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Time evolution of space periodic water waves in Trieste gulf:

KFSB: Fran wariacs)

In section it is described by a bidimensional fluid, periodic in x




Water waves equations

Euler equations for an irrotational, incompressible

fluid in S,(t) = {—h <y < n(t,x)} under gravity and capillarity

at¢+§lv¢lz+gnznax( 2 ) at y = n(t, x)

1+n2
AP =0 in —h<y<n(t,x)
0,®=0 at y = —h
0 = 0y ® — Ox1 - 0P at y =n(t,x)

u = Vo = velocity field, rotu = 0 (irrotational),
divu = AP = 0 (uncompressible)
g = gravity, k = surface tension coefficient

Mean curvature = 8X< T
V143

free surface y = n(t,x) and the velocity potential (¢, x, y)




Water waves equations
Zakharov formulation '68

Infinite dimensional Hamiltonian system:

0 Id
Oru = IV, H(u), u:= <Z}>, J = (—Id O)’

canonical Darboux coordinates:

n(x) and ¥(x) = ®(x,n(x)) trace of velocity potential at y = n(x)

(n,%) uniquely determines ® in the whole {—h <y < n(x)}
solving the elliptic problem:

® is harmonic

AP =0 in{-h<y<nx)}, ®ly—=1, o,d=0aty=—h




Water waves equations

Hamiltonian: total energy on S, =T x {—h <y < n(x)}

1
= v¢2wd-5/ dxd, +n/ 1+ 72 dx
2/gﬂ |” dxdy 5, & > V1t

kinetic energy + potential energy + capillary energy

Hamiltonian expressed in terms of (7, )

H(n, %) = 5 Jp(x) Gn)w(x) dx + 5 [y g dx + & [ 4/1 +n2 dx

Dirichlet-Neumann operator (Craig-Sulem '93)

MP(x) = /14715 0nPly—yx) = (¢ ®,)(x,1(x))




Zakharov-Craig-Sulem formulation

Ben=G(n)w = V5 H(n, ¥)

¢x ( () + anX) Kl 12
2 Vo) T @wmpr o 0Y)

Dirichlet-Neumann operator

G(77 \/1+77x6¢’y =n(x

@ G(n) is linear in 1, non-local,

@ self-adjoint with respect to L?(Ty)

@ G(1) >0, G(1) =0

© 7 — G(n) nonlinear, smooth,

@ G(n) is pseudo-differential, G(n) = Dy tanh(hDy) + OPS~°

Calderon, Craig, Lannes, Metivier, Alazard, Burq, Zuily, Delort...




Water waves equations

Symmetries

M(0.9) = [ 1) () dx

x-translation invariance

Invariant subspace: functions even in x. Standing waves

n(=x) =n(x), »(=x)=1(x)




Water waves equations

Prime integral: mass

[ ntx)x
T
n € H3(T) := {n € H*(T) : / n(x)dx =0}
JT
ue H(T) & Z ugel Z lu |2 (k)% =: ||u]|2s < +00
keZ keZ

The variable v is defined modulo constants: only the velocity field
Vx,y® has physical meaning.

¥ € H5(T) = H5(T)/ ~

u(x) ~v(x) <= ulx)—v(x)=c




Linear Theory
Linear water waves theory

Linearized system at (7,) = (0,0)

Ot = —gn + KMNxx

Dirichlet-Neumann operator at the flat surface n =0 is

G(0) = Dtanh(hD), D= * = Op(&)eer

Fourier multiplier notation: given m: Z — C

m(D)h = ez m(j)hje,  h(x) = ez hje




e
Linear water waves system

03] = | b 0| 13)

”
Complex variable

o 1o D2 1/4
u=ND)y+iN*(D)y, AD)= (%)

V.
Linear Water Waves

us + iw(D)u=0, w(D)= \/Dtanh(hD)(g + kD?)

