Asset Prices in Segmented and Integrated Markets

Paolo Guasoni ${ }^{1,2}$ Kwok Chuen Wong ${ }^{2}$

Boston University ${ }^{1}$
Dublin City University ${ }^{2}$

New Challenges in Energy Markets
Data Analytics, Modelling and Numerics
BIRS, September $25^{\text {th }} 2019$

Outline

- Motivation:

Market Integration, Financialization of Commodities

- Model:

Equilibrium in Segmentation and Integration

- Results:

Asset Prices, Interest Rates, and Welfare in Segmentation and Integration.

- Exogenous vs Endogenous Integration.

Outline

- Motivation: Market Integration, Financialization of Commodities
- Model:

Equilibrium in Segmentation and Integration

- Results: Asset Prices, Interest Rates, and Welfare in Segmentation and Integration.
- Exogenous vs. Endogenous Integration.

Outline

- Motivation: Market Integration, Financialization of Commodities
- Model:

Equilibrium in Segmentation and Integration

- Results:

Asset Prices, Interest Rates, and Welfare in Segmentation and Integration.

- Exogenous vs. Endogenous Integration.

Outline

- Motivation: Market Integration, Financialization of Commodities
- Model:

Equilibrium in Segmentation and Integration

- Results:

Asset Prices, Interest Rates, and Welfare in Segmentation and Integration.

- Exogenous vs. Endogenous Integration.

Financialization of Commodities

- Participation of institutional investors to commodity futures since 2004. (Buyuksahin et al., 2008), (Irwin and Sanders, 2011).
- Before 2004, commodity futures uncorrelated with equities and each other. (Bodie and Rosansky, 1980), (Gorton and Rouwenhorst, 2006).
- After, highly correlated with equities and each other: "Financialization" Larger effect on index components (Tang and Xiong, 2012)
- Correlations now low again (Bhardwaj, Gorton, and Rouwenhorst, 2015) Commodity investors negligible for prices? (Hamilton and Wu, 2015)
- Not much theory. Financialization from benchmarking (Basak and Pavlova, 2016). Iterative schemes (Chan, Sircar, and Stein, 2015)

Financialization of Commodities

- Participation of institutional investors to commodity futures since 2004. (Buyuksahin et al., 2008), (Irwin and Sanders, 2011).
- Before 2004, commodity futures uncorrelated with equities and each other. (Bodie and Rosansky, 1980), (Gorton and Rouwenhorst, 2006).
- After, highly correlated with equities and each other: "Financialization" Larger effect on index components (Tang and Xiong, 2012).
- Correlations now low again (Bhardwaj, Gorton, and Rouwenhorst, 2015) Commodity investors negligible for prices? (Hamilton and Wu, 2015)
- Not much theory. Financialization from benchmarking (Basak and Pavlova, 2016). Iterative schemes (Chan, Sircar, and Stein, 2015)

Financialization of Commodities

- Participation of institutional investors to commodity futures since 2004. (Buyuksahin et al., 2008), (Irwin and Sanders, 2011).
- Before 2004, commodity futures uncorrelated with equities and each other. (Bodie and Rosansky, 1980), (Gorton and Rouwenhorst, 2006).
- After, highly correlated with equities and each other: "Financialization". Larger effect on index components (Tang and Xiong, 2012).
- Not much theory. Financialization from benchmarking (Basak and Pavlova, 2016). Iterative schemes (Chan, Sircar, and Stein, 2015)

Financialization of Commodities

- Participation of institutional investors to commodity futures since 2004. (Buyuksahin et al., 2008), (Irwin and Sanders, 2011).
- Before 2004, commodity futures uncorrelated with equities and each other. (Bodie and Rosansky, 1980), (Gorton and Rouwenhorst, 2006).
- After, highly correlated with equities and each other: "Financialization". Larger effect on index components (Tang and Xiong, 2012).
- Correlations now low again (Bhardwaj, Gorton, and Rouwenhorst, 2015). Commodity investors negligible for prices? (Hamilton and Wu, 2015)

Financialization of Commodities

- Participation of institutional investors to commodity futures since 2004. (Buyuksahin et al., 2008), (Irwin and Sanders, 2011).
- Before 2004, commodity futures uncorrelated with equities and each other. (Bodie and Rosansky, 1980), (Gorton and Rouwenhorst, 2006).
- After, highly correlated with equities and each other: "Financialization". Larger effect on index components (Tang and Xiong, 2012).
- Correlations now low again (Bhardwaj, Gorton, and Rouwenhorst, 2015). Commodity investors negligible for prices? (Hamilton and Wu, 2015)
- Not much theory. Financialization from benchmarking (Basak and Pavlova, 2016). Iterative schemes (Chan, Sircar, and Stein, 2015)

Market Integration and Orchards

- Asset pricing with multiple cash flows. Menzly et al. (2004), Santos and Veronesi (2006).
- International integration.

Pavlova and Rigobon (2007), Bhamra, Coeurdacier, Guibaud (2014).

- Multiple Lucas trees.

Cochrane, Longstaff, Santa-Clara (2007), Martin (2012).

- Volatility-stabilized models.

Karatzas et al. (2005, 2008), Pal (2011), Cuchiero (2017)

Market Integration and Orchards

- Asset pricing with multiple cash flows. Menzly et al. (2004), Santos and Veronesi (2006).
- International integration.

Pavlova and Rigobon (2007), Bhamra, Coeurdacier, Guibaud (2014).

- Multiple Lucas trees.

Cochrane, Longstaff, Santa-Clara (2007), Martin (2012).

- Volatility-stabilized models.

Karatzas et al. (2005, 2008), Pal (2011), Cuchiero (2017)

Market Integration and Orchards

- Asset pricing with multiple cash flows. Menzly et al. (2004), Santos and Veronesi (2006).
- International integration.

Pavlova and Rigobon (2007), Bhamra, Coeurdacier, Guibaud (2014).

- Multiple Lucas trees.

Cochrane, Longstaff, Santa-Clara (2007), Martin (2012).

- Volatility-stabilized models.

Karatzas et al. (2005, 2008), Pal (2011), Cuchiero (2017)

Market Integration and Orchards

- Asset pricing with multiple cash flows. Menzly et al. (2004), Santos and Veronesi (2006).
- International integration.

Pavlova and Rigobon (2007), Bhamra, Coeurdacier, Guibaud (2014).

- Multiple Lucas trees.

Cochrane, Longstaff, Santa-Clara (2007), Martin (2012).

- Volatility-stabilized models. Karatzas et al. (2005, 2008), Pal (2011), Cuchiero (2017)

Islands and Trees

- Two islands.
- Two trees, one for each island.
- Each tree feeds its island. People on both islands are similar.
- Crops fluctuate independently, but have similar long-term growth
- Perishable crops. Must be consumed immediately.
- Trees are the only property on the island.
- What is the price of each tree?
- What if a bridge is built?
- Find a model that is as simple as possible, but not simpler.

Islands and Trees

- Two islands.
- Two trees, one for each island.
- Each tree feeds its island. People on both islands are similar.
- Crops fluctuate independently, but have similar long-term growth.
- Perishable crops. Must be consumed immediately.
- Trees are the only property on the island.
- What is the price of each tree?
- What if a bridge is built?
- Find a model that is as simple as possible, but not simpler.

Islands and Trees

- Two islands.
- Two trees, one for each island.
- Each tree feeds its island. People on both islands are similar.
- Crops fluctuate independently, but have similar long-term growth.
- Perishable crops. Must be consumed immediately.
- Trees are the only property on the island.
- What is the price of each tree?
- What if a bridge is built?
- Find a model that is as simple as possible, but not simpler.

Islands and Trees

- Two islands.
- Two trees, one for each island.
- Each tree feeds its island. People on both islands are similar.
- Crops fluctuate independently, but have similar long-term growth.
- Perishable crops. Must be consumed immediately.
- Trees are the only property on the island.
- What is the price of each tree?
- What if a bridge is built?
- Find a model that is as simple as possible, but not simpler.

Islands and Trees

- Two islands.
- Two trees, one for each island.
- Each tree feeds its island. People on both islands are similar.
- Crops fluctuate independently, but have similar long-term growth.
- Perishable crops. Must be consumed immediately.
- Trees are the only property on the island.
- What is the price of each tree?
- What if a bridge is built?
- Find a model that is as simple as possible, but not simpler.

Islands and Trees

- Two islands.
- Two trees, one for each island.
- Each tree feeds its island. People on both islands are similar.
- Crops fluctuate independently, but have similar long-term growth.
- Perishable crops. Must be consumed immediately.
- Trees are the only property on the island.
- What is the price of each tree?
- What if a bridge is built?
- Find a model that is as simple as possible, but not simpler.

