0



where ©(t, k) denotes the Fourier transform in
x of v(t,x) and
I

. 2
@ = luoll3:.

The Cauchy-Riemann type elliptic operator
0; + ta0, appears due to the Raman
scattering term, which gives rise to the
ill-posedness of the Cauchy problem (1)-(2).

Remark 4 The elliptic regularity theorem for
the Cauchy-Riemann type operator yields that



no solution u € C'((=T,T); H®) for any

I > 0, which is slightly weaker than Theorem
1. For the proof of Theorems 1 and 2, we
need to use the dispersive nature of equation
(3), which implies the smoothing type effect.
This is why we need to assume (NR).

(Interaction representation)
w(t,x) = e_t(o‘lai+ia28§)v(t, T).

Apply Fourier transform in z to (3) =



(k) — a ki (k) = 2 o () i ()
Re S e (k)i (—ka)ib(ks)
27
ki+ko+ks=k
(k1+k2)(k2+ks)#0
ivok + T'(ki + k2)
* Z 2T
ki+ko+ks=k
(k1+ka)(ka+ks3)#0

e (k) (—kz)w(ks)



—. Fl (t, ]-C) —|— Fg(t, /C)+F3(t, ]f)
Here,

(I)(kl, kg, kg) — (Oélkg + Ckgkz)
— (anky + agk?) + (a1 (—k2)® + az(—k2)?)
— (oqu -+ Oégkg)

200
=3 (k1 + ko) (k2 + ks) (ks + k1 3(1?)



Under the assumption % 20‘2 ¢ 7., it holds that

O(ky, ko, kg) = 0 < (ky + k) (ko + ks) = 0,
(I)(klak27k3)#0 — ‘(I)(klak27k3)
~ k1 + kol |k2 + k3| |k3 + k1.

(Resonant case) If s > 1,

w(k)[)”,

which iIs the smoothing type estimate.

k|| F (8 k)| S TR




(Nonresonant case) The time integration of
F5 and F3 leads to the smoothing type effect
thanks to the oscillation of €**®. Therefore,

Jug € H? such that if "> 0 (resp. T' < 0),
|6aTk’lAL()(k)‘ — 00,
[o e Tk Ey (¢! k) dtf
60’ka&0(]€)

as k — oo (resp. k — —o0), j=1,2.

— 0

— Thoerems 1 and 2



e Physical Literature Related to lll-Posedness
o M. Erkintalo, G. Genty, B. Wetzel and J.M.
Dudley, Optics Express, 18(24), 2010.
Limitations of the linear Raman gain
approximation

o T.X. Tran and F. Biancalana,
arXiv:1504.03865v3 [physics.optics] , 2015.
Unphysical metastability of the fundamental
Raman soliton

o Fabio Biancalana, Heriot-Watt University



This approach is universally used amongst
physicists, ...
(Private Communications)

Remark 5 The mathematical notion of
ill-posedness is interpreted as the instability of
a physical system at hand. But it is not very
clear whether this instability accounts for
some physical phenomena or it implies just
the limitation of the model.

Remark 6 A large number of numerical



simulations for the Cauchy prob
have been made though it is ill-

em (1)-(2)

hosed In

Sobolev spaces. In those numerical
computations, such analytic functions as

Gaussian and super-Gaussian pu

|ses are chosen

as initial data. So, it is natural to expect that
the Cauchy problem (1)-(2) should be solvable
in the analytic function space. Indeed, we can

prove the result on the unique solvability In

the analytic function space.



e Solvability in Analytic Function Spaces

HfH.A(’I“) . H6T|k|f(k)H€1(Z)7 r > 07
A(r) == {f € L*(T) | | fll.aer) < o0}

Remark 7 Functions in A(r) are real analytic
and have analytic extensions on the strip

{z € C||Imz| < r}. The function space A(r)
was employed by Ukai (1984) for the
Boltzmann equation, by Kato and Masuda
(1986) for a class of nonlinear evolution




equations and by Foias and Temam (1989) for
the incompressible Navier-Stokes equations.

Theorem 3 Let v, 7 = 1,2 be two real
numbers and let » > 0. For any ug € A(r),
there exist T' > 0 such that the Cauchy
problem (1)-(2) has a unique solution

we C(|-T,T); A(r/2)) on (=T,T).
Moreover, I' can be chosen as

T > min{l,fr}HuOH;l?r),



where the implicit constant does not depend
on r and uyg.

Remark 8 Theorem 3 is a kind of the
abstract Cauchy-Kowlevsky theorem. We do
not have to assume 2ai/3a1 € Z in Theorem
3. Even when a1 = ao = 0, Theorem 3 holds.

Open Problem It is not known if the solution
given by Theorem 3 exists globally in time.
Some numerical simulations suggest that
when the initial datum is Gaussian or



super-Gaussian, the solution may exist
globally in time or for a long period of time.
What if the initial datum is a sech pulse of the
cubic NLS?

lll-posedness in the Gevrey class

It is natural to ask if the Cauchy problem

(1)-(2) is well-posed in the Gevrey class or
not.

oc>1, >0, a>0,



?a =1f € C™(T;C);
f(k) = O(|k|~*e~IM
Gz, = Sup e R ()| fi.

(k) = max{1, |k|}.

1/o0

), |k| = oo},

— U G, (Gevrey class of order ).

a>0



Remark 9 The space G¢ , is the Banach
space while G? is not the Banach space. The
Gevrey space GG? is the topological space

equipped with the inductive limit topology.

Theorem 4 (Kishimoto-Y.T, 2019) Let
o > 1. Forany ug € G7 \ (1,5 G§ . there
exists no 1" > 0 such that the Cauchy problem

(1)—(2) has a solution in C(|-T,T]; G%).

Theorem 4 follows from the following Gevrey
smoothing effect.



Lemma 1 (Kishimoto-Y.T, 2019) Let
o> 1, and let u(t) € C(|-T,T];G°) be a
solution to (1) on (=7',T) for some T > 0.
Then, u(t) € (1,50 Gg .o forallt € (=T,T).



Thank you
for your attention!



(Example of initial datum) Let s, s; be such
that 1 < s1 < s < s;+ 1. We take any

so € (8,81 + 1) and choose initial data ug as
follows.

10 (k) k|=%0 if k=427 for some j € N,
i =
’ 0 otherwise,

which is clearly in H*(T).



(periodic Gaussian pulse)

ga(z) = ) ga(k)e™,

k=—o0

k) =X M keZ, A>0.

(periodic hyperbolic secant pulse)

ha(z) = ) ha(k)e™,

k=—o0



: k
oy (k) = )msech(;—)\), keZ, A>0.



