Integral representation formulas (IRF) for permeability and tortuosity for porous media

Miao-jung Yvonne Ou

Department of Mathematical Sciences University of Delaware Newark, DE 19716, USA mou@udel.edu

Joint work with Chuan Bi (NIH), Hugo Woerdeman (Drexel U.), Jiangming Xie, and Shangyou Zhang(UD)

Partially sponsored by US NSF

BIRS Workshop on Herglotz-Nevanlinna Theory Applied to Passive, Causal and Ac Systems

- Governing equations of wave propagation in poroelastic materials
- Memory terms and the visco-dynamics
- Permeability and tortuosity
- Stieltjes function representation of Johnson-Koplik-Dashen (JKD) permeability and tortuosity
- Padé approximation and two-sided approximation with built-in asymptotic behaviors
- Preliminary results on Integral representation of stationary permeability

Wave propagation in poroelastic materials

M. A. Biot, *Theory of propagation of elastic waves in a fluid-saturated porous solid*, J. Acoustical Society of America (JASA), 1956. Two papers - one for low frequency and the other for high frequency.

- **u**: displacement vector for solid
- U: displacement vector for fluid
- ϕ : porosity
- *p*: pore fluid pressure, $\boldsymbol{v} := \dot{\boldsymbol{u}}, \quad \boldsymbol{q} := \phi(\dot{\boldsymbol{U}} \dot{\boldsymbol{u}})$
 - Equations of motion

$$ho\partial_t v_j +
ho_f \partial_t q_j = [
abla \cdot au]_j, \, j = 1, 2, 3$$

• Generalized Darcy's Law

$$-\frac{\partial \rho}{\partial x_j} = \rho_f \frac{\partial v_j}{\partial t} + \left(\frac{\rho_f}{\phi}\right) \check{\alpha}_j \star \frac{\partial q_j}{\partial t}, \, j = 1, 2, 3$$

Dynamic permeability and tortuosity

Dynamic permeability function $K(\omega)$

$$-i\omega\phi(\hat{\boldsymbol{U}}-\hat{\boldsymbol{u}}) = \frac{\boldsymbol{K}(\omega)}{\eta}(-\nabla\hat{\boldsymbol{\rho}}+\rho_f\omega^2\hat{\boldsymbol{u}})$$
(1)

Dynamic tortuosity function $\alpha(\omega)$

$$\boldsymbol{\alpha}(\boldsymbol{\omega})\rho_f(-i\boldsymbol{\omega})^2(\boldsymbol{\hat{U}}-\boldsymbol{\hat{u}}) = (-\nabla\hat{\rho}+\rho_f\boldsymbol{\omega}^2\boldsymbol{\hat{u}}), \qquad (2)$$

(2) and (1)
$$\Rightarrow \alpha(\omega) = \frac{i\eta\phi}{\omega\rho_f} K^{-1}(\omega)$$
 for $\omega \neq 0$

Note: $K(0) = K_0$ (static permeability)

Memory term

$$-\frac{\partial p}{\partial x_j} = \rho_f \frac{\partial v_j}{\partial t} + \left(\frac{\rho_f}{\phi}\right) \check{\alpha}_j \star \frac{\partial q_j}{\partial t}, \, j = 1, 2, 3$$

Note: For the special case of low frequency Biot's equation,

$$-\partial_{x_i} p = \rho_f \partial_t v_i + \left(\frac{\rho_f}{\phi}\right) \alpha_{\infty i} \partial_t q_i + \left(\frac{\eta}{K_{0i}}\right) q_i$$

i.e. $\check{\alpha}_j(t) = \alpha_{\infty j} \delta(t) + \frac{\eta \phi}{K_{0j} \rho_f} H(t) \iff \alpha_j(\omega) = \alpha_{\infty j} + \frac{\eta \phi/(K_{0j} \rho_f)}{-i\omega}$ $\alpha_{\infty j}$: inf-freq tortuosity in the i-th direction Transform to frequency domain

$$\hat{f}(\omega) := \mathcal{L}[f](s = -i\omega) := \int_0^\infty f(t) e^{-st} dt$$

