
Water waves equations Linear Theory Main results Quasi-periodic solutions Ideas of proof

Long time Dynamics of Water Waves

Massimiliano Berti, SISSA,
Advances in Dispersive Equations: Challenges and Perspectives

Banff, July 2019



Water waves equations Linear Theory Main results Quasi-periodic solutions Ideas of proof

Time evolution of space periodic water waves in Trieste gulf:

In section it is described by a bidimensional fluid, periodic in x
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Water Waves: Euler equations for an irrotational, incompressible
fluid in Sη(t) = {−h < y < η(t, x)} under gravity and capillarity

∂tΦ + 1
2 |∇Φ|2 + gη = κ∂x

(
ηx√
1+η2

x

)
at y = η(t, x)

∆Φ = 0 in − h < y < η(t, x)
∂y Φ = 0 at y = −h
∂tη = ∂y Φ− ∂xη · ∂x Φ at y = η(t, x)

u = ∇Φ = velocity field, rotu = 0 (irrotational),
divu = ∆Φ = 0 (uncompressible)

g = gravity, κ = surface tension coefficient

Mean curvature = ∂x

(
ηx√
1+η2

x

)
Unknowns:

free surface y = η(t, x) and the velocity potential Φ(t, x , y)
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Zakharov formulation ’68

Infinite dimensional Hamiltonian system:

∂tu = J∇uH(u) , u :=
(
η
ψ

)
, J :=

(
0 Id
−Id 0

)
,

canonical Darboux coordinates:
η(x) and ψ(x) = Φ(x , η(x)) trace of velocity potential at y = η(x)

(η, ψ) uniquely determines Φ in the whole {−h < y < η(x)}
solving the elliptic problem:

Φ is harmonic
∆Φ = 0 in {−h < y < η(x)}, Φ|y=η = ψ, ∂y Φ = 0 at y = −h
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Hamiltonian: total energy on Sη = T× {−h < y < η(x)}

H := 1
2

∫
Sη
|∇Φ|2dxdy +

∫
Sη

gy dxdy + κ

∫
T

√
1 + η2

x dx

kinetic energy + potential energy + capillary energy

Hamiltonian expressed in terms of (η, ψ)

H(η, ψ) = 1
2
∫
T ψ(x)G(η)ψ(x) dx + 1

2
∫
T gη2 dx + κ

∫
T

√
1 + η2

x dx

Dirichlet–Neumann operator (Craig-Sulem ’93)

G(η)ψ(x) :=
√
1 + η2

x ∂nΦ|y=η(x) = (Φy − ηx Φx )(x , η(x))
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Zakharov-Craig-Sulem formulation
∂tη=G(η)ψ= ∇L2

ψ H(η, ψ)

∂tψ=−gη − ψ2
x
2 +

(
G(η)ψ + ηxψx

)2
2(1 + η2

x ) + κηxx
(1 + η2

x )3/2 =−∇L2
η H(η, ψ)

Dirichlet–Neumann operator

G(η)ψ(x) :=
√
1 + η2

x ∂nΦ|y=η(x)

1 G(η) is linear in ψ, non-local,
2 self-adjoint with respect to L2(Tx )
3 G(η) ≥ 0, G(1) = 0
4 η 7→ G(η) nonlinear, smooth,
5 G(η) is pseudo-differential, G(η) = Dx tanh(hDx ) + OPS−∞

Calderon, Craig, Lannes, Metivier, Alazard, Burq, Zuily, Delort...
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Symmetries

Momentum

M(η, ψ) =
∫
T
ηx (x)ψ(x) dx

x -translation invariance

Invariant subspace: functions even in x . Standing waves
η(−x) = η(x) , ψ(−x) = ψ(x)
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Prime integral: mass ∫
T
η(x)dx

Phase space

η ∈ Hs
0(T) :=

{
η ∈ Hs(T) :

∫
T
η(x)dx = 0

}
u ∈ Hs(T) ⇔ u(x) =

∑
k∈Z

ukeikx ,
∑
k∈Z
|uk |2〈k〉2s =: ‖u‖2Hs < +∞

The variable ψ is defined modulo constants: only the velocity field
∇x ,y Φ has physical meaning.