Islands and Trees

- Two islands.
- Two trees, one for each island.
- Each tree feeds its island. People on both islands are similar.
- Crops fluctuate independently, but have similar long-term growth.
- Perishable crops. Must be consumed immediately.
- Trees are the only property on the island.
- What is the price of each tree?
- What if a bridge is built?
- Find a model that is as simple as possible, but not simpler.

Islands and Trees

- Two islands.
- Two trees, one for each island.
- Each tree feeds its island. People on both islands are similar.
- Crops fluctuate independently, but have similar long-term growth.
- Perishable crops. Must be consumed immediately.
- Trees are the only property on the island.
- What is the price of each tree?
- What if a bridge is built?
- Find a model that is as simple as possible, but not simpler.

Islands and Trees

- Two islands.
- Two trees, one for each island.
- Each tree feeds its island. People on both islands are similar.
- Crops fluctuate independently, but have similar long-term growth.
- Perishable crops. Must be consumed immediately.
- Trees are the only property on the island.
- What is the price of each tree?
- What if a bridge is built?
- Find a model that is as simple as possible, but not simpler.

Simplest - and simpler

- Natural attempt.
- Dividend streams as linear, independent Brownian motions:

$$
\begin{aligned}
& D_{t}^{(1)}=D_{0}^{(1)}+\mu_{1} t+\sigma_{1} B_{t}^{(1)} \\
& D_{t}^{(2)}=D_{0}^{(2)}+\mu_{2} t+\sigma_{2} B_{t}^{(2)} .
\end{aligned}
$$

Total dividend also linear Brownian motion.

- Exponential utility $U(x)=-e^{-\alpha x}$.
- Both in segmentation and integration, equilibrium prices of the form

$$
P_{t}^{(1)}=a_{1}+b_{1} D_{t}^{(1)} \quad P_{t}^{(2)}=a_{2}+b_{2} D_{t}^{(2)}
$$

- Uncorrelated before, uncorrelated after. Nothing to see.
- Exponential utility does not see uncorrelated endowments.
- Model too simple to capture markets' interactions.

Simplest - and simpler

- Natural attempt.
- Dividend streams as linear, independent Brownian motions:

$$
\begin{aligned}
& D_{t}^{(1)}=D_{0}^{(1)}+\mu_{1} t+\sigma_{1} B_{t}^{(1)} \\
& D_{t}^{(2)}=D_{0}^{(2)}+\mu_{2} t+\sigma_{2} B_{t}^{(2)}
\end{aligned}
$$

Total dividend also linear Brownian motion.

- Both in segmentation and integration, equilibrium prices of the form

- Uncorrelated before, uncorrelated after. Nothing to see.
- Exponential utility does not see uncorrelated endowments.
- Model too simple to capture markets' interactions.

Simplest - and simpler

- Natural attempt.
- Dividend streams as linear, independent Brownian motions:

$$
\begin{aligned}
& D_{t}^{(1)}=D_{0}^{(1)}+\mu_{1} t+\sigma_{1} B_{t}^{(1)} \\
& D_{t}^{(2)}=D_{0}^{(2)}+\mu_{2} t+\sigma_{2} B_{t}^{(2)} .
\end{aligned}
$$

Total dividend also linear Brownian motion.

- Exponential utility $U(x)=-e^{-\alpha x}$.
- Both in segmentation and integration, equilibrium prices of the form

- Uncorrelated before, uncorrelated after. Nothing to see.
- Exponential utility does not see uncorrelated endowments.
- Model too simple to capture markets' interactions.

Simplest - and simpler

- Natural attempt.
- Dividend streams as linear, independent Brownian motions:

$$
\begin{aligned}
& D_{t}^{(1)}=D_{0}^{(1)}+\mu_{1} t+\sigma_{1} B_{t}^{(1)} \\
& D_{t}^{(2)}=D_{0}^{(2)}+\mu_{2} t+\sigma_{2} B_{t}^{(2)}
\end{aligned}
$$

Total dividend also linear Brownian motion.

- Exponential utility $U(x)=-e^{-\alpha x}$.
- Both in segmentation and integration, equilibrium prices of the form

$$
P_{t}^{(1)}=a_{1}+b_{1} D_{t}^{(1)} \quad P_{t}^{(2)}=a_{2}+b_{2} D_{t}^{(2)}
$$

- Uncorrelated before, uncorrelated after. Nothing to see.
- Exponential utility does not see uncorrelated endowments.
- Model too simple to capture markets' interactions.

Simplest - and simpler

- Natural attempt.
- Dividend streams as linear, independent Brownian motions:

$$
\begin{aligned}
& D_{t}^{(1)}=D_{0}^{(1)}+\mu_{1} t+\sigma_{1} B_{t}^{(1)} \\
& D_{t}^{(2)}=D_{0}^{(2)}+\mu_{2} t+\sigma_{2} B_{t}^{(2)}
\end{aligned}
$$

Total dividend also linear Brownian motion.

- Exponential utility $U(x)=-e^{-\alpha x}$.
- Both in segmentation and integration, equilibrium prices of the form

$$
P_{t}^{(1)}=a_{1}+b_{1} D_{t}^{(1)} \quad P_{t}^{(2)}=a_{2}+b_{2} D_{t}^{(2)}
$$

- Uncorrelated before, uncorrelated after. Nothing to see.
- Exponential utility does not see uncorrelated endowments.
- Model too simple to capture markets' interactions.

Simplest - and simpler

- Natural attempt.
- Dividend streams as linear, independent Brownian motions:

$$
\begin{aligned}
& D_{t}^{(1)}=D_{0}^{(1)}+\mu_{1} t+\sigma_{1} B_{t}^{(1)} \\
& D_{t}^{(2)}=D_{0}^{(2)}+\mu_{2} t+\sigma_{2} B_{t}^{(2)}
\end{aligned}
$$

Total dividend also linear Brownian motion.

- Exponential utility $U(x)=-e^{-\alpha x}$.
- Both in segmentation and integration, equilibrium prices of the form

$$
P_{t}^{(1)}=a_{1}+b_{1} D_{t}^{(1)} \quad P_{t}^{(2)}=a_{2}+b_{2} D_{t}^{(2)}
$$

- Uncorrelated before, uncorrelated after. Nothing to see.
- Exponential utility does not see uncorrelated endowments.
- Model too simple to capture markets' interactions.

Simplest - and simpler

- Natural attempt.
- Dividend streams as linear, independent Brownian motions:

$$
\begin{aligned}
& D_{t}^{(1)}=D_{0}^{(1)}+\mu_{1} t+\sigma_{1} B_{t}^{(1)} \\
& D_{t}^{(2)}=D_{0}^{(2)}+\mu_{2} t+\sigma_{2} B_{t}^{(2)}
\end{aligned}
$$

Total dividend also linear Brownian motion.

- Exponential utility $U(x)=-e^{-\alpha x}$.
- Both in segmentation and integration, equilibrium prices of the form

$$
P_{t}^{(1)}=a_{1}+b_{1} D_{t}^{(1)} \quad P_{t}^{(2)}=a_{2}+b_{2} D_{t}^{(2)}
$$

- Uncorrelated before, uncorrelated after. Nothing to see.
- Exponential utility does not see uncorrelated endowments.
- Model too simple to capture markets' interactions.

One Tree

- Continuous-time version of Lucas' tree.
- One asset paying dividend stream D_{t}

$$
d D_{t}=\mu D_{t} d t+\sigma D_{t} d B_{t}
$$

- Representative agent with risk aversion γ and impatience β.
- Asset price and safe rate:

$$
r_{0}=\beta+\gamma \mu-\gamma(\gamma+1) \frac{\sigma^{2}}{2}
$$

- Constant rate and price-dividend ratio.
- Price equal to expected, risk-adjusted discounted dividends.
- Problem with multiple trees:

Dividends grow geometrically, consumption aggregation is additive.

- How to make it tractable?

One Tree

- Continuous-time version of Lucas' tree.
- One asset paying dividend stream D_{t}

$$
d D_{t}=\mu D_{t} d t+\sigma D_{t} d B_{t}
$$

- Representative agent with risk aversion γ and impatience β.
- Asset price and safe rate:

- Constant rate and price-dividend ratio.
- Price equal to expected, risk-adjusted discounted dividends.
- Problem with multiple trees:

Dividends grow geometrically, consumption aggregation is additive.

- How to make it tractable?

One Tree

- Continuous-time version of Lucas' tree.
- One asset paying dividend stream D_{t}

$$
d D_{t}=\mu D_{t} d t+\sigma D_{t} d B_{t}
$$

- Representative agent with risk aversion γ and impatience β.
- Asset price and safe rate:

- Constant rate and price-dividend ratio.
- Price equal to expected, risk-adjusted discounted dividends.
- Problem with multiple trees: Dividends grow geometrically, consumption aggregation is additive.
- How to make it tractable?

