Herglotz function and optimization-based bounds on electromagnetic systems

Mats Gustafsson

(Miloslav Capek, Yevhen Ivanenko, Lukas Jelinek, Lars Jonsson, Annemarie Luger, Sven Nordebo, Kurt Schab, Daniel Sjöberg, ...)

Electrical and Information Technology, Lund University, Sweden

Physical bounds and optimal design

We commonly desire to design devices as good as possible. What about designing the best?

- Need knowledge about optimality
- Physical bounds (limitations).
- Volume, shape, material, ...
- Need methodologies to design optimal structures
- Classical design approaches.
- Optimization based on parametrized structures.
- Optimization based on pixeling.

Optimal Planar Electric Dipole Antennas, IEEE-APM 2019 [Cap+19].

Physical bounds on EM devices

Bounds have been determined for, e.g.,

- Antennas (bandwidth, efficiency, gain, directivity, capacity, ...)
- Periodic structures (bandwidth for absorbers, high-impedance surfaces, transmission, extinction, ...)
- Scattering, absorption, and extinction cross sections
- Composite materials, homogenization, temporal dispersion

Many of the bounds are derived using

- Holomorphic properties originating from causality and passivity (e.g., sum rules for Herglotz-Nevanlinna functions)
- Power/Energy relations and optimization techniques over induced sources

Passivity/Causality and Optimization (power) bounds

Passivity and Causality

- LTI system (Input and output signals)
- Analyticity from causality
- Definite sign from passivity (HN)
- Bounds from weighted integrals over all spectrum

Optimization (power) bounds

- Physical modelling (integral equations (MoM))
- Optimization problems over sources
- Pointwise bounds from the solution (convex dual) of the optimization problem

Passivity/Causality and Optimization (power) bounds

Passivity and Causality

- LTI system (Input and output signals)
- Analyticity from causality
- Definite sign from passivity (HN)
- Bounds from weighted integrals over all spectrum

Optimization (power) bounds

- Physical modelling (integral equations (MoM))
- Optimization problems over sources
- Pointwise bounds from the solution (convex dual) of the optimization problem

$$
\frac{2}{\pi} \int_{\mathbb{R}} \frac{\operatorname{Im} f(\omega)}{\omega^{2 n}} \mathrm{~d} \omega=a_{2 n-1}-b_{2 n-1}
$$

© Simple closed form expressions
(-) Based on an identity
© Not pointwise (moments)
© Hard to add (include) information

$$
f(\omega) \leq f_{\mathrm{opt}}(\omega)
$$

(-) Pointwise bounds
© Easy to add (include) information
© Bandwidth (Q-factor for small ©)
\odot Numerical solution (some explicit \odot)

Passive systems

Definition (Passivity)

A system ($v=h * u$) is admittance-passive if

$$
\mathcal{W}_{\text {adm }}(T)=\operatorname{Re} \int_{-\infty}^{T} v^{*}(t) u(t) \mathrm{d} t \geq 0
$$

and scatter-passive if

$$
\mathcal{W}_{\text {scat }}(T)=\int_{-\infty}^{T}|u(t)|^{2}-|v(t)|^{2} \mathrm{~d} t \geq 0
$$

for all $T \in \mathbb{R}$ and smooth functions of compact support u.
Passivity is a system concept. Not sufficient with passive materials (devices). Need less energy in the output signal than in the input signal for all times and signals.
The transfer function, $Z(s)$ is holomorphic (analytic) for $\operatorname{Re} s>0$ and $\operatorname{Re}\{Z(s)\} \geq 0$, i.e., a positive real (PR) (or Herglotz-Nevanlinna (HN)) function [WB65; YCC59; Zem63: Zem65l

Passive systems: examples

- Reflection and transmission of periodic slabs (scattering)

$\boldsymbol{E}_{\mathrm{i}}$	
$\boldsymbol{E}_{\mathrm{r}}=\Gamma \boldsymbol{E}_{\mathrm{i}}$	$\epsilon_{\mathrm{r}} \quad \boldsymbol{E}_{\mathrm{t}}=T \boldsymbol{E}$
0	d

- Constitutive relations (admittance)

$$
\boldsymbol{D}(t)=\epsilon_{0} \epsilon_{\infty} \boldsymbol{E}(t)+\epsilon_{0} \int_{\mathbb{R}} \chi_{\mathrm{ee}}\left(t-t^{\prime}\right) \boldsymbol{E}\left(t^{\prime}\right) \mathrm{d} t^{\prime}
$$