ψ ∈ Ḣs(T) = Hs(T)/ ∼

u(x) ∼ v(x) ⇐⇒ u(x)− v(x) = c
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Linear water waves theory

Linearized system at (η, ψ) = (0, 0){
∂tη = G(0)ψ,
∂tψ = −gη + κηxx

Dirichlet-Neumann operator at the flat surface η = 0 is

G(0) = D tanh(hD) , D = ∂x
i = Op(ξ)ξ∈R

Fourier multiplier notation: given m : Z→ C
m(D)h =

∑
j∈Zm(j)hjeijx , h(x) =

∑
j∈Z hjeijx
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Linear water waves system

∂t
[ η
ψ

]
=
[

0 G(0)
−g+κ∂xx 0

][ η
ψ

]
Complex variable

u = Λ(D)η + iΛ−1(D)ψ , Λ(D) =
(

g+κD2

D tanh(hD)

)1/4

Linear Water Waves

ut + iω(D)u = 0, ω(D) =
√
D tanh(hD)(g + κD2)

Dispersion relation

ω(ξ) =
√
ξ tanh(hξ)(g + κξ2)
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∞-decoupled harmonic oscillators

u(t, x) =
∑
j∈Z

e−iω(j)tuj(0)eijx

Linear frequencies of oscillations

ω(j) =
√
j tanh(hj)(g + κj2) , j ∈ Z ,

All solutions are periodic, quasi-periodic, almost periodic in time
according to the irrationality properties of (ωj(h, g , κ))j∈Z

The Sobolev norm is constant
‖u(t, ·)‖Hs = ‖u(0, ·)‖Hs
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Nonlinear water waves

Main questions

1 For which time interval (−Tmax,Tmax) solutions of the
nonlinear water waves equations exist?

2 Are there periodic, quasi-periodic, almost periodic solutions
(thus global in time) of the nonlinear water waves equations?
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Major difficulties:

Gravity-Capillary WW are quasi-linear PDEs
ut + iω(D)u = N(u, ū) , ω(D) ∼ |D|3/2

N = quadratic nonlinearity with derivatives of order N(|D|3/2u)

Gravity WW are fully nonlinear PDEs
ut + iω(D)u = N(u, ū) , ω(D) ∼ |D|1/2

N = quadratic nonlinearity with derivatives of order N(∂xu)
Singular perturbation of the linear vector field iω(D)u

Periodic boundary conditions x ∈ T
NO dispersive effects of the linear PDE as for x ∈ R2, x ∈ R and
data decaying at infinity:
Global well-posedness: S.Wu, Germain-Masmoudi-Shatah,
Ionescu-Pusateri, Alazard-Delort, Ifrim-Tataru, Alazard-Burq-Zuily
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Nonlinear water waves, main results:

Long time existence/Birkhoff normal form:
For any small initial data of size ε the solution is defined for
long times Tε

1 Gravity-capillary:
M. Berti- J-M. Delort, ’17, for any h, most (g , κ), Tε ≥ cε−N

2 M. Berti, R. Feola, L. Franzoi, ’19,
for all g , κ, h > 0 then Tε ≥ cε−2

3 Gravity: M. Berti, R. Feola, F. Pusateri, ’18,
h = +∞, any g , then Tε ≥ cε−3

KAM: Existence of quasi-periodic solutions for
1 Gravity-capillary: Berti-Montalto, ’16,
2 Gravity: Baldi-Berti-Haus-Montalto, ’17,

solutions defined for all times, for "most" initial conditions
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Focus on long time existence/Birkhoff normal result 3

Proof of a conjecture of Zakharov-Dyanchenko ’94

Theorem (M. Berti, R. Feola, F. Pusateri, ’18 )
Informal statement:

1 The gravity water waves equations in h = +∞ are an
integrable system up to quartic terms O(u4)

2 The solutions with an initial datum u0 = O(ε) in Sobolev
spaces are defined for times Tε ≥ cε−3
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Resonances: dispersion relation ω(n) =
√
|n|

1) There are no 3-waves resonances:{
n1 ± n2 ± n3 = 0√
|n1| ±

√
|n2| ±

√
|n3| = 0

2) There are non-trivial 4 waves resonances:{
n1 − n2 + n3 − n4 = 0√
|n1| −

√
|n2|+

√
|n3| −

√
|n4| = 0

has many integer solutions, in addition to the trivial solutions
(k, k, j , j): the Benjamin-Feir resonances

n1 = −qm2, n2 = q(m+1)2, n3 = q(m2+m+1)2, n4 = q(m+1)2m2

q ∈ Z \ {0},m ∈ N
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Formal integrability at order 4: resonant system
There is a formal symplectic change of variables which transforms
the water-waves Hamiltonian into

H(4)
BNF =

∑
j∈Z\{0}

√
|j ||zj |2 + H(4)

ZD + · · ·

where

H(4)
ZD =

∑
σ1j1+σ2j2+σ3j3+σ4j4=0, σi =±1 ,

σ1ω(j1)+σ2ω(j2)+σ3ω(j3)+σ4ω(j4)=0

Hσ1,σ2,σ3,σ4
j1,j2,j3,j4 zσ1

j1 zσ2
j2 zσ3

j3 zσ4
j4

z+ = z , z− = z̄ There is a null condition

Theorem (Zakharov-Dyanchenko ’94)

The Hamiltonian
∑

j∈Z\{0}
√
|j ||zj |2 + H(4)

ZD is integrable, possesses
the actions |zj |2, j ∈ Z \ {0}, as prime integrals, and, in particular,
its flow preserves all Sobolev norms.
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Theorem (Birkhoff normal form for gravity WW, B-F-P, ’18)
There exists a bounded change of variables in Hs which
transforms the gravity water-waves equations with h = +∞ into

∂tz = i|D| 12 z + i∂z̄H(4)
ZD + X≥4(z)

where H(4)
BNF is the Zakharov-Dyanchenko Hamiltonian

H(4)
ZD(z , z̄) := 1

4π
∑
k∈Z
|k|3

(
|zk |4 − 2|zk |2|z−k |2

)
+ 1
π

∑
k1,k2∈Z, sgn (k1)=sgn (k2)

|k2|<|k1|

|k1||k2|2
(
− |z−k1 |

2|zk2 |
2 + |zk1 |

2|zk2 |
2)

which preserves all Sobolev norms, and X≥4(z) has energy
estimates in Hs :

Re
∫
T |D|sX≥4 · |D|sz dx ≤ C‖z‖5Ḣs .

Corollary: solutions with εu(0) ∈ Hs exist in Hs up to Tε ≥ cε−3
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Energy estimates of zt = X≥4(z)

How Sobolev norms evolve?
‖z‖2s =

∑
n∈Z\0 |n|2s |zn|2 = (|D|sz , |D|sz)L2

d
dt ‖z‖

2
s = (|D|szt , |D|sz)L2 + (|D|sz , |D|szt)L2

= 2Re(|D|sX≥4(z), |D|sz)L2

.s ‖z‖5s
not obvious because X≥4(z) is unbounded (order 1). If
‖z(0)‖s = ε then =⇒

The Sobolev norm ‖z(t)‖s = O(ε) for a time interval O(ε−3)
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=⇒ This rigorously justifies the formal Birkhoff
normal form expansions used successfully by
physicists!