One Tree

- Continuous-time version of Lucas' tree.
- One asset paying dividend stream D_{t}

$$
d D_{t}=\mu D_{t} d t+\sigma D_{t} d B_{t}
$$

- Representative agent with risk aversion γ and impatience β.
- Asset price and safe rate:

$$
\begin{aligned}
\frac{P_{t}}{D_{t}} & =\frac{1}{r_{0}-\mu+\gamma \sigma^{2}} \\
r_{0} & =\beta+\gamma \mu-\gamma(\gamma+1) \frac{\sigma^{2}}{2}
\end{aligned}
$$

- Constant rate and price-dividend ratio.
- Price equal to expected, risk-adjusted discounted dividends.
- Problem with multiple trees: Dividends grow geometrically, consumption aggregation is additive.
- How to make it tractable?

One Tree

- Continuous-time version of Lucas' tree.
- One asset paying dividend stream D_{t}

$$
d D_{t}=\mu D_{t} d t+\sigma D_{t} d B_{t}
$$

- Representative agent with risk aversion γ and impatience β.
- Asset price and safe rate:

$$
\begin{aligned}
\frac{P_{t}}{D_{t}} & =\frac{1}{r_{0}-\mu+\gamma \sigma^{2}} \\
r_{0} & =\beta+\gamma \mu-\gamma(\gamma+1) \frac{\sigma^{2}}{2}
\end{aligned}
$$

- Constant rate and price-dividend ratio.
- Price equal to expected, risk-adjusted discounted dividends.
- Problem with multiple trees:

One Tree

- Continuous-time version of Lucas' tree.
- One asset paying dividend stream D_{t}

$$
d D_{t}=\mu D_{t} d t+\sigma D_{t} d B_{t}
$$

- Representative agent with risk aversion γ and impatience β.
- Asset price and safe rate:

$$
\begin{aligned}
\frac{P_{t}}{D_{t}} & =\frac{1}{r_{0}-\mu+\gamma \sigma^{2}} \\
r_{0} & =\beta+\gamma \mu-\gamma(\gamma+1) \frac{\sigma^{2}}{2}
\end{aligned}
$$

- Constant rate and price-dividend ratio.
- Price equal to expected, risk-adjusted discounted dividends.
- Problem with multiple trees: Dividends grow geometrically, consumption aggregation is additive.
- How to make it tractable?

One Tree

- Continuous-time version of Lucas' tree.
- One asset paying dividend stream D_{t}

$$
d D_{t}=\mu D_{t} d t+\sigma D_{t} d B_{t}
$$

- Representative agent with risk aversion γ and impatience β.
- Asset price and safe rate:

$$
\begin{aligned}
\frac{P_{t}}{D_{t}} & =\frac{1}{r_{0}-\mu+\gamma \sigma^{2}} \\
r_{0} & =\beta+\gamma \mu-\gamma(\gamma+1) \frac{\sigma^{2}}{2}
\end{aligned}
$$

- Constant rate and price-dividend ratio.
- Price equal to expected, risk-adjusted discounted dividends.
- Problem with multiple trees:

Dividends grow geometrically, consumption aggregation is additive.

- How to make it tractable?

One Tree

- Continuous-time version of Lucas' tree.
- One asset paying dividend stream D_{t}

$$
d D_{t}=\mu D_{t} d t+\sigma D_{t} d B_{t}
$$

- Representative agent with risk aversion γ and impatience β.
- Asset price and safe rate:

$$
\begin{aligned}
\frac{P_{t}}{D_{t}} & =\frac{1}{r_{0}-\mu+\gamma \sigma^{2}} \\
r_{0} & =\beta+\gamma \mu-\gamma(\gamma+1) \frac{\sigma^{2}}{2}
\end{aligned}
$$

- Constant rate and price-dividend ratio.
- Price equal to expected, risk-adjusted discounted dividends.
- Problem with multiple trees:

Dividends grow geometrically, consumption aggregation is additive.

- How to make it tractable?

Sum and Share

- Geometric Brownian motion for total dividend. Jacobi process for dividend share of first region.

$$
\begin{aligned}
& d D_{t}=\mu D_{t} d t+\sigma D_{t} d B_{t}^{D} \\
& d X_{t}=\kappa\left(w-X_{t}\right) d t+\sigma \sqrt{X_{t}\left(1-X_{t}\right)} d B_{t}^{X}
\end{aligned}
$$

- B^{D}, B^{X} independent Brownian motions.
- To ensure $X_{t} \in(0,1)$ a.s. for all t, assume

Easy to satisfy for typical parameters.

- Note same parameter σ in both equations. Why?

Sum and Share

- Geometric Brownian motion for total dividend. Jacobi process for dividend share of first region.

$$
\begin{aligned}
& d D_{t}=\mu D_{t} d t+\sigma D_{t} d B_{t}^{D} \\
& d X_{t}=\kappa\left(w-X_{t}\right) d t+\sigma \sqrt{X_{t}\left(1-X_{t}\right)} d B_{t}^{X}
\end{aligned}
$$

- $\mu, \sigma>0, w \in(0,1)$.
- B^{D}, B^{X} independent Brownian motions.
- To ensure $X_{t} \in(0,1)$ a.s. for all t, assume

Easy to satisfy for typical parameters.

- Note same parameter σ in both equations. Why?

Sum and Share

- Geometric Brownian motion for total dividend. Jacobi process for dividend share of first region.

$$
\begin{aligned}
& d D_{t}=\mu D_{t} d t+\sigma D_{t} d B_{t}^{D} \\
& d X_{t}=\kappa\left(w-X_{t}\right) d t+\sigma \sqrt{X_{t}\left(1-X_{t}\right)} d B_{t}^{X}
\end{aligned}
$$

- $\mu, \sigma>0, w \in(0,1)$.
- B^{D}, B^{X} independent Brownian motions.
- To ensure $X_{t} \in(0,1)$ a.s. for all t, assume

Easy to satisfy for typical parameters.

- Note same parameter σ in both equations. Why?

Sum and Share

- Geometric Brownian motion for total dividend. Jacobi process for dividend share of first region.

$$
\begin{aligned}
& d D_{t}=\mu D_{t} d t+\sigma D_{t} d B_{t}^{D} \\
& d X_{t}=\kappa\left(w-X_{t}\right) d t+\sigma \sqrt{X_{t}\left(1-X_{t}\right)} d B_{t}^{X}
\end{aligned}
$$

- $\mu, \sigma>0, w \in(0,1)$.
- B^{D}, B^{X} independent Brownian motions.
- To ensure $X_{t} \in(0,1)$ a.s. for all t, assume

$$
\frac{\sigma^{2}}{2 \kappa}<w<1-\frac{\sigma^{2}}{2 \kappa}
$$

Easy to satisfy for typical parameters.

- Note same parameter σ in both equations. Why?

Sum and Share

- Geometric Brownian motion for total dividend. Jacobi process for dividend share of first region.

$$
\begin{aligned}
& d D_{t}=\mu D_{t} d t+\sigma D_{t} d B_{t}^{D} \\
& d X_{t}=\kappa\left(w-X_{t}\right) d t+\sigma \sqrt{X_{t}\left(1-X_{t}\right)} d B_{t}^{X}
\end{aligned}
$$

- $\mu, \sigma>0, w \in(0,1)$.
- B^{D}, B^{X} independent Brownian motions.
- To ensure $X_{t} \in(0,1)$ a.s. for all t, assume

$$
\frac{\sigma^{2}}{2 \kappa}<w<1-\frac{\sigma^{2}}{2 \kappa}
$$

Easy to satisfy for typical parameters.

- Note same parameter σ in both equations. Why?

Dividends for Regions

- Implied dividend streams $D_{t}^{(1)}=D_{t} X_{t}$ and $D_{t}^{(2)}=D_{t}\left(1-X_{t}\right)$

$$
\begin{aligned}
& d D_{t}^{(1)}=\left(\left(\mu-\kappa W_{2}\right) D_{t}^{(1)}+\kappa W_{1} D_{t}^{(2)}\right) d t+\sigma \sqrt{D_{t}^{(1)}\left(D_{t}^{(1)}+D_{t}^{(2)}\right)} d B_{t}^{(1)} \\
& d D_{t}^{(2)}=\left(\kappa w_{2} D_{t}^{(1)}+\left(\mu-\kappa W_{1}\right) D_{t}^{(2)}\right) d t+\sigma \sqrt{D_{t}^{(2)}\left(D_{t}^{(1)}+D_{t}^{(2)}\right)} d B_{t}^{(2)}
\end{aligned}
$$

where $w_{1}:=w, w_{2}:=1-w$.
Brownian motions $B^{(1)}, B^{(2)}$ are independent.
Dividend shocks to different regions uncorrelated.
Reason to use the same σ in both previous equations.