JKD Model

In [Johnson-Koplik-Dashen-1987], by extending $\alpha(\omega)$ and $K(\omega)$ to complex ω -plane and using causality argument, the simplest forms are derived

$$\begin{aligned} \alpha_{Dj}(\omega) &= \alpha_{\infty j} \left(1 - \frac{\eta \phi}{i \omega \alpha_{\infty j} \rho_f K_{0j}} \sqrt{1 - i \frac{4 \alpha_{\infty j}^2 K_{0j}^2 \rho_f \omega}{\eta \Lambda_j^2 \phi^2}} \right) \\ \kappa_{Dj}(\omega) &= \kappa_{0j} / \left(\sqrt{1 - \frac{4 i \alpha_{\infty j}^2 K_{0j}^2 \rho_f \omega}{\eta \Lambda_j^2 \phi^2}} - \frac{i \alpha_{\infty j} \kappa_{0j} \rho_f \omega}{\eta \phi} \right). \end{aligned}$$

with the tunable geometry-dependent constant Λ_j . inf-freq. model as $\omega \to \infty$

$$lpha(\omega)
ightarrow lpha_{\infty} \left(1 + \sqrt{rac{i\eta}{
ho_f \omega}} rac{2}{\Lambda}
ight), \ K(\omega)
ightarrow rac{i\eta\phi}{lpha_{\infty}
ho_f \omega} \left(1 - \sqrt{rac{i\eta}{
ho_f \omega}} rac{2}{\Lambda}
ight)$$

IRF for JKD dynamic permeability

Theorem ([Ou-2014])

The JKD permeability can be represented as

$$K^{D}(\omega) = rac{
u}{F} \int_{0}^{\xi_{P}} rac{u dG(u)}{1 - i\omega u}$$

where the probability measure dG is

$$dG(u) = \chi_{\mathcal{I}}(u) \left(\frac{\psi(u)}{u}\right) du + \left(\frac{r}{\xi_{\rho}}\right) \delta_{\xi_{\rho}},$$

IRF for Dynamic Tortuosity

Theorem (Ou-2014)

The dynamic tortuosity $\alpha(\omega) = \frac{i\eta\phi}{\omega\rho_f} K^{-1}$ has the following integral representation formula for ω such that $-\frac{i}{\omega} \in \mathbb{C} \setminus [0, \Theta_1]$

$$lpha(\omega) = oldsymbol{a}\left(rac{i}{\omega}
ight) + \int_{0}^{\Theta_1} rac{d\sigma(\Theta)}{1-i\omega\Theta}$$

for some positive measure $d\sigma$, with $a = \frac{\eta \phi}{\rho_f K_0}$.

(1) $\alpha(\omega) \to \alpha_{\infty}$ as $\omega \to \infty$, $d\sigma$ has a Dirac mass at $\Theta = 0$ with strength α_{∞} . (2) $\alpha(\omega) \approx \frac{a}{-i\omega} + \alpha_{\infty} + \sum_{j=1}^{M} \frac{r_j}{-i\omega - p_j}$, $r_j > 0$, $p_j \in (-\infty, -\frac{1}{\Theta_1})$

M.Y. Ou, On reconstruction of dynamic permeability and tortuosity from data at distinct frequencies, Inverse Problems 30(9) 095002, 2014

Wave equations with no explicit memory term [Ou-Woerdeman-2019]

$$\Theta_k^{x_j}(\boldsymbol{x},t) := (-p_k)e^{p_kt}$$

$$\sum_{k=1}^{3} \frac{\partial \tau_{jk}}{\partial x_k} = \rho \frac{\partial v_j}{\partial t} + \rho_f \frac{\partial q_j}{\partial t}, \ t > 0,$$
(3)

$$\partial_t \Theta_k^{x_j}(\boldsymbol{x},t) = p_k^{x_j} \Theta_k^{x_j}(\boldsymbol{x},t) - p_k^{x_j} q_j(\boldsymbol{x},t), \, j = 1, 2, 3, \tag{4}$$