- Scattering (forward (admittance) and modes (scattering))

Definition (Herglotz-Nevanlinna functions (HN), $h(z)$)

A Herglotz-Nevanlinna (Pick, or R-) function $h(z)$ is holomorphic for $\operatorname{Im} z>0$ and

$$
\operatorname{Im} h(z) \geq 0 \quad \text { for } \operatorname{Im} z>0
$$

Representation for $\operatorname{Im} z>0, c f$., the Hilbert transform

$$
h(z)=\alpha+\beta z+\int_{-\infty}^{\infty} \frac{1}{\xi-z}-\frac{\xi}{1+\xi^{2}} \mathrm{~d} \nu(\xi)
$$

where $\alpha \in \mathbb{R}, \beta \geq 0$, and $\int_{\mathbb{R}} \frac{1}{1+\xi^{2}} \mathrm{~d} \nu(\xi)<\infty$, see [Akh65;

Gustav Herglotz 1881-1953[Her11]

Rolf Nevanlinna 1895-1980 [Nev22]

Georg Alexander Pick 1859-1942

Wilhelm Cauer 1900-1945 [Cau32] Cau32; GT00; Ned+19]

Integral identities for Herglotz functions

Herglotz functions with the symmetry $h(z)=-h^{*}\left(-z^{*}\right)$ (real-valued in the time domain) have asymptotic expansions ($N_{0} \geq 0$ and $N_{\infty} \geq 0$)

$$
\begin{cases}h(z)=\sum_{n=0}^{N_{0}} a_{2 n-1} z^{2 n-1}+o\left(z^{2 N_{0}-1}\right) & \text { as } z \hat{\rightarrow} 0 \\ h(z)=\sum_{n=0}^{N_{\infty}} b_{1-2 n} z^{1-2 n}+o\left(z^{1-2 N_{\infty}}\right) & \text { as } z \hat{\rightarrow} \infty\end{cases}
$$

where \rightarrow denotes limits in the Stoltz domain $0<\theta \leq \arg (z) \leq \pi-\theta$. They satisfy the identities $\left(1-N_{\infty} \leq n \leq N_{0}\right)$

$$
\lim _{\varepsilon \rightarrow 0^{+}} \lim _{y \rightarrow 0^{+}} \frac{2}{\pi} \int_{\varepsilon}^{\frac{1}{\varepsilon}} \frac{\operatorname{Im} h(x+\mathrm{i} y)}{x^{2 n}} \mathrm{~d} x=a_{2 n-1}-b_{2 n-1}= \begin{cases}-b_{2 n-1} & n<0 \\ a_{-1}-b_{-1} & n=0 \\ a_{1}-b_{1} & n=1 \\ a_{2 n-1} & n>1\end{cases}
$$

Integral identities for Herglotz functions

Known low-frequency expansion ($a_{1} \geq 0$):

$$
h(z) \sim \begin{cases}a_{1} z & \text { as } z \hat{\rightarrow} 0 \\ b_{1} z & \text { as } z \hat{\rightarrow} \infty\end{cases}
$$

which gives the $n=1$ identity (we drop the limits for simplicity)

$$
\lim _{\varepsilon \rightarrow 0^{+}} \lim _{y \rightarrow 0^{+}} \frac{2}{\pi} \int_{\varepsilon}^{1 / \varepsilon} \frac{\operatorname{Im} h(x+\mathrm{i} y)}{x^{2}} \mathrm{~d} x \stackrel{\text { def }}{=} \frac{2}{\pi} \int_{0}^{\infty} \frac{\operatorname{Im} h(x)}{x^{2}} \mathrm{~d} x=a_{1}-b_{1} \leq a_{1}
$$

Known high-frequency expansion (short times) ($b_{-1} \leq 0$):

$$
h(z) \sim \begin{cases}a_{-1} / z & \text { as } z \stackrel{\rightarrow}{\rightarrow} 0 \\ b_{-1} / z & \text { as } z \hat{\rightarrow} \infty\end{cases}
$$

which gives the $n=0$ identity

$$
\frac{2}{\pi} \int_{0}^{\infty} \operatorname{Im} h(x) \mathrm{d} x=a_{-1}-b_{-1} \leq-b_{-1} .
$$

1. Identify a linear and passive system.
2. Construct a Herglotz function $h(z)$ which models the parameter of interest.
3. Determine asymptotic expansions of $h(z)$ as $z \hat{\rightarrow} 0$ and $z \hat{\rightarrow} \infty$.
4. Use integral identities for Herglotz functions to relate the dynamic properties to the asymptotic expansions.
5. Bound the integral.