- For $\kappa=\mu$, volatility-stabilized process.
- Used here for dividends rather than prices.
- Regions symmetric for $w=1 / 2$. w controls relative long-term weight.
- Drifts and volatilities higher for smaller region, e.g.,

Dividends for Regions

- Implied dividend streams $D_{t}^{(1)}=D_{t} X_{t}$ and $D_{t}^{(2)}=D_{t}\left(1-X_{t}\right)$

$$
\begin{aligned}
& d D_{t}^{(1)}=\left(\left(\mu-\kappa W_{2}\right) D_{t}^{(1)}+\kappa W_{1} D_{t}^{(2)}\right) d t+\sigma \sqrt{D_{t}^{(1)}\left(D_{t}^{(1)}+D_{t}^{(2)}\right)} d B_{t}^{(1)} \\
& d D_{t}^{(2)}=\left(\kappa W_{2} D_{t}^{(1)}+\left(\mu-\kappa W_{1}\right) D_{t}^{(2)}\right) d t+\sigma \sqrt{D_{t}^{(2)}\left(D_{t}^{(1)}+D_{t}^{(2)}\right)} d B_{t}^{(2)}
\end{aligned}
$$

where $w_{1}:=w, w_{2}:=1-w$.

- Brownian motions $B^{(1)}, B^{(2)}$ are independent. Dividend shocks to different regions uncorrelated. Reason to use the same σ in both previous equations.
- Used here for dividends rather than prices.
- Regions symmetric for $w=1 / 2 . w$ controls relative long-term weight.
- Drifts and volatilities higher for smaller region, e.g.,

Dividends for Regions

- Implied dividend streams $D_{t}^{(1)}=D_{t} X_{t}$ and $D_{t}^{(2)}=D_{t}\left(1-X_{t}\right)$

$$
\begin{aligned}
& d D_{t}^{(1)}=\left(\left(\mu-\kappa W_{2}\right) D_{t}^{(1)}+\kappa W_{1} D_{t}^{(2)}\right) d t+\sigma \sqrt{D_{t}^{(1)}\left(D_{t}^{(1)}+D_{t}^{(2)}\right)} d B_{t}^{(1)} \\
& d D_{t}^{(2)}=\left(\kappa W_{2} D_{t}^{(1)}+\left(\mu-\kappa W_{1}\right) D_{t}^{(2)}\right) d t+\sigma \sqrt{D_{t}^{(2)}\left(D_{t}^{(1)}+D_{t}^{(2)}\right)} d B_{t}^{(2)}
\end{aligned}
$$

where $w_{1}:=w, w_{2}:=1-w$.

- Brownian motions $B^{(1)}, B^{(2)}$ are independent. Dividend shocks to different regions uncorrelated. Reason to use the same σ in both previous equations.
- For $\kappa=\mu$, volatility-stabilized process.
- Regions symmetric for $w=1 / 2 . w$ controls relative long-term weight.
- Drifts and volatilities higher for smaller region, e.g.,

Dividends for Regions

- Implied dividend streams $D_{t}^{(1)}=D_{t} X_{t}$ and $D_{t}^{(2)}=D_{t}\left(1-X_{t}\right)$

$$
\begin{aligned}
& d D_{t}^{(1)}=\left(\left(\mu-\kappa W_{2}\right) D_{t}^{(1)}+\kappa W_{1} D_{t}^{(2)}\right) d t+\sigma \sqrt{D_{t}^{(1)}\left(D_{t}^{(1)}+D_{t}^{(2)}\right)} d B_{t}^{(1)} \\
& d D_{t}^{(2)}=\left(\kappa W_{2} D_{t}^{(1)}+\left(\mu-\kappa W_{1}\right) D_{t}^{(2)}\right) d t+\sigma \sqrt{D_{t}^{(2)}\left(D_{t}^{(1)}+D_{t}^{(2)}\right)} d B_{t}^{(2)}
\end{aligned}
$$

where $w_{1}:=w, w_{2}:=1-w$.

- Brownian motions $B^{(1)}, B^{(2)}$ are independent. Dividend shocks to different regions uncorrelated. Reason to use the same σ in both previous equations.
- For $\kappa=\mu$, volatility-stabilized process.
- Used here for dividends rather than prices.
- Drifts and volatilities higher for smaller region, e.g.,

Dividends for Regions

- Implied dividend streams $D_{t}^{(1)}=D_{t} X_{t}$ and $D_{t}^{(2)}=D_{t}\left(1-X_{t}\right)$

$$
\begin{aligned}
& d D_{t}^{(1)}=\left(\left(\mu-\kappa W_{2}\right) D_{t}^{(1)}+\kappa W_{1} D_{t}^{(2)}\right) d t+\sigma \sqrt{D_{t}^{(1)}\left(D_{t}^{(1)}+D_{t}^{(2)}\right)} d B_{t}^{(1)} \\
& d D_{t}^{(2)}=\left(\kappa w_{2} D_{t}^{(1)}+\left(\mu-\kappa W_{1}\right) D_{t}^{(2)}\right) d t+\sigma \sqrt{D_{t}^{(2)}\left(D_{t}^{(1)}+D_{t}^{(2)}\right)} d B_{t}^{(2)}
\end{aligned}
$$

where $w_{1}:=w, w_{2}:=1-w$.

- Brownian motions $B^{(1)}, B^{(2)}$ are independent. Dividend shocks to different regions uncorrelated. Reason to use the same σ in both previous equations.
- For $\kappa=\mu$, volatility-stabilized process.
- Used here for dividends rather than prices.
- Regions symmetric for $w=1 / 2 . w$ controls relative long-term weight.

Dividends for Regions

- Implied dividend streams $D_{t}^{(1)}=D_{t} X_{t}$ and $D_{t}^{(2)}=D_{t}\left(1-X_{t}\right)$

$$
\begin{aligned}
& d D_{t}^{(1)}=\left(\left(\mu-\kappa W_{2}\right) D_{t}^{(1)}+\kappa W_{1} D_{t}^{(2)}\right) d t+\sigma \sqrt{D_{t}^{(1)}\left(D_{t}^{(1)}+D_{t}^{(2)}\right)} d B_{t}^{(1)} \\
& d D_{t}^{(2)}=\left(\kappa w_{2} D_{t}^{(1)}+\left(\mu-\kappa W_{1}\right) D_{t}^{(2)}\right) d t+\sigma \sqrt{D_{t}^{(2)}\left(D_{t}^{(1)}+D_{t}^{(2)}\right)} d B_{t}^{(2)}
\end{aligned}
$$

where $w_{1}:=w, w_{2}:=1-w$.

- Brownian motions $B^{(1)}, B^{(2)}$ are independent.

Dividend shocks to different regions uncorrelated.
Reason to use the same σ in both previous equations.

- For $\kappa=\mu$, volatility-stabilized process.
- Used here for dividends rather than prices.
- Regions symmetric for $w=1 / 2 . w$ controls relative long-term weight.
- Drifts and volatilities higher for smaller region, e.g.,

$$
\frac{d D_{t}^{(1)}}{D_{t}^{(1)}}=\left(\mu-\kappa(1-w)+\kappa w \frac{D_{t}^{(2)}}{D_{t}^{(1)}}\right) d t+\sigma \sqrt{1+\frac{D_{t}^{(2)}}{D_{t}^{(1)}}} d B_{t}^{(1)}
$$

Equilibria in Segmentation and Integration

- Segmentation equilibrium for region $i=1,2$: pair of processes $\left(r_{t}^{(i)}, P_{t}^{(i)}\right)_{t \geq 0}$ such that solution to optimal consumption-investment problem

$$
\max _{c \in \mathcal{C}, \pi \in \mathcal{P}} \mathbb{E}\left[\int_{0}^{\infty} e^{-\beta s} \frac{c_{s}^{1-\gamma}}{1-\gamma} d s\right]
$$

with interest rate r^{i} and asset price $P^{(i)}$, hence with wealth $\left(X_{t}\right)_{t \geq 0}$ satisfying budget equation

$$
d X_{t}=r_{t}^{(i)}\left(X_{t}-\varphi_{t} P_{t}^{(i)}\right) d t+\varphi_{t} d P_{t}^{(i)}-c_{t} d t
$$

is well-posed and has solution $c_{t}=D_{t}^{i}$ and $\varphi_{t}=1$.

$$
\begin{aligned}
& \text { Integration equilibrium: triplet of adapted processes }\left(\bar{r}_{t}, \bar{P}_{t}^{(1)}, \bar{P}_{t}^{(2)}\right)_{t \geq 0} \\
& \text { such that solution to same optimal consumption-investment problem with }
\end{aligned}
$$

$$
\text { interest rate } r \text { and asset prices } \bar{P}^{(1)}, \bar{P}^{(2)} \text {, hence with wealth process }
$$

\square

Equilibria in Segmentation and Integration

- Segmentation equilibrium for region $i=1,2$: pair of processes $\left(r_{t}^{(i)}, P_{t}^{(i)}\right)_{t \geq 0}$ such that solution to optimal consumption-investment problem

$$
\max _{c \in \mathcal{C}, \pi \in \mathcal{P}} \mathbb{E}\left[\int_{0}^{\infty} e^{-\beta s} \frac{c_{s}^{1-\gamma}}{1-\gamma} d s\right]
$$

with interest rate r^{i} and asset price $P^{(i)}$, hence with wealth $\left(X_{t}\right)_{t \geq 0}$ satisfying budget equation

$$
d X_{t}=r_{t}^{(i)}\left(X_{t}-\varphi_{t} P_{t}^{(i)}\right) d t+\varphi_{t} d P_{t}^{(i)}-c_{t} d t
$$

is well-posed and has solution $c_{t}=D_{t}^{i}$ and $\varphi_{t}=1$.