In same spirit that Lindsted formal series in celestial mechanics
were rigorously justified a-posteriori by KAM theorem (Moser)
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Time of existence

1 Tε ≥ cε−1, local existence theory, S. Wu., Lindblad,
Coutand-Shkroller, Alazard-Burq-Zuily, . . .

2 Tε ≥ cε−2, S. Wu, Ifrim-Tataru, if h = +∞ there are no
"triple wave interactions" + quasi-linear modified energy

No solutions k1, k2, k3 ∈ Z \ 0 of{
|k1|

1
2 ± |k2|

1
2 ± |k3|

1
2 = 0

k1 ± k2 ± k3 = 0

3 Gravity-capillary waves Tε ≥ cε−N , ∀N, Berti-Delort ’17, we
erase parameters (g , κ) to avoid multiple wave interactions
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Berti-Feola-Franzoi, ’19:
For any value of g = gravity, κ = capillarity, h = depth, the
solutions of gravity-capillary water waves exist for

Tε ≥ cε−2

For general values of (g , h, κ), ωj =
√
j tanh(hj)(g + κj2)

There are 3-waves resonances (Wilton-ripples){
ωj1 ± ωj2 ± ωj3 = 0
j1 ± j2 ± j3 = 0

j1, j2, j3 ∈ Z \ 0 ,

But finitely many. Hamiltonian Birkhoff normal form.
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Global existence?

Question: Do these solutions exist for all times?

We do not know. Maybe not

Craig-Workfolk: for κ = 0, h = +∞ the water-waves PDEs are not
integrable at the fifth order Birkhoff normal form

(could be Chaotic but with well defined flow)
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Expected scenario for nearly-integrable Hamiltonian systems

1 KAM results: There are many solutions defined for all times:
selection of “initial conditions" giving rise to global
solutions

2 Long time existence: |t| ≤ cε−N . For longer times?
3 Arnold diffusion: What about a solution which does not

start on a KAM torus for times |t| > cε−N?
Chaos? Growth of Sobolev norms?
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Quasi-periodic solution with n frequencies of ut = X (u)

Definition
u(t, x) = U(ωt, x) where U(ϕ, x) : Tn × T→ R,

ω ∈ Rn(= frequency vector) is irrational ω · k 6= 0 , ∀k ∈ Zn \ {0}
=⇒ the linear flow {ωt}t∈R is dense on Tn

Global in time
If n = 1 then U(ωt, x) is time-periodic with period T = 2π/ω
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Periodic solutions: n = 1
Plotnikov-Toland: ’01
Gravity Water Waves with Finite depth
Iooss-Plotnikov-Toland ’04, Iooss-Plotnikov ’05-’09
Gravity Water Waves with Infinite depth
Completely resonant, infinite dimensional bifurcation equation
Alazard-Baldi ’15,
Capillary-gravity water waves with infinite depth

Quasi-Periodic solutions: n ≥ 2
Berti-Montalto ’16,
Gravity-Capillary Water Waves
Baldi-Berti-Haus-Montalto
Gravity Water Waves ’17
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Theorem (Baldi, Berti, Haus, Montalto, Inventiones Math. 2018 )
For every choice of finitely many tangential sites S ⊂ N \ {0}, there
exists s̄ > |S|+1

2 , ε0 ∈ (0, 1) such that: for all ξj ∈ (0, ε2
0), j ∈ S,

∃ a Cantor like set Gξ ⊂ [h1, h2] with asymptotically full measure
as ξ → 0, i.e. limξ→0 |Gξ| = h2 − h1, such that, for any depth
h ∈ Gξ, the gravity water waves equation has a
quasi-periodic standing wave solution (η, ψ) ∈ H s̄ of the form

η(ω̃jt, x) =
∑
j∈S

√
ξj cos(ω̃jt) cos(jx) + o(

√
|ξ|)

ψ(ω̃jt, x) = −
∑
j∈S

√
ξjω
−1
j sin(ω̃jt) cos(jx) + o(

√
|ξ|)

with frequencies ω̃j satisfying ω̃j − ωj(h)→ 0 as ξ → 0.
The solutions are linearly stable.
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Ideas of proof. Step 1) Poincaré-Birkhoff normal form

With a bounded and invertible (non symplectic) change of
variables we transform water-waves with h = +∞ into

Proposition (Poincaré-Birkhoff Normal Form for gravity WW)

∂tz = −i|D| 12 z − ζ(z)∂xz + r− 1
2
(z ;D)z + R res(z) + X≥4(z) (?)