Some examples: Matching networks [Bod45; Fan50], Radar absorbers and Array antennas [DSV13; JKH13; Roz00], Antennas [GSK07; GSK09; Gus10a], Scattering [BGN11; SGK07], High-impedance surfaces [GS11], Metamaterials [GS10], Extraordinary transmission [Gus09; LO+19], Periodic structures [Gus+12], Superluminal [Gus12; WAJ14],...

High-impedance surface

Bounds from optimization problem

Use integral equations (MoM) to model the device (antenna, scatterer,...) and the express physical quantities in operators (matrices), e.g., the (time average) radiation intensity $U(\hat{\boldsymbol{r}})$ in a direction $\hat{\boldsymbol{r}}$ and dissipated power P_{d} are

$$
U(\hat{\boldsymbol{r}})=\frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{U I}=\frac{1}{2}\left|\mathbf{F}^{\mathrm{H}} \mathbf{I}\right|^{2} \quad \text { and } P_{\mathrm{d}}=\frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{R I},
$$

respectively. With the corresponding gain

$$
G(\hat{\boldsymbol{r}})=4 \pi \frac{U(\hat{\boldsymbol{r}})}{P_{\mathrm{d}}}=4 \pi \frac{\mathbf{I}^{\mathrm{H}} \mathbf{U I}}{\mathbf{I}^{\mathrm{H}} \mathbf{R I}}
$$

Optimize over I (eigenvalue problem) to determine the maximum gain for any structure which can be synthesized from the original structure [Har68].
Similar procedure can used for a many other cases by considering other matrices and more advanced optimization problems [CG14; CGS17; GC19; GCS19; GN13; Gus+16; JC17; Jon+17].

MoM matrix expressions for bounds

radiation intensity $U(\hat{\boldsymbol{r}}) \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{U I}$
radiated power $P_{\mathrm{r}} \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{R}_{\mathrm{r}} \mathbf{I}$
ohmic losses $\quad P_{\Omega} \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{R}_{\Omega} \mathbf{I}$
reactance $\quad X \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{X I}$
stored energy $W_{\mathrm{s}} \approx \frac{1}{4 \omega} \mathbf{I}^{\mathrm{H}} \mathbf{X}_{\mathrm{w}} \mathbf{I}$
capacity $\quad C \sim \log _{2}\left(\operatorname{det}\left(1+\rho \mathbf{H P H}^{\mathrm{H}}\right)\right)$
far field $\quad \boldsymbol{F}(\hat{\boldsymbol{r}})=\mathbf{F}^{\mathrm{H}} \mathbf{I}$
incident field $\quad \boldsymbol{E}_{\text {in }}=\mathbf{V I}$
near field $\quad \boldsymbol{E}(\boldsymbol{r})=\mathbf{N}^{\mathrm{H}} \mathbf{I}$
spherical modes SI
subregion TI
Matrices from standard MoM codes [Gus+16]

MoM matrix expressions for bounds

radiation intensity $U(\hat{\boldsymbol{r}}) \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{U I}$
radiated power $P_{\mathrm{r}} \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{R}_{\mathrm{r}} \mathbf{I}$
ohmic losses $P_{\Omega} \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{R}_{\Omega} \mathbf{I}$
reactance $\quad X \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{X I}$
stored energy $W_{\mathrm{s}} \approx \frac{1}{4 \omega} \mathbf{I}^{\mathrm{H}} \mathbf{X}_{\mathrm{w}} \mathbf{I}$
capacity $\quad C \sim \log _{2}\left(\operatorname{det}\left(1+\rho \mathbf{H P H}{ }^{\mathbf{H}}\right)\right)$
far field $\quad \boldsymbol{F}(\hat{\boldsymbol{r}})=\mathbf{F}^{\mathrm{H}} \mathbf{I}$
incident field $\quad \boldsymbol{E}_{\text {in }}=\mathbf{V I}$
near field $\quad \boldsymbol{E}(\boldsymbol{r})=\mathbf{N}^{\mathrm{H}} \mathbf{I}$
spherical modes SI
subregion TI
Gain