- Market-clearing conditions for consumption and investment.
such that solution to same optimal consumption-investment problem with interest rate r and asset prices $\bar{P}^{(1)}, \bar{P}^{(2)}$, hence with wealth process $\left(X_{t}\right)_{t>0}$ satisfying

Equilibria in Segmentation and Integration

- Segmentation equilibrium for region $i=1,2$: pair of processes $\left(r_{t}^{(i)}, P_{t}^{(i)}\right)_{t \geq 0}$ such that solution to optimal consumption-investment problem

$$
\max _{c \in \mathcal{C}, \pi \in \mathcal{P}} \mathbb{E}\left[\int_{0}^{\infty} e^{-\beta s} \frac{c_{s}^{1-\gamma}}{1-\gamma} d s\right]
$$

with interest rate r^{i} and asset price $P^{(i)}$, hence with wealth $\left(X_{t}\right)_{t \geq 0}$ satisfying budget equation

$$
d X_{t}=r_{t}^{(i)}\left(X_{t}-\varphi_{t} P_{t}^{(i)}\right) d t+\varphi_{t} d P_{t}^{(i)}-c_{t} d t
$$

is well-posed and has solution $c_{t}=D_{t}^{i}$ and $\varphi_{t}=1$.

- Market-clearing conditions for consumption and investment.
- Integration equilibrium: triplet of adapted processes $\left(\bar{r}_{t}, \bar{P}_{t}^{(1)}, \bar{P}_{t}^{(2)}\right)_{t \geq 0}$ such that solution to same optimal consumption-investment problem with interest rate r and asset prices $\bar{P}^{(1)}, \bar{P}^{(2)}$, hence with wealth process $\left(X_{t}\right)_{t \geq 0}$ satisfying

$$
d X_{t}=\bar{r}_{t}\left(X_{t}-\varphi_{t}^{(1)} \bar{P}_{t}^{(1)}-\varphi_{t}^{(2)} \bar{P}_{t}^{(2)}\right) d t+\varphi_{t}^{(1)} d \bar{P}_{t}^{(1)}+\varphi_{t}^{(2)} d \bar{P}_{t}^{(2)}-c_{t} d t
$$

is well-posed and has solution $c_{t}=D_{t}^{(1)}+D_{t}^{(2)}, \varphi_{t}^{(1)} \Rightarrow \varphi_{t}^{(2)}=1 . \equiv$

Present Value Relation

Proposition

Under the well-posedness assumption

$$
\theta:=\beta-(1-\gamma) \mu+\gamma(1-\gamma) \frac{\sigma^{2}}{2}>0
$$

the unique equilibrium asset prices are:

$$
\begin{array}{lll}
P_{t}^{(i)}=E\left[\int_{t}^{\infty} \frac{M_{s}^{(i)}}{M_{t}^{(i)}} D_{s}^{(i)} d s\right] & M_{t}^{(i)}=e^{-\beta t}\left(D_{t}^{(i)}\right)^{-\gamma} & \text { (Segmentation) } \\
\bar{P}_{t}^{(i)}=E\left[\int_{t}^{\infty} \frac{\bar{M}_{s}}{\bar{M}_{t}} D_{s}^{(i)} d s\right] & \bar{M}_{t}=e^{-\beta t}\left(D_{t}^{(1)}+D_{t}^{(2)}\right)^{-\gamma} & \text { (Integration) }
\end{array}
$$

Equilibrium interest rates $r_{t}^{(1)}, r_{t}^{(2)}, \bar{r}_{t}$ are identified by the conditions that $M_{t}^{(1)} e^{\int_{r_{s}}^{r_{s}^{1()}} d s}, M_{t}^{(2)} e^{\int_{0}^{t} r_{s}^{(2)} d s}, \bar{M}_{t} e^{\int_{0}^{t} \bar{r}_{s} d s}$ are local martingales.

Present Value Relation

Proposition

Under the well-posedness assumption

$$
\theta:=\beta-(1-\gamma) \mu+\gamma(1-\gamma) \frac{\sigma^{2}}{2}>0
$$

the unique equilibrium asset prices are:

$$
\begin{array}{lll}
P_{t}^{(i)}=E\left[\int_{t}^{\infty} \frac{M_{s}^{(i)}}{M_{t}^{(i)}} D_{s}^{(i)} d s\right] & M_{t}^{(i)}=e^{-\beta t}\left(D_{t}^{(i)}\right)^{-\gamma} & \text { (Segmentation) } \\
\bar{P}_{t}^{(i)}=E\left[\int_{t}^{\infty} \frac{\bar{M}_{s}}{\bar{M}_{t}} D_{s}^{(i)} d s\right] & \bar{M}_{t}=e^{-\beta t}\left(D_{t}^{(1)}+D_{t}^{(2)}\right)^{-\gamma} & \text { (Integration) }
\end{array}
$$

Equilibrium interest rates $r_{t}^{(1)}, r_{t}^{(2)}, \bar{r}_{t}$ are identified by the conditions that $M_{t}^{(1)} e^{\int_{r_{s}}^{r_{s}^{1()}} d s}, M_{t}^{(2)} e^{\int_{0}^{t} r_{s}^{(2)} d s}, \bar{M}_{t} e^{\int_{0}^{t} \bar{r}_{s} d s}$ are local martingales.

- Tractable?

Segmentation Equilibrium

Theorem (Segmentation)

- Let $\gamma<1+\frac{2 \kappa}{\sigma^{2}} \min (w, 1-w)$. Segmentation prices and rates

$$
\left(P_{t}^{(i)}, r_{t}^{(i)}\right)_{i=1,2} \text { are }
$$

$$
P_{t}^{(1)}=D_{t}^{(1)} X_{t}^{\gamma-1} f^{(1)}\left(X_{t}\right), \quad r_{t}^{(1)}=\beta+\frac{1}{X_{t}}\left(\gamma \mu w-\frac{\gamma(\gamma+1) \sigma^{2}}{2}\right)
$$

$$
P_{t}^{(2)}=D_{t}^{(2)}\left(1-X_{t}\right)^{\gamma-1} f^{(2)}\left(X_{t}\right), \quad r_{t}^{(2)}=\beta+\frac{1}{1-X_{t}}\left(\gamma \mu(1-w)-\frac{\gamma(\gamma+1) \sigma^{2}}{2}\right)
$$

$$
f^{(1)}(x):=\mathbb{E}_{X_{0}=x}\left[\int_{0}^{\infty} e^{-\theta s} X_{s}^{1-\gamma} d s\right], f^{(2)}(x):=\mathbb{E}_{X_{0}=x}\left[\int_{0}^{\infty} e^{-\theta s}\left(1-X_{s}\right)^{1-\gamma} d s\right]
$$

- Segmentation welfare:

$$
W_{t}^{(i)}=\mathbb{T}_{t}\left[\int_{t}^{\infty} e^{-\beta(s-t)} \frac{\left.\left(D_{s}^{(}\right)\right)^{1-\gamma}}{1-\gamma} d s\right]=\frac{D_{1}^{1-\gamma}}{1-\gamma} f(i)\left(X_{t}\right), \quad i=1,2 .
$$

- Yes, but how to find $f^{(i)}$?