Dispersion relation

w(€) = \/€ tanh(he) (g + K€?)




oo-decoupled harmonic oscillators

u(t,x) =Y e “Uty;(0)el™

JEZL

Linear frequencies of oscillations
w(j) = /itanh(h)(g + ), jEZ,

All solutions are periodic, quasi-periodic, almost periodic in time
according to the irrationality properties of (wj(h, g, K))jez

|

The Sobolev norm is constant

[u(t, s = [|u(0, )| s




Main results

Nonlinear water waves

Main questions

@ For which time interval (— Tax, Tmax) solutions of the
nonlinear water waves equations exist?

© Are there periodic, quasi-periodic, almost periodic solutions
(thus global in time) of the nonlinear water waves equations?



Main results

Major difficulties:

Gravity-Capillary WW are quasi-linear PDEs

ur +iw(D)u = N(u, 1), w(D)~ |DJ3/?
N = quadratic nonlinearity with derivatives of order N(|D|>/?u)
Gravity WW are fully nonlinear PDEs
uy +iw(D)u = N(u, 1), w(D)~ |D|*/?
N = quadratic nonlinearity with derivatives of order N(0,u)
Singular perturbation of the linear vector field iw(D)u

Periodic boundary conditions x € T

NO dispersive effects of the linear PDE as for x € R?, x € R and
data decaying at infinity:

Global well-posedness: S.Wu, Germain-Masmoudi-Shatah,
lonescu-Pusateri, Alazard-Delort, Ifrim-Tataru, Alazard-Burg-Zuily




Main results

Nonlinear water waves, main results:

e Long time existence/Birkhoff normal form:
For any small initial data of size ¢ the solution is defined for
long times T,
© Gravity-capillary:
M. Berti- J-M. Delort, '17, for any h, most (g,x), T. > ce "
@ M. Berti, R. Feola, L. Franzoi, '19,
for all g,k,h>0then T. > ce 2
© Gravity: M. Berti, R. Feola, F. Pusateri, 18,
h = +o0, any g, then T. > ce 3

o KAM: Existence of quasi-periodic solutions for

@ Gravity-capillary: Berti-Montalto, '16,
@ Gravity: Baldi-Berti-Haus-Montalto, '17,

solutions defined for all times, for "most" initial conditions



Main results

Focus on long time existence/Birkhoff normal result 3

‘ Proof of a conjecture of Zakharov-Dyanchenko '94

Theorem (M. Berti, R. Feola, F. Pusateri, '18 )

INFORMAL STATEMENT:

© The gravity water waves equations in h = +oo are an
integrable system up to quartic terms O(u*)

@ The solutions with an initial datum ug = O(g) in Sobolev
spaces are defined for times T. > ce~3




Main results

Resonances: dispersion relation w(n)

1) There are no 3-waves resonances:
{nl + n» + n3 = 0

VIm| £ +/|m| £+/|n3] =0

2) There are non-trivial 4 waves resonances:

{nl—n2+n3—n4:O

Vim[ = /Il + /ns] = V/Ina] = 0

has many integer solutions, in addition to the trivial solutions
(k, k,j,j): the Benjamin-Feir resonances

m=—qm?, np = q(m+1)2, n3 = q(m2—|—m—|—1)2, ng = q(m—i—1)2m2

geZ\ {0}, meN




Main results

Formal integrability at order 4: resonant system

There is a formal symplectic change of variables which transforms
the water-waves Hamiltonian into

Hime = 3 lillgP + HG +--

JEZ\{0}
where
4) _ 01,02,03,04 _01 _02 _03 _04
Hzp = Z Hihdrie 2 2 Zis Zs
oj1to2jp+0o3j3+04ja=0,0i==%1,
o1w(j1)+o2w(j2)+o3w(jz)+oaw(ja)=0
7zt =z, 7z =7 Thereis a null condition |

Theorem (Zakharov-Dyanchenko '94)

The Hamiltonian 3_;cz, (o} VIillzi? + H(ZD is integrable, possesses

the actions |z;|?, Jj € Z\ {0}, as prime integrals, and, in particular,
its flow preserves all Sobolev norms.