$$
\begin{aligned}
G(\hat{\boldsymbol{r}})=4 \pi & \frac{U(\hat{\boldsymbol{r}})}{P_{\mathrm{r}}+P_{\Omega}} \\
& =4 \pi \frac{\mathbf{I}^{\mathrm{H}} \mathbf{U I}}{\mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right) \mathbf{I}}
\end{aligned}
$$

Reformulate as an optimization problem over the currents \mathbf{I}.

Matrices from standard MoM codes [Gus+16]

MoM matrix expressions for bounds

Maximum gain

radiation intensity $U(\hat{\boldsymbol{r}}) \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{U I}$
radiated power $P_{\mathrm{r}} \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{R}_{\mathrm{r}} \mathbf{I}$
ohmic losses $\quad P_{\Omega} \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{R}_{\Omega} \mathbf{I}$
reactance $\quad X \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{X I}$
stored energy $\quad W_{\mathrm{s}} \approx \frac{1}{4 \omega} \mathbf{I}^{\mathrm{H}} \mathbf{X}_{\mathrm{w}} \mathbf{I}$
capacity $\quad C \sim \log _{2}\left(\operatorname{det}\left(1+\rho \mathbf{H P H}^{\mathrm{H}}\right)\right)$
far field $\quad \boldsymbol{F}(\hat{\boldsymbol{r}})=\mathbf{F}^{\mathrm{H}} \mathbf{I}$
incident field $\quad \boldsymbol{E}_{\text {in }}=$ VI
near field $\quad \boldsymbol{E}(\boldsymbol{r})=\mathbf{N}^{\mathrm{H}} \mathbf{I}$
spherical modes SI
subregion TI
Matrices from standard MoM codes [Gus+16]
$\operatorname{maximize} \quad \mathbf{I}^{\mathrm{H}} \mathbf{U I}$
subject to $\quad \mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right) \mathbf{I}=1$

MoM matrix expressions for bounds

Maximum gain
radiation intensity $U(\hat{\boldsymbol{r}}) \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{U I}$
radiated power $P_{\mathrm{r}} \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{R}_{\mathrm{r}} \mathbf{I}$
ohmic losses $P_{\Omega} \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{R}_{\Omega} \mathbf{I}$
reactance $\quad X \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{X I}$
stored energy $W_{\mathrm{s}} \approx \frac{1}{4 \omega} \mathbf{I}^{\mathrm{H}} \mathbf{X}_{\mathrm{w}} \mathbf{I}$
capacity $\quad C \sim \log _{2}\left(\operatorname{det}\left(1+\rho \mathbf{H P H}^{\mathbf{H}}\right)\right)$
far field $\quad \boldsymbol{F}(\hat{\boldsymbol{r}})=\mathbf{F}^{\mathrm{H}} \mathbf{I}$
incident field $\quad \boldsymbol{E}_{\text {in }}=$ VI
near field $\quad \boldsymbol{E}(\boldsymbol{r})=\mathbf{N}^{\mathrm{H}} \mathbf{I}$
spherical modes SI
subregion TI
Matrices from standard MoM codes [Gus+16]
maximize $\mathbf{I}^{\mathrm{H}} \mathbf{U I}$
subject to $\quad \mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right) \mathbf{I}=1$
add $\mathbf{I}^{\mathrm{H}} \mathbf{X I}=\mathbf{0}$ for self resonance and $\mathbf{T I}=\mathbf{0}$ for PEC subregions

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{I}^{\mathrm{H}} \mathbf{U I} \\
\text { subject to } & \mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right) \mathbf{I}=1 \\
& \mathbf{I}^{\mathrm{H}} \mathbf{X I}=0 \\
& \mathbf{T I}=\mathbf{0}
\end{array}
$$

Many (endless) possibilities to formulate bounds.