1 ζ(z) =
∑

n 6=0 n|n||zn|2 ∈ R, constant in x and integrable
2 r− 1

2
(z ; ξ) =

∑
n 6=0 rn(ξ)|zn|2 symbol of order −1

2 constant in
x and integrable

3 ‖R res(z)‖Ḣ2s .s ‖z‖s0‖z‖2Ḣs , s ≥ s0 regularizing
4 X≥4(z) = O(z4) has order 1, it has energy estimates in Hs

5 (?) is in Poincaré-Birkhoff normal form up to O(z4)
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(?) is in Poincaré-Birkhoff normal form
The cubic vector field

ζ(z)∂xz + r− 1
2
(z ;D)z + R res(z)

commutes with i|D| 12 , i.e. in Fourier coordinates (?) is

żn = i
√
|n|zn +

∑
σ1n1+σ2n2+σ3n3=n,σi =± ,

σ1
√
|n1|+σ2

√
|n2|+σ3

√
|n3|=
√
|n|

aσ1,σ2,σ3
n1,n2,n3 zσ1

n1 z
σ2
n2 z

σ3
n3 , ∀n ∈ Z\{0}

Notation: z+ = z , z− = z̄

Rem. 1) ζ(z)∂xz and r− 1
2
(z ;D)z are in Birkhoff normal form:

formed by cubic monomial vector fields zk z̄kzn∂zn

Rem. 2) Benjamin-Feir z−m2z(m+1)2z(m2+m+1)2∂z(m+1)2m2 , m ∈ N
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Step 1-I) Birkhoff normal form up to regularizing terms

Performing paradifferential changes of variables, and thanks to
algebraic properties of WW, we transform WW in Birkhoff normal
form up to smoothing remainders:

∂tz = ζ(z)∂xz + i|D|
1
2 z + r− 1

2
(z ;D)z + R(z) + X≥4(z)

where
1 ζ(z) =

∑
n 6=0 n|n||zn|2 ∈ R, constant in x and integrable

2 r− 1
2
(z ; ξ) =

∑
n 6=0 rn(ξ)|zn|2 symbol of order −1

2 constant in
x and integrable

3 R(z) is a smoothing vector field, ‖R(z)‖2s .s ‖z‖2s
4 X≥4(z) admits energy estimates since it has a purely

imaginary symbol and it is of degree O(z4)
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Step 1-II) Poincaré-Birkhoff normal form on R(z)

Eliminate all the quadratic and cubic terms in R(z) which are
Birkhoff non-resonant
The loss of derivatives induced by the four-wave-interactions

|ωn1 + ωn2 − ωn3 − ωn| ≥
1

max (|n1|, |n2|, |n3|, |n|)τ

when the left hand side is not zero, are compensated by the fact
that R(z) is smoothing
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Step 2) Identification of the normal form

A purely algebraic unicity argument proves that

−ζ(z)∂xz + r− 1
2
(z ;D)z + R res(z) = i∂z̄H(4)

ZD

where H(4)
ZD is the fourth order formal Birkhoff normal form

Hamiltonian computed in Zakharov-Dyanchenko and
Craig-Workfolk

Remark 1. we do not make symplectic transformations but the
third order Birkhoff normal form is a-posteriori Hamiltonian
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Idea of proof
XH = XH2 + XH3 + XH4 + . . .

We did several transformations which admit a Taylor expansion in u
Regard it as the formal time 1-flow generated by the vector field

S = S2 + θS3 + . . .