Main results

Theorem (Birkhoff normal form for gravity WW, B-F-P, '18)

There exists a bounded change of variables in H® which
transforms the gravity water-waves equations with h = +oco into

0rz =1|D|2z +10: HS) + Xs4a(2)
where H,(34A),,_- is the Zakharov-Dyanchenko Hamiltonian

4 _ 1
HE)(2,2) = = 3 kP (12dl* — 2|z Plz- )

keZ
1
+— > |ke|lkal? (= 12—k )| 2| + |21, |26, %)
ki,ka€Z,sgn (ki)=sgn (k2)
|ka|<|k1]

which preserves all Sobolev norms, and X~.(z) has energy
estimates in H*:
Re f |DJ Xss - [DFz dx < C|lz5,,.

Corollary: solutions with cu(0) € H® exist in H® up to T, > ce 3



Main results

Energy estimates of z; = X>4(2)

How Sobolev norms evolve?

121 = Xnezo In1**|za|* = (IDI°z, |DI*z) 12

d
dt

Izl = (1D 2, |DI*2) .2 + (IDI°z, | D[*zt) 2
= 2Re(|DPX>4(2), [D*2) 2
Ss llz]2

not obvious because X>4(z) is unbounded (order 1). If
|z(0)||s = € then =

The Sobolev norm ||z(t)||s = O(¢) for a time interval O(e~3)



Main results

= THIS RIGOROUSLY JUSTIFIES THE FORMAL BIRKHOFF
NORMAL FORM EXPANSIONS USED SUCCESSFULLY BY
PHYSICISTS!

In same spirit that Lindsted formal series in celestial mechanics
were rigorously justified a-posteriori by KAM theorem (Moser)



Main results

Time of existence

@ 7. > ce !, local existence theory, S. Wu., Lindblad,
Coutand-Shkroller, Alazard-Burg-Zuily, . ..

@ T.>ce 2, S. Wu, Ifrim-Tataru, if h = +oco there are no
“triple wave interactions" + quasi-linear modified energy

No solutions ki, ko, k3 € Z \ 0 of

|ke|2 & |ko|2 £ |K3|2 = 0
ki tho £ ks =0

@ Gravity-capillary waves T. > ce= VN, VN, Berti-Delort '17, we
erase parameters (g, ) to avoid multiple wave interactions



Main results

Berti-Feola-Franzoi, '19:
For any value of g = gravity, K = capillarity, h = depth, the
solutions of gravity-capillary water waves exist for

T. > ce?

For general values of (g, h, k), wj = \/jtanh(hj)(g + Kj2)

There are 3-waves resonances (Wilton-ripples)

{wﬁi%iwﬁ:o J1:J2,j3 € Z\ 0

hAEthpEt3=0

But finitely many. Hamiltonian Birkhoff normal form.



Main results

Global existence?

Question: Do these solutions exist for all times?
We do not know. Maybe not

Craig-Workfolk: for kK = 0, h = 400 the water-waves PDEs are not
integrable at the fifth order Birkhoff normal form

(could be Chaotic but with well defined flow)



Expected scenario for nearly-integrable Hamiltonian systems

KAM Torus

Eltiptic Fp

Hyperbolic FP

@ KAM results: There are many solutions defined for all times:
selection of “initial conditions" giving rise to global
solutions

@ Long time existence: |t| < ce=N. For longer times?

© Arnold diffusion: What about a solution which does not
start on a KAM torus for times |t| > ce=N?

Chaos? Growth of Sobolev norms?