Optimization problem: maximum gain (II)

Maximum G for tuned and self-resonant antennas are analyzed by the QCQPs

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{I}^{\mathrm{H}} \mathbf{U I} \\
\text { subject to } & \mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right) \mathbf{I}=1 \tag{S}
\end{array}
$$

maximize $\quad \mathbf{I}^{\mathrm{H}} \mathbf{U I}$

(T) \quad subject to $\mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right) \mathbf{I}=1$

$$
\mathbf{I}^{\mathrm{H}} \mathbf{X I}=0
$$

Optimizing over the current \mathbf{I} ($N \times 1$-matrix) with given $N \times N$ matrices $\mathbf{U}=\mathbf{F F}^{\mathrm{H}} \succeq \mathbf{0}$ (radiation intensity), $\mathbf{R}_{\mathrm{r}} \succeq \mathbf{0}$ (radiated power), $\mathbf{R}_{\Omega} \succeq \mathbf{0}$ (ohmic losses) and \mathbf{X} (reactance) [GC19].
QCQP (T) is reformulated as a Rayleigh quotient and solved as an eigenvalue problem. QCQP (S) is not convex/concave and needs to be reformulate in a solvable form.

Optimization problem: maximum gain (III)

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{I}^{\mathrm{H}} \mathbf{U I} \\
\text { subject to } & \mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right) \mathbf{I}=1 \tag{T}
\end{array}
$$

or as a Rayleigh quotient

$$
G=4 \pi \frac{\mathbf{I}^{\mathrm{H}} \mathbf{U I}}{\mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right) \mathbf{I}}
$$

with solution

$$
G=4 \pi \max \operatorname{eig}\left(\mathbf{U}, \mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right)
$$

maximize $\quad \mathbf{I}^{\mathbf{H}} \mathbf{U I}$
subject to $\mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right) \mathbf{I}=1$
$\mathbf{I}^{\mathrm{H}} \mathbf{X I}=0$

Optimization problem: maximum gain (III)

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{I}^{\mathrm{H}} \mathbf{U I} \\
\text { subject to } & \mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right) \mathbf{I}=1 \tag{T}
\end{array}
$$

or as a Rayleigh quotient

$$
G=4 \pi \frac{\mathbf{I}^{\mathrm{H}} \mathbf{U I}}{\mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right) \mathbf{I}}
$$

with solution

$$
G=4 \pi \max \operatorname{eig}\left(\mathbf{U}, \mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right)
$$

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{I}^{\mathrm{H}} \mathbf{U I} \\
\text { subject to } & \mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right) \mathbf{I}=1 \tag{S}\\
& \nu \mathbf{I}^{\mathrm{H}} \mathbf{X I}=0
\end{array}
$$

for all ν.

Optimization problem: maximum gain (III)

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{I}^{\mathrm{H}} \mathbf{U I} \\
\text { subject to } & \mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right) \mathbf{I}=1
\end{array}
$$

or as a Rayleigh quotient

$$
G=4 \pi \frac{\mathbf{I}^{\mathrm{H}} \mathbf{U I}}{\mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right) \mathbf{I}}
$$

with solution

$$
G=4 \pi \max \operatorname{eig}\left(\mathbf{U}, \mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right)
$$

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{I}^{\mathrm{H}} \mathbf{U I} \\
\text { subject to } & \mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right) \mathbf{I}=1 \tag{S}\\
& \nu \mathbf{I}^{\mathrm{H}} \mathbf{X I}=0
\end{array}
$$

for all ν. Add the constraints

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{I}^{\mathrm{H}} \mathbf{U I} \\
\text { subject to } & \mathbf{I}^{\mathrm{H}}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}+\nu \mathbf{X}\right) \mathbf{I}=1 \tag{S'}
\end{array}
$$

which has the same form as (T) and is hence solved by
$G=4 \pi$ minimize ${ }_{\nu} \max \operatorname{eig}\left(\mathbf{U}, \mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}+\nu \mathbf{X}\right)$

Computation of $\max G=\min _{\nu} \max \operatorname{eig}\left(\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}+\nu \mathbf{X}, \mathbf{U}\right)$

- $\nu \mathbf{X}+\mathbf{R}_{\Omega}+\mathbf{R}_{\mathrm{r}} \succeq \mathbf{0}$ is an eigenvalue problem to determine the range for $\nu_{\text {min }} \leq \nu \leq \nu_{\text {max }}$.
- Minimize over $\left[\nu_{\text {min }}, \nu_{\text {max }}\right]$ (Newton, bisection,..)
- Self resonant for $\nu=\nu_{\mathrm{opt}}$.
- ν_{n} valuation points using the bisection rule.
- Special treatment for degenerate cases.