$$-\frac{\partial p}{\partial x_{j}} = \rho_{f} \frac{\partial v_{j}}{\partial t} + \left(\frac{\rho_{f} \alpha_{\infty j}}{\phi}\right) \frac{\partial q_{j}}{\partial t} + \left(\frac{\eta}{\kappa_{j}} + \frac{\rho_{f}}{\phi} \sum_{k=1}^{M} r_{k}^{x_{j}}\right) q_{j}$$
$$- \left(\frac{\rho_{f}}{\phi}\right) \sum_{k=1}^{M_{j}} r_{k}^{x_{j}} \Theta_{k}^{x_{j}}, \ t > 0, \ j = 1, 2, 3, \tag{5}$$

Reconstruction of $\alpha(\omega)$: Rational function approximation [Ou-Woerdeman-2019]

 $s_k:=-i\omega_k,\ k=1,\cdots,N$ be the interpolation points with $\mathit{Im}(s_k)
eq 0$

$$D(s_{k}) - \alpha_{\infty} = \int_{0}^{\theta} \frac{d\sigma(t)}{1 + s_{k}t} \approx [N - 1/N]_{D(s) - \alpha_{\infty}}$$

$$:= \frac{a_{0} + a_{1}s_{k} + \dots + a_{N-1}s_{k}^{N-1}}{1 + b_{1}s_{k} + \dots + b_{N}s_{k}^{N}}, \ k = 1, 2, \dots, N.$$
(6)

$$D(\overline{s_k}) = \overline{D(s_k)} \\ \begin{cases} D(s_k) - \alpha_{\infty} = \frac{a_0 + a_1 s_k + \dots + a_{N-1} s_k^{N-1}}{1 + b_1 s_k + \dots + b_N s_k^N}, k = 1, \dots, N, \\ \overline{D(s_k)} - \alpha_{\infty} = \frac{a_0 + a_1 \overline{s_k} + \dots + a_{N-1} \overline{s_k}^{N-1}}{1 + b_1 \overline{s_k} + \dots + b_{N-1} \overline{s_k}^N}, k = 1, \dots, N. \end{cases}$$
(8)

JK Gelfgren, Multipoint Padé approximants converging to functions of Stieltjes type. In Padé Approximation and its Applications Amsterdam, pp.197-207. Springer, 1981

Method based on two-sided residue interpolation

$$u_{k} = \frac{1}{s_{k}}, v_{k} = D(s_{k}) - \alpha_{\infty}, k = 1 \dots N$$

$$(S_{1})_{pq} = \frac{-s_{q}D(s_{q}) + s_{p}^{*}D^{*}(s_{p})}{s_{p}^{*} - s_{q}} - \alpha_{\infty}, p, q = 1 \dots N,$$

$$(S_{2})_{pq} = \frac{-D(s_{q}) + D^{*}(s_{p})}{s_{q} - s_{p}^{*}}, p, q = 1 \dots N,$$

$$C_{-} := (u_{1}, \dots, u_{N}), C_{+} := (v_{1}, \dots, v_{N})$$

$$S_{1}V = S_{2}V\Phi$$

$$p_{k} = -\Phi(k, k)$$

$$r_{k} = C_{+}V(:, k)V(:, k)^{*}C_{+}^{*}$$

D. Alpay, J. A. Ball, I. Gohberg, and L. Rodman. The two-sided residue interpolation in the Stieltjes class for matrix functions, Linear Algebra and its Applications, 208/209:485–521, 1994

Numerics

Pole-residue approximation of $D := \alpha_D - \frac{a}{s}$ [Ou-Woerdeman-2019]