Quasi-periodic solutions

Quasi-periodic solution with n frequencies of u; = X(u)

Definition
u(t,x) = U(wt, x) where U(p,x) : T" x T — R,

w € R"(= frequency vector) is irrational w - k #0, Yk € Z" \ {0}
= the linear flow {wt}+cr is DENSE on T”

@ Global in time

o If n =1 then U(wt, x) is time-periodic with period T = 27 /w



Quasi-periodic solutions

Periodic solutions: n=1
o Plotnikov-Toland: '01
Gravity Water Waves with Finite depth

o looss-Plotnikov-Toland '04, looss-Plotnikov '05-'09
Gravity Water Waves with Infinite depth
Completely resonant, infinite dimensional bifurcation equation

e Alazard-Baldi '15,
Capillary-gravity water waves with infinite depth
Quasi-Periodic solutions: n > 2

o Berti-Montalto '16,
Gravity-Capillary Water Waves

o Baldi-Berti-Haus-Montalto
Gravity Water Waves '17



Quasi-periodic solutions

Theorem (Baldi, Berti, Haus, Montalto, Inventiones Math. 2018 )

For every choice of finitely many tangential sites S C N\ {0}, there
exists s > M , €0 € (0,1) such that: for all §; € (0,£3), j €S,

3 a Cantor //ke set Ge C [hy, ho] with asymptotically full measure
as & — 0, i.e. lime_yo|Ge| = hp — h1, such that, for any depth

h € G¢, the GRAVITY WATER WAVES EQUATION has a

quasi-periodic standing wave solution (n,1) € H® of the form

n(@jt, x) Z \/fjcos (@;jt) cos(jx) + o(\m)

JES

P(@jt, x) Z §Jw sin(@;t) cos(jix) + o(4/€])

Jjes

with frequencies &; satisfying &; — wj(h) — 0 as £ — 0.
The solutions are linearly stable.




Ideas of proof

|deas of proof. Step 1) Poincaré-Birkhoff normal form

With a bounded and invertible (non symplectic) change of
variables we transform water-waves with h = +o00 into

Proposition (Poincaré-Birkhoff Normal Form for gravity WW)
Orz = fi|D|%z —((2)0xz + r_%(z; D)z + R"™(z) + X>a(z) (%)
Q ((2) = X,z nlnllzs|* € R, constant in x and integrable

Q r_i1(z:€) =Xz rn(€)|2n|? symbol of order —% constant in
2
x and integrable

© [R™(2)llges Ss ll2llsollzF., s > so regularizing
Q@ X>4(z) = O(z*) has order 1, it has energy estimates in H®
@ (%) is in Poincaré-Birkhoff normal form up to O(z*)




Ideas of proof

(%) is in Poincaré-Birkhoff normal form

The cubic vector field
((2)0xz+r_1(z; D)z + R™(z)
2
commutes with i|D|%, i.e. in Fourier coordinates () is

. 01,02,03 01,02 03
zp =1y/|n|za+ E ap s zplzp2zpd, Vn € Z\{0}
o1 +ognyt+o3zn3=n,o;==%,

o1+/In|+o24/Ina|+034/In3|=+/|n|

@ Notation: zF =z, z7 =z

Rem. 1) ((z)0xz and ri%(z; D)z are in Birkhoff normal form:
formed by cubic monomial vector fields zxZxz,0,,

Rem. 2) Benjamin-Feir z_mzz(m+1)zz(m2+m+1)z82(m+1)2m2, meN



Ideas of proof

Step 1-1) Birkhoff normal form up to regularizing terms

Performing paradifferential changes of variables, and thanks to
algebraic properties of WW, we transform WW in Birkhoff normal
form up to smoothing remainders:

0:z = ((2)0:z +ilD|2z + r_y(z: D)z + R(2) + X24(2)

where

Q ((2) = X 40 nlnl|za]* € R, constant in x and integrable

Q@ r_1(z:€) = 30 ()| 2a|? symbol of order —3 constant in
2
x and integrable
@ R(z) is a smoothing vector field, |R(2)|2s <s ||z||?