Segmentation Equilibrium

Theorem (Segmentation)

- Let $\gamma<1+\frac{2 \kappa}{\sigma^{2}} \min (w, 1-w)$. Segmentation prices and rates

$$
\left(P_{t}^{(i)}, r_{t}^{(i)}\right)_{i=1,2} \text { are }
$$

$$
P_{t}^{(1)}=D_{t}^{(1)} X_{t}^{\gamma-1} f^{(1)}\left(X_{t}\right), \quad r_{t}^{(1)}=\beta+\frac{1}{X_{t}}\left(\gamma \mu w-\frac{\gamma(\gamma+1) \sigma^{2}}{2}\right),
$$

$$
P_{t}^{(2)}=D_{t}^{(2)}\left(1-X_{t}\right)^{\gamma-1} f^{(2)}\left(X_{t}\right), \quad r_{t}^{(2)}=\beta+\frac{1}{1-X_{t}}\left(\gamma \mu(1-w)-\frac{\gamma(\gamma+1) \sigma^{2}}{2}\right),
$$

$$
f^{(1)}(x):=\mathbb{E}_{X_{0}=x}\left[\int_{0}^{\infty} e^{-\theta s} X_{s}^{1-\gamma} d s\right], f^{(2)}(x):=\mathbb{E}_{X_{0}=x}\left[\int_{0}^{\infty} e^{-\theta s}\left(1-X_{s}\right)^{1-\gamma} d s\right]
$$

- Segmentation welfare:

Segmentation Equilibrium

Theorem (Segmentation)

- Let $\gamma<1+\frac{2 \kappa}{\sigma^{2}} \min (w, 1-w)$. Segmentation prices and rates $\left(P_{t}^{(i)}, r_{t}^{(i)}\right)_{i=1,2}$ are
$P_{t}^{(1)}=D_{t}^{(1)} X_{t}^{\gamma-1} f^{(1)}\left(X_{t}\right), \quad r_{t}^{(1)}=\beta+\frac{1}{X_{t}}\left(\gamma \mu w-\frac{\gamma(\gamma+1) \sigma^{2}}{2}\right)$,
$P_{t}^{(2)}=D_{t}^{(2)}\left(1-X_{t}\right)^{\gamma-1} f^{(2)}\left(X_{t}\right), \quad r_{t}^{(2)}=\beta+\frac{1}{1-X_{t}}\left(\gamma \mu(1-w)-\frac{\gamma(\gamma+1) \sigma^{2}}{2}\right)$,
$f^{(1)}(x):=\mathbb{E}_{X_{0}=x}\left[\int_{0}^{\infty} e^{-\theta s} X_{s}^{1-\gamma} d s\right], f^{(2)}(x):=\mathbb{E}_{X_{0}=x}\left[\int_{0}^{\infty} e^{-\theta s}\left(1-X_{s}\right)^{1-\gamma} d s\right]$
- Segmentation welfare:

$$
W_{t}^{(i)}=\mathbb{E}_{t}\left[\int_{t}^{\infty} e^{-\beta(s-t)} \frac{\left(D_{s}^{(i)}\right)^{1-\gamma}}{1-\gamma} d s\right]=\frac{D_{t}^{1-\gamma}}{1-\gamma} f^{(i)}\left(X_{t}\right), \quad i=1,2 .
$$

Segmentation Equilibrium

Theorem (Segmentation)

- Let $\gamma<1+\frac{2 \kappa}{\sigma^{2}} \min (w, 1-w)$. Segmentation prices and rates

$$
\left(P_{t}^{(i)}, r_{t}^{(i)}\right)_{i=1,2} \text { are }
$$

$$
P_{t}^{(1)}=D_{t}^{(1)} X_{t}^{\gamma-1} f^{(1)}\left(X_{t}\right), \quad r_{t}^{(1)}=\beta+\frac{1}{X_{t}}\left(\gamma \mu w-\frac{\gamma(\gamma+1) \sigma^{2}}{2}\right),
$$

$$
P_{t}^{(2)}=D_{t}^{(2)}\left(1-X_{t}\right)^{\gamma-1} f^{(2)}\left(X_{t}\right), \quad r_{t}^{(2)}=\beta+\frac{1}{1-X_{t}}\left(\gamma \mu(1-w)-\frac{\gamma(\gamma+1) \sigma^{2}}{2}\right),
$$

$$
f^{(1)}(x):=\mathbb{E}_{X_{0}=x}\left[\int_{0}^{\infty} e^{-\theta s} X_{s}^{1-\gamma} d s\right], f^{(2)}(x):=\mathbb{E}_{X_{0}=x}\left[\int_{0}^{\infty} e^{-\theta s}\left(1-X_{s}\right)^{1-\gamma} d s\right]
$$

- Segmentation welfare:

$$
W_{t}^{(i)}=\mathbb{E}_{t}\left[\int_{t}^{\infty} e^{-\beta(s-t)} \frac{\left(D_{s}^{(i)}\right)^{1-\gamma}}{1-\gamma} d s\right]=\frac{D_{t}^{1-\gamma}}{1-\gamma} f^{(i)}\left(X_{t}\right), \quad i=1,2 .
$$

- Yes, but how to find $f^{(i)}$?

Finding $f^{(i)}$

- Find $f^{(1)}(x)=\mathbb{E}_{X_{0}=x}\left[\int_{0}^{\infty} e^{-\theta s} X_{s}^{1-\gamma} d s\right]$ in terms of resolvent of X_{t}.

$$
\begin{aligned}
\mathbb{E} & {\left[\int_{0}^{\infty} e^{-\theta s} X_{s}^{1-\gamma} d s \mid X_{0}=x\right]=\int_{0}^{\infty} e^{-\theta s}\left(\int_{0}^{1} y^{1-\gamma} p(s ; x, y) m(y) d y\right) d s } \\
& =\int_{0}^{1} y^{1-\gamma}\left(\int_{0}^{\infty} e^{-\theta s} p(s ; x, y) d s\right) m(y) d y=\int_{0}^{1} y^{1-\gamma} G(x, y) m(y) d y
\end{aligned}
$$

- m invariant density, p transition density w.r.t $m, G(x, y)$ Green function:

- $F_{1}^{1}, \varphi^{(1)}$ fundamental solutions of ODE

Finding $f^{(i)}$

- Find $f^{(1)}(x)=\mathbb{E}_{X_{0}=x}\left[\int_{0}^{\infty} e^{-\theta s} X_{s}^{1-\gamma} d s\right]$ in terms of resolvent of X_{t}.

$$
\begin{aligned}
\mathbb{E} & {\left[\int_{0}^{\infty} e^{-\theta s} X_{s}^{1-\gamma} d s \mid X_{0}=x\right]=\int_{0}^{\infty} e^{-\theta s}\left(\int_{0}^{1} y^{1-\gamma} p(s ; x, y) m(y) d y\right) d s } \\
& =\int_{0}^{1} y^{1-\gamma}\left(\int_{0}^{\infty} e^{-\theta s} p(s ; x, y) d s\right) m(y) d y=\int_{0}^{1} y^{1-\gamma} G(x, y) m(y) d y
\end{aligned}
$$

- m invariant density, p transition density w.r.t $m, G(x, y)$ Green function:

$$
G(x, y)= \begin{cases}\frac{1}{\omega^{\top}} F_{1}^{1}(x) \varphi^{(1)}(y), & x \leq y \\ \frac{1}{\omega^{\top}} F_{1}^{1}(y) \varphi^{(1)}(x), & x \geq y\end{cases}
$$

- $F_{1}^{1}, \varphi^{(1)}$ fundamental solutions of ODE

Finding $f^{(i)}$

- Find $f^{(1)}(x)=\mathbb{E}_{X_{0}=x}\left[\int_{0}^{\infty} e^{-\theta s} X_{s}^{1-\gamma} d s\right]$ in terms of resolvent of X_{t}.

$$
\begin{aligned}
\mathbb{E} & {\left[\int_{0}^{\infty} e^{-\theta s} X_{s}^{1-\gamma} d s \mid X_{0}=x\right]=\int_{0}^{\infty} e^{-\theta s}\left(\int_{0}^{1} y^{1-\gamma} p(s ; x, y) m(y) d y\right) d s } \\
& =\int_{0}^{1} y^{1-\gamma}\left(\int_{0}^{\infty} e^{-\theta s} p(s ; x, y) d s\right) m(y) d y=\int_{0}^{1} y^{1-\gamma} G(x, y) m(y) d y
\end{aligned}
$$

- m invariant density, p transition density w.r.t $m, G(x, y)$ Green function:

$$
G(x, y)= \begin{cases}\frac{1}{\omega^{\top}} F_{1}^{1}(x) \varphi^{(1)}(y), & x \leq y \\ \frac{1}{\omega^{\top}} F_{1}^{1}(y) \varphi^{(1)}(x), & x \geq y\end{cases}
$$

- $F_{1}^{1}, \varphi^{(1)}$ fundamental solutions of ODE

$$
x(1-x) g^{\prime \prime}(x)+\frac{2 \kappa}{\sigma^{2}}(w-x) g^{\prime}(x)=\frac{2 \theta}{\sigma^{2}} g(x) .
$$

- Explicit formula through hypergeometric functions. (Too big to show.)