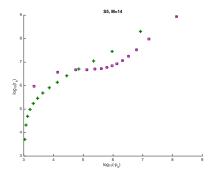
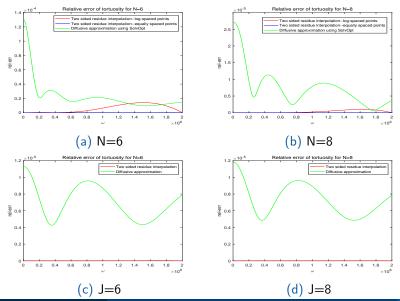


Figure: $(log_{10}(-p_k), log_{10}(r_k)), k = 1, ..., 14$. Red x: Equally-spaced grid, Green circle: Log-spaced grids, $\omega \in [10^{-3}, 2 \times 10^6]$

Ou and Woerdeman, Operator Theory:Advances and Applications, Springer Nature, Vol. 272, pp. 341-362, 2019

Numerics

Comparision with state of the art [Xie-Ou-Xu-2019]



M.Y.Ou

Integral representation formulas (IRF) for permeability and tortuosity for poi 13 / 29

	Ν	3	6	8	12	
13	augmented JKD Biot DA	log-spaced points equally spaced points log-spaced points	9.976e-04 1.814e-04 3.587e-03	1.163e-05 2.280e-08 1.460e-05	5.790e-07 1.851e-10 8.354e-06	1.229e-09 6.880e-16 2.740e-07
J4	augmented JKD Biot DA	log-spaced points log-spaced points	3.685e-05 1.745e-03	8.057e-09 5.936e-06	2.887e-11 6.448e-06	4.627e-16 1.010e-07

Table: Relative error of tortuosity approximation for materials J_3 and J_4 at the central frequency 200 kHz of a Wicker wavelet.

Jiangming Xie, MYO, Liwei Xu, A discontinuous Galerkin method for wave propagation in orthotropic poroelastic media with memory terms, Journal of Computational Physics 2019 (In press)

This works for non-JKD tortuosity, too, because of the results in Avellaneda-Torquato-91!

Problem raised: How micro-structural information Γ play a role in determining the macroscopic property \mathbf{K}^{D} , the stationary permeability? Our (Chuan Bi and I) strategy is to embed this problem into a larger system where there are two materials following the same physical law.

Literature

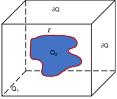
Luc Tartar (1980) derived the stationary Darcy's law by homogenization theory.

The permeability tensor \mathbf{K}^D is defined as

$$\mathcal{K}_{i,j}^D = rac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}_1} (u_D^i)_j doldsymbol{y}$$

where $\boldsymbol{u}_D^i \in (H^1(Q_1))^3$ is the periodic solution to the cell problem

$$-\Delta \boldsymbol{u}_D^i + \nabla \boldsymbol{p}_D = \boldsymbol{e}_i \quad \text{in } Q_1$$
$$\boldsymbol{u}_D^i \Big|_{\Gamma} = \boldsymbol{0}$$
$$\nabla \cdot \boldsymbol{u}_D^i = \boldsymbol{0} \quad \text{in } Q_1$$



 Q_1 is the fluid domain, Γ the fluid-solid interface.

Strategy and existing works

- Lipton et al (1990) derived the self-permeability tensor *K* for the Darcy's law for viscous fluid flow passing stationary <u>viscous bubbles</u>. Two fluids with constant viscosities μ₁ and μ₂.
- Bruno et al. (1993) showed that the domain of analyticity for the deformation u(z) of a two-component elastic composite can be extended to |z| → ∞ and |z| → 0 where z ∈ C is the ratio between the material elastic properties.

To derived the IRF, we take the two steps

(1) Derive the IRF for the self-permeability K in Lipton's paper with two fluids $\mu_1 = 1$ and varying complex valued μ_2 . It turned out the moments are determined by the case $\mu_1 = \mu_2$.

(2) Treat the permeability K^D as the limit case of $\mu_2 = \infty$. To do this, we prove that the support of measure is bounded away from ∞ by using the extension techniques in Bruno's paper to construct analytic solutions outside a large ball $|\mu_2| > C$.