Transformed vector field

XH2 + XH3 + [S2,XH2 ]︸ ︷︷ ︸
quadratic

+ XH4 + [S2,XH3 ] + 1
2 [S2, [S2,XH2 ]] + 1

2 [S3,XH2 ]︸ ︷︷ ︸
cubic

+ · · ·

=⇒ XH3 + [S2,XH2 ] = 0 ,

X3 := XH4 + [S2,XH3 ] + 1
2 [S2, [S2,XH2 ]] + 1

2 [S3,XH2 ]

= −ζ(z)∂xz + r− 1
2
(z ;D)z + R res(z)
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Since the adjoint operator [ · ,XH2 ] acting on quadratic monomial
vector fields satisfying momentum conservation is bijective

S2 = XF3 , H3 + {F3,H2} = 0.

Πker
(
uσ1

j1 u
σ2
j2 u

σ3
j3 ∂uσj

)
:=uσ1

j1 u
σ2
j2 u

σ3
j3 ∂uσj if − σω(j) + σ1ω(j1) + σ2ω(j2) + σ3ω(j3) = 0

0 otherwise ,

X3 = Πker(X3) = Πker
(
XH4 + [XF3 ,XH3 ] + 1

2 [XF3 , [XF3 ,XH2 ]]
)

= ΠkerXH4+{F3,H3}+ 1
2{F3,{F3,H2}}

because ΠKer[S3,XH2 ] = 0. This is the usual Hamiltonian normal
form of ZD.
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Thanks for your attention!
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Theorem (Berti-Feola-Franzoi, ’19)
For any κ, g , h > 0 there is s0 > 0 and, for any s ≥ s0., there are
ε0 > 0, c > 0,C > 0 such that, for any ε ∈]0, ε0[, any (η0, ψ0) in
Hs+ 1

4
0 (T,R)× Ḣs− 1

4 (T,R) with

‖η0‖
H

s+ 1
4

0

+ ‖ψ0‖Ḣs− 1
4
< ε

the gravity-capillary water waves equations have a unique classical
solution

(η, ψ) ∈ C0(]− Tε,Tε[,H
s+ 1

4
0 (T,R)× Ḣs− 1

4 (T,R)
)

with
Tε ≥ cε−2

satisfying the initial condition (η, ψ)|t=0 = (η0, ψ0).
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Theorem (Berti-Feola-Franzoi, ’19)
For all κ, g , h > 0, there exists a bounded change of variables in
Hs which transforms the gravity-capillary water-waves equations
into

∂tz = i|D| 12 z + i∂z̄H(3)
BNF + X≥3(z)

where

H(3)
BNF =

∑
σ1j1+σ2j2+σ2j3=0

σ1ω(j1)+σ2ω(j2)+σ3ω(j3)=0

Hσ1,σ2,σ3
j1,j2,j3 zσ1

j1 zσ2
j2 zσ3

j3

and X≥3(z) has energy estimates in Hs :

Re
∫
T
|D|sX≥3 · |D|sz dx ≤ C‖z‖4Ḣs .
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Wilton-ripples: integer solutions k1, k2, k3 ∈ Z \ 0 of{
ωk1 ± ωk2 ± ωk3 = 0
k1 ± k2 ± k3 = 0

are finitely many, max|k1|,|k2|,|k3| ≤ C

Setting zL :=
∑
|j|≤C zjeijx , zH :=

∑
|j|>C zjeijx

{
żL = iω(D)zL + i∂z̄H(3)

BNF (zL) + ΠL
(
X≥3

)
żH = iω(D)zH + ΠH

(
X≥3

)
.

{H(3)
BNF ,H

(2)} = 0 , H2(z) =
∑
j 6=0

ωj |zj |2 , H2(zL(t)) = H2(zL(0))

Then

‖z(t)‖2Ḣs ≤ C(s)‖z(0)‖2Ḣs + C(s)
∫ t

0
‖z(τ)‖4Ḣs dτ , ∀t ∈ [0,T ] .
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