Finding $f^{(i)}$

- Find $f^{(1)}(x)=\mathbb{E}_{X_{0}=x}\left[\int_{0}^{\infty} e^{-\theta s} X_{s}^{1-\gamma} d s\right]$ in terms of resolvent of X_{t}.

$$
\begin{aligned}
\mathbb{E} & {\left[\int_{0}^{\infty} e^{-\theta s} X_{s}^{1-\gamma} d s \mid X_{0}=x\right]=\int_{0}^{\infty} e^{-\theta s}\left(\int_{0}^{1} y^{1-\gamma} p(s ; x, y) m(y) d y\right) d s } \\
& =\int_{0}^{1} y^{1-\gamma}\left(\int_{0}^{\infty} e^{-\theta s} p(s ; x, y) d s\right) m(y) d y=\int_{0}^{1} y^{1-\gamma} G(x, y) m(y) d y
\end{aligned}
$$

- m invariant density, p transition density w.r.t $m, G(x, y)$ Green function:

$$
G(x, y)= \begin{cases}\frac{1}{\omega^{1}} F_{1}^{1}(x) \varphi^{(1)}(y), & x \leq y \\ \frac{1}{\omega^{\top}} F_{1}^{1}(y) \varphi^{(1)}(x), & x \geq y\end{cases}
$$

- $F_{1}^{1}, \varphi^{(1)}$ fundamental solutions of ODE

$$
x(1-x) g^{\prime \prime}(x)+\frac{2 \kappa}{\sigma^{2}}(w-x) g^{\prime}(x)=\frac{2 \theta}{\sigma^{2}} g(x) .
$$

- Explicit formula through hypergeometric functions. (Too big to show.)

Integration Equilibrium

Theorem (Integration)

Integration prices, rate, and welfare are:

$$
\begin{aligned}
\bar{P}_{t}^{(1)} & =\frac{1}{\theta}\left(\frac{\theta+\kappa W}{\theta+\kappa} D_{t}^{(1)}+\frac{\kappa w}{\theta+\kappa} D_{t}^{(2)}\right) \\
\bar{P}_{t}^{(2)} & =\frac{1}{\theta}\left(\frac{\kappa(1-w)}{\theta+\kappa} D_{t}^{(1)}+\frac{\theta+\kappa(1-w)}{\theta+\kappa} D_{t}^{(2)}\right) \\
\bar{r}_{t} & =\beta+\gamma \mu-\gamma(\gamma+1) \frac{\sigma^{2}}{2} \\
\bar{U}_{t} & :=\mathbb{E}_{t}\left[\int_{t}^{\infty} e^{\left.-\beta(s-t) \frac{D_{s}^{1-\gamma}}{1-\gamma} d s\right]=\frac{D_{t}^{1-\gamma}}{(1-\gamma)} \frac{1}{\theta}}\right.
\end{aligned}
$$

- Linear prices. (Too small not to show.)
- Proof: Guess, then verify through Girsanov.
- Gordon formula recovers for consumption claim paying D_{t}

Integration Equilibrium

Theorem (Integration)

Integration prices, rate, and welfare are:

$$
\begin{aligned}
\bar{P}_{t}^{(1)} & =\frac{1}{\theta}\left(\frac{\theta+\kappa W}{\theta+\kappa} D_{t}^{(1)}+\frac{\kappa W}{\theta+\kappa} D_{t}^{(2)}\right) \\
\bar{P}_{t}^{(2)} & =\frac{1}{\theta}\left(\frac{\kappa(1-w)}{\theta+\kappa} D_{t}^{(1)}+\frac{\theta+\kappa(1-w)}{\theta+\kappa} D_{t}^{(2)}\right) \\
\bar{r}_{t} & =\beta+\gamma \mu-\gamma(\gamma+1) \frac{\sigma^{2}}{2} \\
\bar{U}_{t} & :=\mathbb{E}_{t}\left[\int_{t}^{\infty} e^{\left.-\beta(s-t) \frac{D_{s}^{1-\gamma}}{1-\gamma} d s\right]=\frac{D_{t}^{1-\gamma}}{(1-\gamma)} \frac{1}{\theta}}\right.
\end{aligned}
$$

- Linear prices. (Too small not to show.)
- Proof: Guess, then verify through Girsanov.
- Gordon formula recovers for consumption claim paying $D_{t}=D^{(1)}+D^{(2)}$

Integration Equilibrium

Theorem (Integration)

Integration prices, rate, and welfare are:

$$
\begin{aligned}
\bar{P}_{t}^{(1)} & =\frac{1}{\theta}\left(\frac{\theta+\kappa W}{\theta+\kappa} D_{t}^{(1)}+\frac{\kappa w}{\theta+\kappa} D_{t}^{(2)}\right) \\
\bar{P}_{t}^{(2)} & =\frac{1}{\theta}\left(\frac{\kappa(1-w)}{\theta+\kappa} D_{t}^{(1)}+\frac{\theta+\kappa(1-w)}{\theta+\kappa} D_{t}^{(2)}\right) \\
\bar{r}_{t} & =\beta+\gamma \mu-\gamma(\gamma+1) \frac{\sigma^{2}}{2} \\
\overline{U_{t}} & :=\mathbb{E}_{t}\left[\int_{t}^{\infty} e^{-\beta(s-t)} \frac{D_{s}^{1-\gamma}}{1-\gamma} d s\right]=\frac{D_{t}^{1-\gamma}}{(1-\gamma)} \frac{1}{\theta}
\end{aligned}
$$

- Linear prices. (Too small not to show.)
- Proof: Guess, then verify through Girsanov.

Integration Equilibrium

Theorem (Integration)

Integration prices, rate, and welfare are:

$$
\begin{aligned}
\bar{P}_{t}^{(1)} & =\frac{1}{\theta}\left(\frac{\theta+\kappa w}{\theta+\kappa} D_{t}^{(1)}+\frac{\kappa w}{\theta+\kappa} D_{t}^{(2)}\right) \\
\bar{P}_{t}^{(2)} & =\frac{1}{\theta}\left(\frac{\kappa(1-w)}{\theta+\kappa} D_{t}^{(1)}+\frac{\theta+\kappa(1-w)}{\theta+\kappa} D_{t}^{(2)}\right) \\
\bar{r}_{t} & =\beta+\gamma \mu-\gamma(\gamma+1) \frac{\sigma^{2}}{2} \\
\bar{U}_{t} & :=\mathbb{E}_{t}\left[\int_{t}^{\infty} e^{\left.-\beta(s-t) \frac{D_{s}^{1-\gamma}}{1-\gamma} d s\right]=\frac{D_{t}^{1-\gamma}}{(1-\gamma)} \frac{1}{\theta}}\right.
\end{aligned}
$$

- Linear prices. (Too small not to show.)
- Proof: Guess, then verify through Girsanov.
- Gordon formula recovers for consumption claim paying $D_{t}=D^{(1)}+D^{(2)}$

Questions

- Imagine a shift from segmentation to integration.
- Do prices go up or down?
- What is price correlation before and after integration?
- Does welfare increase?

For both regions, only one, or none?

- Would regions agree to integration if given the choice?
- Parameters: $\mu=1.5 \%, \sigma=6 \%, \beta=1 \%, w=2 / 3, \gamma=3, \kappa=4 \%$.

Questions

- Imagine a shift from segmentation to integration.
- Do prices go up or down?
- What is price correlation before and after integration?
- Does welfare increase?

For both regions, only one, or none?

- Would regions agree to integration if given the choice?
- Parameters: $\mu=1.5 \%, \sigma=6 \%, \beta=1 \%, w=2 / 3, \gamma=3, \kappa=4 \%$.

Questions

- Imagine a shift from segmentation to integration.
- Do prices go up or down?
- What is price correlation before and after integration?
- Does welfare increase? For both regions, only one, or none?
- Would regions agree to integration if given the choice?
- Parameters: $\mu=1.5 \%, \sigma=6 \%, \beta=1 \%, w=2 / 3, \gamma=3, \kappa=4 \%$.

Questions

- Imagine a shift from segmentation to integration.
- Do prices go up or down?
- What is price correlation before and after integration?
- Does welfare increase?

For both regions, only one, or none?

- Would regions agree to integration if given the choice?
- Parameters: $\mu=1.5 \%, \sigma=6 \%, \beta=1 \%, w=2 / 3, \gamma=3, \kappa=4 \%$.

Questions

- Imagine a shift from segmentation to integration.
- Do prices go up or down?
- What is price correlation before and after integration?
- Does welfare increase? For both regions, only one, or none?
- Would regions agree to integration if given the choice?
- Parameters: $\mu=1.5 \%, \sigma=6 \%, \beta=1 \%, w=2 / 3, \gamma=3, \kappa=4 \%$.

Questions

- Imagine a shift from segmentation to integration.
- Do prices go up or down?
- What is price correlation before and after integration?
- Does welfare increase? For both regions, only one, or none?
- Would regions agree to integration if given the choice?
- Parameters: $\mu=1.5 \%, \sigma=6 \%, \beta=1 \%, w=2 / 3, \gamma=3, \kappa=4 \%$.

Prices/(Total Consumption)

Prices, as multiples of $D_{t}=D_{t}^{(1)}+D_{t}^{(2)}$, vs. dividend share X_{t}. Red: first. Blue: second. Dashed: segmentation. Solid: integration.

Price Levels

- Cyclical prices: increasing with an asset's dividend share. More cyclical in segmentation and for smaller region (steeper slope).
- Neither up nor down for sure. But most of the time, down.
- Share unusually low: inflows higher than outflows push price up.
- Share close to to mean: both prices down. Why?