Define the Hilbert space H(Q) of admissible functions for the velocity

$$H(Q) = \left\{ \boldsymbol{\nu} : \boldsymbol{\nu} \in H^1(Q)^3 \middle| \operatorname{div}_{\boldsymbol{\mathcal{Y}}} \boldsymbol{\nu} = 0, \ \boldsymbol{\nu} \cdot \mathbf{n} = 0 \\ \boldsymbol{\nu} \text{ is } Q \text{- periodic} \right\}$$
(9)

endowed with inner product

$$(\boldsymbol{u},\boldsymbol{v})_Q = \int_Q 2\mu_1 e(\boldsymbol{u}) : \overline{e(\boldsymbol{v})} d\boldsymbol{y}$$
(10)

where **n** is the unit normal pointing inward towards Q_2 , $e(\boldsymbol{u})$ is the strain tensor with $e(\boldsymbol{u}) = \frac{1}{2} (\nabla \boldsymbol{u} + \nabla^T \boldsymbol{u})$.

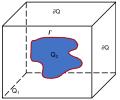
The cell problem and existence of weak solution

The cell problem is to find solution $\boldsymbol{u}^k(\boldsymbol{y}; z) \in H(Q)$ such that

$$\begin{cases} \mathsf{div}_{\boldsymbol{y}} \left(2\tilde{\mu}(\boldsymbol{y}; z) e(\boldsymbol{u}^k) - p^k \boldsymbol{I} \right) + \boldsymbol{e}_k = \boldsymbol{0} & \text{in } Q_1 \cup Q_2 \\ [\![\boldsymbol{\pi}^k]\!] \boldsymbol{\mathsf{n}} = \left([\![\boldsymbol{\pi}^k \mathbf{n}]\!] \cdot \mathbf{n} \right) \boldsymbol{\mathsf{n}} \text{ on } \boldsymbol{\mathsf{\Gamma}} \end{cases}$$

where viscosity $\tilde{\mu}_{ijkl} = (\chi_1 \mu_1 + \chi_2 z \mu_1) I_{ijkl}$, fluid stress $\pi^k = 2\tilde{\mu}e(\boldsymbol{u}^k) - p^k \boldsymbol{I}$.

- Existence and uniqueness of weak solution is ensured by Lax-Milgram lemma.
- Domain of analyticity is $z \in \mathbb{C} \setminus \{ \Re z \leq 0 \}$.



The self-permeability tensor K

The self-permeability \boldsymbol{K} (as opposed to Darcy's permeability \boldsymbol{K}^D) is defined as (Lipton '90)

$$\mathcal{K}_{ij} = rac{1}{|Q|} \int_Q u_j^i doldsymbol{y}$$
 (11)

or equivalently, in terms of total energy:

$$K_{ij} = \frac{1}{|Q|} \int_{Q} 2\tilde{\mu}(\boldsymbol{y}; z) e(\boldsymbol{u}^{i}) : \overline{e(\boldsymbol{u}^{j})} d\boldsymbol{y}$$
(12)

Extension of analyticity

We look for a form of Laurent series of $w = \frac{1}{z}$ near w = 0:

$$\boldsymbol{u}(\boldsymbol{y};\boldsymbol{e},w) = \sum_{k=0}^{\infty} \boldsymbol{u}_k(\boldsymbol{y}) w^k, \quad \boldsymbol{u}_k = \boldsymbol{u}_k^{in} + \boldsymbol{u}_k^{out}$$
(13)

where $\boldsymbol{u}_{k}^{in} \in H(Q_{2})$, and $\boldsymbol{u}_{k}^{out} \in H(Q_{1})$ denote the restrictions of velocity \boldsymbol{u}_{k} inside and outside Γ . They satisfy the following PDEs for each order of $O(w^{k})$:

	PDE	Interface condition
\boldsymbol{u}_k^{in}	$\sum_{k=0}^{\infty} w^k \left(\operatorname{div}_{\boldsymbol{y}} \left(\frac{2\mu_1}{w} e(\boldsymbol{u}_k^{in}) - p_k^{out} l \right) \right) = -\boldsymbol{e}$	$(\pi^{out}_{k-1}-\pi^{in}_k)$ n =
	$(-p_k^{out}I)) = -oldsymbol{e}$	$\left((\pi_{k-1}^{out}-\pi_k^{in})\mathbf{n}\cdot\mathbf{n}\right)\mathbf{n}$
\boldsymbol{u}_k^{out}	$\left \begin{array}{c}\sum_{k=0}^{\infty}w^{k}\left(\operatorname{div}_{\boldsymbol{y}}\left(2\mu_{1}e(\boldsymbol{u}_{k}^{out})\right)\right.\\\leftp_{k}^{out}l\right)\right)=-\boldsymbol{e}\end{array}\right $	$\boldsymbol{u}_k^{out} = \boldsymbol{u}_k^{in}$

Two important lemmas #1: in \rightarrow out

Lemma 1:

Let Q_2 be a connected, open bounded set of class C^2 that does not intersect the boundary ∂Q . For any vector field $\boldsymbol{u}^{in} \in H(Q_2)$, there exists a unique weak solution $\boldsymbol{u}^{out}(\boldsymbol{y}; \boldsymbol{f}^{out}) \in H(Q_1)$ that satisfies the following Stokes equation with non-homogeneous boundary condition

where in our context, $\mathbf{f}^{out} = \mathbf{0}$ or $\mathbf{f}^{out} = -\mathbf{e}_k$. The solution \mathbf{u}^{out} is bounded by

$$\| \boldsymbol{u}^{out} \|_{Q_1} \le C_1 C_2 \| \mathbf{f}^{out} \|_{L^2(Q_1)} + 2C_0 \| \boldsymbol{u}^{in} \|_{Q_2}$$

where C_0 , C_1 , and C_2 depend only on the micro-structure.

Two important lemmas $#2: \text{ out} \rightarrow \text{in}$

Lemma 2:

Let Q_2 be a connected, open bounded set of class C^2 . For any pair of $(\boldsymbol{u}^{out}, p^{out}) \in H(Q_1) \times L^2(Q_1) \setminus \mathcal{R}$ that satisfies the PDE in Lemma 1 with exerted force \boldsymbol{f}^{out} , there exists a unique vector field $\boldsymbol{u}^{in}(\boldsymbol{y}; \boldsymbol{f}^{in}) \in H(Q_2)$ that satisfies the Stokes equation with continuity of tangential traction on Γ

$$\begin{cases} \operatorname{div}_{\boldsymbol{y}} \left(2\mu_{1} e(\boldsymbol{u}^{in}) - p^{in} \boldsymbol{I} \right) = \boldsymbol{f}^{in}, & \text{in } Q_{2} \\ \left(\pi^{out} - \pi^{in} \right) \mathbf{n} = \left(\left(\pi^{out} - \pi^{in} \right) \mathbf{n} \cdot \mathbf{n} \right) \mathbf{n}, & \text{on } \Gamma \end{cases}$$
(15)

where in our context, $\mathbf{f}^{in} = \mathbf{0}$ or $\mathbf{f}^{in} = -\mathbf{e}_k$. The solution \mathbf{u}^{in} is bounded by

$$\left\| \boldsymbol{u}^{in} \right\|_{Q_2} \leq C_1 C_2 \left\| \boldsymbol{f}^{in} \right\|_{L^2(Q_2)} + C_0 C_1 C_2 \left\| \boldsymbol{f}^{out} \right\|_{L^2(Q_1)} + C_0 \left\| \boldsymbol{u}^{out} \right\|_{Q_1}$$

where C_0 , C_1 , and C_2 depend only on the micro-structure.