Constructs a self-resonant current with $G=G_{\mathrm{ub}}$ such that the duality gap is zero.

Physical bounds on antennas based on (convex) optimization

Gain, Q-factor, and efficiency problems are formulated as quadratically constrained quadratic programs (QCQP) and solved with the same (simple) algorithm, e.g.,

$$
\begin{aligned}
G: & \min . \max \operatorname{eig}\left(\mathbf{F}^{\mathrm{H}}\left(\nu \mathbf{X}+\mathbf{R}_{\mathrm{r}}+\mathbf{R}_{\Omega}\right)^{-1} \mathbf{F}\right) \\
G / Q: & \min \cdot \max \operatorname{eig}\left(\mathbf{F}^{\mathrm{H}}\left(\nu \mathbf{X}+\mathbf{X}_{\mathrm{w}}\right)^{-1} \mathbf{F}\right) \\
Q^{\mathrm{rad}}: & \min . \max \operatorname{eig}\left(\mathbf{S}\left(\nu \mathbf{X}+\mathbf{X}_{\mathrm{w}}\right)^{-1} \mathbf{S}^{\mathrm{H}}\right) \\
\delta=P_{\Omega} / P_{\mathrm{r}}: & \min \cdot \max \operatorname{eig}\left(\mathbf{S}\left(\nu \mathbf{X}+\mathbf{R}_{\Omega}\right)^{-1} \mathbf{S}^{\mathrm{H}}\right) \\
Q^{\mathrm{rad}} \text { vs } \delta: & \min . \max \operatorname{eig}\left(\mathbf{S}\left(\nu \mathbf{X}+\alpha \mathbf{X}_{\mathrm{w}}+\mathbf{R}_{\Omega}\right)^{-1} \mathbf{S}^{\mathrm{H}}\right)
\end{aligned}
$$

$\mathbf{X}, \mathbf{X}_{\mathrm{w}}, \mathbf{R}_{\mathrm{r}}, \mathbf{R}_{\Omega}, \mathbf{F}$: MoM matrices determined for a design region Ω and used materials.

Maximum gain and effective area: parabola with sphere

- Maximum effective area for a parabolic reflector (radius a, focal distance $a / 2$, and depth $a / 2$) with a sphere (radius $a / 20$) having surface resistivity $R_{\mathrm{S}}=10^{-2} \Omega / \square$
- Optimal currents on reflector and sphere
- Internal resonances of the sphere

From [GC19].

Maximum gain and effective area: parabola with sphere

- Maximum effective area for a parabolic reflector (radius a, focal distance $a / 2$, and depth $a / 2$) with a sphere (radius $a / 20$) having surface resistivity $R_{\mathrm{S}}=10^{-2} \Omega / \square$
- Optimal currents on reflector and sphere
- Internal resonances of the sphere
- Optimal currents on reflector

From [GC19].

Maximum gain and effective area: parabola with sphere

- Maximum effective area for a parabolic reflector (radius a, focal distance $a / 2$, and depth $a / 2$) with a sphere (radius $a / 20$) having surface resistivity $R_{\mathrm{S}}=10^{-2} \Omega / \square$
- Optimal currents on reflector and sphere
- Internal resonances of the sphere
- Optimal currents on reflector
- Optimal currents on sphere and induced currents on reflector

From [GC19].

Passivity/Causality and Optimization (power) bounds

Passivity and Causality

- LTI system (Input and output signals)
- Analyticity from causality
- Definite sign from passivity (HN)
- Bounds from weighted integrals over all spectrum

Optimization (power) bounds

- Physical modelling (integral equations (MoM))
- Optimization problems over sources
- Pointwise bounds from the solution (convex dual) of the optimization problem

$$
\frac{2}{\pi} \int_{\mathbb{R}} \frac{\operatorname{Im} f(\omega)}{\omega^{2 n}} \mathrm{~d} \omega=a_{2 n-1}-b_{2 n-1}
$$

© Simple closed form expressions
(-) Based on an identity
© Not pointwise (moments)
© Hard to add (include) information

$$
f(\omega) \leq f_{\mathrm{opt}}(\omega)
$$

(-) Pointwise bounds
© Easy to add (include) information
© Bandwidth (Q-factor for small ©)
© Numerical solution (some explicit \odot)

Sum rule (Herglotz) and current optimization for σ_{t}

Bounds on the extinctions cross section $\sigma_{\mathrm{t}}=\sigma_{\mathrm{a}}+\sigma_{\mathrm{s}}$ for linear, passive, time-invariant, non-magnetic object with support in the region $\Omega_{1} \subset \Omega$.