Price Levels

- Cyclical prices: increasing with an asset's dividend share. More cyclical in segmentation and for smaller region (steeper slope).
- Neither up nor down for sure. But most of the time, down.
- Share unusually low: inflows higher than outflows push price up.
- Share close to to mean: both prices down. Why?

Price Levels

- Cyclical prices: increasing with an asset's dividend share. More cyclical in segmentation and for smaller region (steeper slope).
- Neither up nor down for sure. But most of the time, down.
- Share unusually low: inflows higher than outflows push price up.
- Share close to to mean: both prices down. Why?

Price Levels

- Cyclical prices: increasing with an asset's dividend share. More cyclical in segmentation and for smaller region (steeper slope).
- Neither up nor down for sure. But most of the time, down.
- Share unusually low: inflows higher than outflows push price up.
- Share close to to mean: both prices down. Why?

Price-Dividend Ratio

Price-dividend ratios vs. dividend share w.
Red: first. Blue: second. Dashed: segmentation. Solid: integration.

Correlation

Return correlation in segmentation (dashed) and integration (solid).

Portfolio

- Segmentation: Negative return correlation: negative price-dividend correlation prevails. Cross-interaction negligible.
- Integration:

Negative price-dividend correlation deepens.
But is overwhelmed by portfolio pressure.

- Though cash-flows are uncorrelated, prices are highly correlated. "Excess correlation" makes sense.
- Change in one tilts portfolio. Agent wants to rebalance. But supply of assets fixed, whence price increase.
- Like communicating vessels.

Portfolio

- Segmentation: Negative return correlation: negative price-dividend correlation prevails. Cross-interaction negligible.
- Integration:

Negative price-dividend correlation deepens.
But is overwhelmed by portfolio pressure.

- Though cash-flows are uncorrelated, prices are highly correlated.
"Excess correlation" makes sense.
- Change in one tilts portfolio. Agent wants to rebalance. But supply of assets fixed, whence price increase.
- Like communicating vessels.

Portfolio

- Segmentation: Negative return correlation: negative price-dividend correlation prevails. Cross-interaction negligible.
- Integration:

Negative price-dividend correlation deepens.
But is overwhelmed by portfolio pressure.

- Though cash-flows are uncorrelated, prices are highly correlated. "Excess correlation" makes sense.
- Change in one tilts portfolio. Agent wants to rebalance. But supply of assets fixed, whence price increase.
- Like communicating vessels.

Portfolio

- Segmentation: Negative return correlation: negative price-dividend correlation prevails. Cross-interaction negligible.
- Integration:

Negative price-dividend correlation deepens.
But is overwhelmed by portfolio pressure.

- Though cash-flows are uncorrelated, prices are highly correlated. "Excess correlation" makes sense.
- Change in one tilts portfolio. Agent wants to rebalance. But supply of assets fixed, whence price increase.
- Like communicating vessels.

Portfolio

- Segmentation: Negative return correlation: negative price-dividend correlation prevails. Cross-interaction negligible.
- Integration:

Negative price-dividend correlation deepens.
But is overwhelmed by portfolio pressure.

- Though cash-flows are uncorrelated, prices are highly correlated. "Excess correlation" makes sense.
- Change in one tilts portfolio. Agent wants to rebalance. But supply of assets fixed, whence price increase.
- Like communicating vessels.
(Total Price)/(Total Consumption)

Market value in segmentation (dashed) and integration (solid) vs. share X_{t}.

- Integration always reduces market value!
(Total Price)/(Total Consumption)

Market value in segmentation (dashed) and integration (solid) vs. share X_{t}.

- Integration always reduces market value!
- More when one region is much bigger than the other.

Sometimes Poorer. Always Happier.

Expected utility vs. dividend share.
Red: first. Blue: second. Dashed: segmentation. Solid: integration.

Wealth vs. Welfare

- Integration typically lowers prices.
- But it always increases welfare. For both regions.
- "Loss" in wealth is offset by access to smoother dividend stream. Ratio of dividend streams stationary. Neither grows faster than the other.
- High segmentation prices from frequent misery.

Which makes consumption more valuable.

- More wealth is better holding investment opportunities constant.
- In equilibrium, not necessarily.

Wealth vs. Welfare

- Integration typically lowers prices.
- But it always increases welfare. For both regions.
- "Loss" in wealth is offset by access to smoother dividend stream. Ratio of dividend streams stationary. Neither grows faster than the other.
- High segmentation prices from frequent misery.

Which makes consumption more valuable.

- More wealth is better holding investment opportunities constant.
- In equilibrium, not necessarily.

Wealth vs. Welfare

- Integration typically lowers prices.
- But it always increases welfare. For both regions.
- "Loss" in wealth is offset by access to smoother dividend stream. Ratio of dividend streams stationary. Neither grows faster than the other.
- High segmentation prices from frequent misery. Which makes consumption more valuable.
- More wealth is better holding investment opportunities constant.
- In equilibrium, not necessarily.

Wealth vs. Welfare

- Integration typically lowers prices.
- But it always increases welfare. For both regions.
- "Loss" in wealth is offset by access to smoother dividend stream. Ratio of dividend streams stationary. Neither grows faster than the other.
- High segmentation prices from frequent misery. Which makes consumption more valuable.
- More wealth is better holding investment opportunities constant.
- In equilibrium, not necessarily.

Wealth vs. Welfare

- Integration typically lowers prices.
- But it always increases welfare. For both regions.
- "Loss" in wealth is offset by access to smoother dividend stream. Ratio of dividend streams stationary. Neither grows faster than the other.
- High segmentation prices from frequent misery. Which makes consumption more valuable.
- More wealth is better holding investment opportunities constant.
- In equilibrium, not necessarily.

Wealth vs. Welfare

- Integration typically lowers prices.
- But it always increases welfare. For both regions.
- "Loss" in wealth is offset by access to smoother dividend stream. Ratio of dividend streams stationary. Neither grows faster than the other.
- High segmentation prices from frequent misery. Which makes consumption more valuable.
- More wealth is better holding investment opportunities constant.
- In equilibrium, not necessarily.

Certainty Equivalent

Fractional reduction in wealth accepted in exchange of integration. Red: first. Blue: second.

- Integration more important for smaller (blue) region.

Endogenous Integration

- Integration make both regions better off.
- In principle, both agree to integrate.
- But they may negotiate on shares of wealth after post-integration.
- Integration bounds?
- Do they contain shares with exogenous integration?

Endogenous Integration

- Integration make both regions better off.
- In principle, both agree to integrate.
- But they may negotiate on shares of wealth after post-integration.
- Integration bounds?
- Do they contain shares with exogenous integration?

Endogenous Integration

- Integration make both regions better off.
- In principle, both agree to integrate.
- But they may negotiate on shares of wealth after post-integration.
- Integration bounds?
- Do they contain shares with exogenous integration?

Endogenous Integration

- Integration make both regions better off.
- In principle, both agree to integrate.
- But they may negotiate on shares of wealth after post-integration.
- Integration bounds?
- Do they contain shares with exogenous integration?

Endogenous Integration

- Integration make both regions better off.
- In principle, both agree to integrate.
- But they may negotiate on shares of wealth after post-integration.
- Integration bounds?
- Do they contain shares with exogenous integration?

Integration Bounds

Range of wealth shares under which both regions agree to integration.

Conclusion

- Two economies, each with one agent and one asset. Growing together.
- Segmentation vs. Integration. Prices and rates.
- Prices up or down. Mostly down.
- Correlation up. Financialization.
- Welfare up. Risk Sharing.
- Integration Bounds.

Conclusion

- Two economies, each with one agent and one asset. Growing together.
- Segmentation vs. Integration. Prices and rates.
- Prices up or down. Mostly down.
- Correlation up. Financialization.
- Welfare up. Risk Sharing.
- Integration Bounds.

Conclusion

- Two economies, each with one agent and one asset. Growing together.
- Segmentation vs. Integration. Prices and rates.
- Prices up or down. Mostly down.
- Correlation up. Financialization.
- Welfare up. Risk Sharing.
- Integration Bounds.

Conclusion

- Two economies, each with one agent and one asset. Growing together.
- Segmentation vs. Integration. Prices and rates.
- Prices up or down. Mostly down.
- Correlation up. Financialization.
- Welfare up. Risk Sharing.
- Integration Bounds.

Conclusion

- Two economies, each with one agent and one asset. Growing together.
- Segmentation vs. Integration. Prices and rates.
- Prices up or down. Mostly down.
- Correlation up. Financialization.
- Welfare up. Risk Sharing.
- Integration Bounds.

Conclusion

- Two economies, each with one agent and one asset. Growing together.
- Segmentation vs. Integration. Prices and rates.
- Prices up or down. Mostly down.
- Correlation up. Financialization.
- Welfare up. Risk Sharing.
- Integration Bounds.

Thank You!

Questions?

https://papers.ssrn.com/abstract=3140433