Extension procedure

• $O(w^{-1})$: there exists a unique $u_0^{in} \in H(Q_2)$ satisfying the PDE:

$$\begin{cases} \operatorname{div}_{\boldsymbol{y}} \left(2\mu_1 e(\boldsymbol{u}_0^{in}) \right) = \boldsymbol{0} & \text{in } Q_2 \\ 2\mu_1 e(\boldsymbol{u}_0^{in}) \boldsymbol{n} = C(\boldsymbol{y}) \boldsymbol{n} & \text{on } \Gamma \end{cases}$$
(16)

2 $O(w^0)$: there exists a unique $\boldsymbol{u}_0^{out} \in H(Q_1)$ satisfying the PDE:

$$\begin{cases} \operatorname{div}_{\boldsymbol{y}} \left(2\mu_1 e(\boldsymbol{u}_0^{out}) - p_0^{out} \boldsymbol{I} \right) = -\boldsymbol{e} & \text{in } Q_1 \\ \boldsymbol{u}_0^{out} = \boldsymbol{u}_0^{in} = \boldsymbol{0} & \text{on } \Gamma \end{cases}$$
(17)

3 $O(w^0)$: there exists a unique $u_1^{in} \in H(Q_2)$ satisfying the PDE:

$$\begin{cases} \operatorname{div}_{\boldsymbol{y}} \left(2\mu_{1} e(\boldsymbol{u}_{1}^{in}) - p_{0}^{in} \boldsymbol{I} \right) = -\boldsymbol{e} & \text{in } Q_{2} \\ \left(\pi_{0}^{out} - \pi_{1}^{in} \right) \mathbf{n} = \left(\left(\pi_{0}^{out} - \pi_{1}^{in} \right) \mathbf{n} \cdot \mathbf{n} \right) \mathbf{n} & \text{on } \Gamma \end{cases}$$
(18)

Extension procedure: induction step

For any $k \geq 1$:

- Given $\boldsymbol{u}_{k}^{in} \in H(Q_{2})$, there exists a unique $\boldsymbol{u}_{k}^{out}(\boldsymbol{y}) \in H(Q_{1})$ that satisfies $\begin{cases} \operatorname{div}_{\boldsymbol{y}} \left(2\mu_{1}e(\boldsymbol{u}_{k}^{out}) - p_{k}^{out}\boldsymbol{I} \right) = \boldsymbol{0} & \text{in } Q_{1} \\ \boldsymbol{u}_{k}^{out} = \boldsymbol{u}_{k}^{in} & \text{on } \Gamma \end{cases}$ (19)
- **2** Given $\boldsymbol{u}_{k}^{out} \in H(Q_{1})$, there exists a unique $\boldsymbol{u}_{k+1}^{in}(\boldsymbol{y}) \in H(Q_{2})$ that satisfies

$$\begin{cases} \operatorname{div}_{\boldsymbol{y}} \left(2\mu_{1}e(\boldsymbol{u}_{k+1}^{in}) - p_{k}^{in}\boldsymbol{I} \right) = \boldsymbol{0} & \text{in } Q_{2} \\ \left(\pi_{k}^{out} - \pi_{k+1}^{in} \right) \boldsymbol{n} = \left(\left(\pi_{k}^{out} - \pi_{k+1}^{in} \right) \boldsymbol{n} \cdot \boldsymbol{n} \right) \boldsymbol{n} & \text{on } \boldsymbol{\Gamma} \end{cases}$$
(20)

Convergence Results

• On the complex disk $|w| \le \frac{R}{2C_0^2}$ with R < 1, the partial sums for \boldsymbol{u}_k^{in} and \boldsymbol{u}_k^{out}

$$S_n^{in} = \sum_{k=0}^n \boldsymbol{u}_k^{in} w^k, \quad S_n^{out} = \sum_{k=0}^n \boldsymbol{u}_k^{out} w^k$$

converge to unique analytic functions $\boldsymbol{u}_{\infty}^{in}(\boldsymbol{y};\boldsymbol{e},w) \in H(Q_2)$ and $\boldsymbol{u}_{\infty}^{out}(\boldsymbol{y};\boldsymbol{e},w) \in H(Q_1)$, as $n \to \infty$.