Q X-4(z) admits energy estimates since it has a purely
imaginary symbol and it is of degree O(z*)



Ideas of proof

Step 1-1) Poincaré-Birkhoff normal form on R(z)

Eliminate all the quadratic and cubic terms in R(z) which are
Birkhoff non-resonant

The loss of derivatives induced by the four-wave-interactions

1
max(|n1|, |n2|7 ‘n3|7 |n|)T

’wm + Wn, — Wpy — Wn’ >

when the left hand side is not zero, are compensated by the fact
that R(z) is smoothing



Ideas of proof

Step 2) Identification of the normal form

A purely algebraic unicity argument proves that
~((2)dz + r_1(z; D)z + R™(2) = i0;HS)

where Hgg is the fourth order formal Birkhoff normal form
Hamiltonian computed in Zakharov-Dyanchenko and

Craig-Workfolk

Remark 1. we do not make symplectic transformations but the
third order Birkhoff normal form is a-posteriori Hamiltonian



Ideas of proof
|dea of proof

XH:XH2+XH3+XH4+---
We did several transformations which admit a Taylor expansion in u
Regard it as the formal time 1-flow generated by the vector field
S5=5+605+...

Transformed vector field
XH2 =+ XH3 =+ [52,XH2]
—_—

quadratic

1 1
+ Xu, + [S2, Xpi;] + 5[52, [S2, Xn, ] + 5[53, Xrp] + - -

cubic

= Xny +[S2, Xp,] = 0,
1 1
= X+ 152 a) 215052 K] 155
= —((2)0z + r_1(z: D)z + R™(2)



Ideas of proof

Since the adjoint operator [ -, Xy,] acting on quadratic monomial
vector fields satisfying momentum conservation is bijective
S = Xr , Hs + {F3,H>} = 0.

J1,,02,,03 P
I'Iker(ujl up?ug 6ujq> =

uBtuuBoye i —ow(j) + o1w(i) + 02w (i2) + o3w(jz) = 0
0 otherwise,

1
X3 = Mier(A3) = Mier (XH4 + [XFy, Xus] + §[XF3, [XF3,XH2]]>

= nkerXH4+{F3,H3}+%{F37{F37H2}}

because Mke[S3, Xi,] = 0. This is the usual Hamiltonian normal
form of ZD.



Ideas of proof

Thanks for your attention! ‘




Ideas of proof

Theorem (Berti-Feola-Franzoi, '19)

For any r,g,h > 0 there is sy > 0 and, for any s > sy., there are
g0 >0, ¢ > 0,C > 0 such that, for any € €]0, o[, any (n0,%0) in

s+i Ce_1 )
Hy "4(T,R) x H*~#(T,R) with

HT]OHHS+71‘ +lIYoll -3 <e
the gravity-capillary water waves equations have a unique classical
solution
0 Sy ys—
(m,¥) € CO( = Te, Te[, Hy *(T,R) x H*4(T,R))
with
T. > ce2

satisfying the initial condition (1,1)t=0 = (10, %0)




Ideas of proof

Theorem (Berti-Feola-Franzoi, '19)

For all k,g,h > 0, there exists a bounded change of variables in
H*® which transforms the gravity-capillary water-waves equations
into

Orz = i\D\%z + i@;Hl(;,\),F + X>3(2)
where

3 _ 01,02,03 _01 _02 _03
HBNF - Z HJ1J2J3 Zi %y %
01j1+02j2+02j3=0
o1w(j1)+o2w(j2)+o3w(j3)=0

and X>3(z) has energy estimates in H*:

Re/ D" X3 - [DFz dx < C|iz||%, -
T




Ideas of proof

Wilton-ripples: integer solutions ki, ko, k3 € Z \ 0 of
{wkl =1 Wy = Wiz = 0

are finitely many, max <C
kit kot ks =0 y many, |kl kel | ks| =

; — T — aljx
Setting z; := ) |j<c zj€”, zn == X jj|>c Zj€?

{ZL = iw(D)ZL + ia;H(B?;\)”_—(ZL) + I'IL(X23)

zZy = iw(D)zH + I'IH(XZ3) .

{HiNe HO} =0, Ho(2) =Y wjlzl?,  Ha(zu(t)) = Ha(2.(0))
J#0

Then

l2(D)1Fs < C()12(0)I1F,, + C(s) /H (DI d7. vt e[0,T].
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