• $\boldsymbol{u}_{\infty}^{in} + \boldsymbol{u}_{\infty}^{out} \equiv \boldsymbol{u}(\boldsymbol{y}; \boldsymbol{e}, w)$ in the cell problem.

- As $w \to 0$
 - **1** $\boldsymbol{u}_{\infty}^{in}(\boldsymbol{y};\boldsymbol{e}_{i},w) \rightarrow \boldsymbol{0}$ uniformly in Q_{2}
 - 2 $\boldsymbol{u}_{\infty}^{out}(\boldsymbol{y};\boldsymbol{e}_{i},w) \rightarrow \boldsymbol{u}_{D}^{i}(\boldsymbol{y})$ uniformly in Q_{1} .
 - 3 The self-permeability K converges uniformly to the permeability tensor K^{D} in the classical derivation of Darcy's law at a rate of $\sqrt{|z|}$

IRF for K₀ Extension of analyticity

Numerical Results for convergence Bi-Ou-Zhang-2019

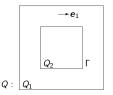


Table: Computed permeability K_{11} .

level	KD	К			
		$z = 10^4$	z = 1	$z = 10^{-4}$	
1	0.0105	0.0105	0.0122	0.0140	
2	0.0119	0.0119	0.0144	0.0181	
3	0.0125	0.0125	0.0154	0.0209	
4	0.0128	0.0128	0.0159	0.0228	
5	0.0129	0.0129	0.0161	0.0240	

Representations formula

Define the self-adjoint operator for any $\boldsymbol{u} \in H(Q)$:

$$\begin{split} \mathsf{F}_{\chi} \boldsymbol{u} &= -\Delta_{\#}^{-1} \left(\mathsf{div} \boldsymbol{y} \left(\chi_2 e(\boldsymbol{u}) \right) \right) \\ \mathcal{K}_{ij}(s) &= \frac{s-1}{2\mu_1 |Q|} \int_0^1 \int_Q \frac{\left(\tilde{M}(d\lambda) \Delta_{\#}^{-1} \boldsymbol{e}_i \right)_j}{s-1-\lambda} d\boldsymbol{y} \end{split}$$

with measures

$$\tilde{\eta}_{ij}^{(\alpha)} = \frac{1}{2\mu_1|Q|} \int_Q \left((\Gamma_{\chi})^{\alpha} \Delta_{\#}^{-1} \boldsymbol{e}_i \right)_j d\boldsymbol{y}$$
(21)

 $s = \frac{z}{z-1}$

Matching moments

Both series representation of $K_{i,j}$ should equal to each other, this yields

$$\eta_{ii}^{(eta-1)}=- ilde\eta_{ii}^{(lpha)}, \hspace{1em} ext{for} \hspace{1em} lpha, eta\geq 1$$

hence the dependence of micro-structure through Γ_χ become explicit, for example, $\alpha=\beta=1$

$$egin{aligned} &\eta_{ii}^0 = \left(-rac{1}{|Q|}\int_Q 2\mu_1 e(oldsymbol{u}^i(oldsymbol{y};1)): \overline{e(oldsymbol{u}^i(oldsymbol{y};1))}doldsymbol{y}
ight) \left(\int_0^1 M_{ii}(d\lambda)
ight) \ & ilde{\eta}_{ii}^1 = rac{1}{|Q|}\int_Q 2\mu_1\chi_2 e(oldsymbol{u}^i(oldsymbol{y};1)): \overline{e(oldsymbol{u}^i(oldsymbol{y};1))}doldsymbol{y} \end{aligned}$$

hence

$$\int_0^1 M_{ii}(d\lambda) = \frac{\int_Q 2\mu_1 \chi_2 e(\boldsymbol{u}^i(\boldsymbol{y};1)) : \overline{e(\boldsymbol{u}^i(\boldsymbol{y};1))} d\boldsymbol{y}}{\int_Q 2\mu_1 e(\boldsymbol{u}^i(\boldsymbol{y};1)) : \overline{e(\boldsymbol{u}^i(\boldsymbol{y};1))} d\boldsymbol{y}}$$