Can consider different amount of information

1. region Ω
2. region Ω and losses $\rho_{\mathrm{r}}=\frac{-\eta_{0} \operatorname{Im} \chi}{k|\chi|^{2}}$ in Ω_{1}
3. region Ω and permittivity $\epsilon=\epsilon_{0}(1+\chi)$ in Ω_{1}

Note can easy generalize to $\epsilon(\boldsymbol{r})$, anisotropic, and magnetic cases.

Forward scattering sum rule: assumptions

Assumptions:

- Finite scattering object composed of a linear, passive, and time translational invariant materials.
- Incident linearly polarized plane wave.

From physics:

- The propagation speed is limited by the speed of light.
- Optical theorem (energy conservation).
- Induced dipole moment in the static limit.

Passive system with $h(k) \sim \gamma k$ as $k \stackrel{\rightarrow}{\rightarrow} 0$ and $\sigma_{\text {ext }}=\operatorname{Im} h$.

Forward scattering sum rule

Use the $n=1$ identity with $a_{1}=\gamma=\hat{\boldsymbol{e}} \cdot \gamma_{\mathrm{e}} \cdot \hat{\boldsymbol{e}}+(\hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}}) \cdot \gamma_{\mathrm{m}} \cdot(\hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}})$ and $b_{1}=0$, i.e.,

$$
\frac{2}{\pi} \int_{0}^{\infty} \frac{\sigma_{\text {ext }}(k)}{k^{2}} \mathrm{~d} k=\hat{\boldsymbol{e}} \cdot \gamma_{\mathrm{e}} \cdot \hat{\boldsymbol{e}}+(\hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}}) \cdot \boldsymbol{\gamma}_{\mathrm{m}} \cdot(\hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}})
$$

or written in the free-space wavelength $\lambda=2 \pi / k$

$$
\frac{1}{\pi^{2}} \int_{0}^{\infty} \sigma_{\text {ext }}(\lambda) \mathrm{d} \lambda=\hat{\boldsymbol{e}} \cdot \gamma_{\mathrm{e}} \cdot \hat{\boldsymbol{e}}+(\hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}}) \cdot \gamma_{\mathrm{m}} \cdot(\hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}})
$$

Bounds on $\sigma_{\mathrm{t}}=\sigma_{\text {ext }}$ (solely) based on Ω

Forward scattering forms a passive system with the sum rule [SGK07]

$$
\frac{1}{\pi^{2}} \int_{0}^{\infty} \sigma_{\mathrm{t}}(\lambda) \mathrm{d} \lambda=\hat{\boldsymbol{e}} \cdot \gamma_{\mathrm{e}} \cdot \hat{\boldsymbol{e}} \leq \hat{\boldsymbol{e}} \cdot \gamma_{\infty} \cdot \hat{\boldsymbol{e}}
$$

where γ_{e} and γ_{∞} are the (static) polarizability dyadic of the object and high contrast polarizability dyadic of the region Ω, respectively.
An identity showing that the area under the curve $\sigma_{\mathrm{t}}(\lambda)$ is given by the polarizability (many good properties, analytic expressions, and easily computable), here $4 \pi a^{3}$.

Same area but different peak values [Gus10b]. No sum rule bound on the peak value. Theoretical constructions have $\sigma_{\mathrm{t}} \rightarrow \infty$, cf., superdirectivity.

Bounds on $\sigma_{\mathrm{t}}=\sigma_{\text {ext }}$ (solely) based on Ω

Forward scattering forms a passive system with the sum rule [SGK07]

$$
\frac{1}{\pi^{2}} \int_{0}^{\infty} \sigma_{\mathrm{t}}(\lambda) \mathrm{d} \lambda=\hat{\boldsymbol{e}} \cdot \gamma_{\mathrm{e}} \cdot \hat{\boldsymbol{e}} \leq \hat{\boldsymbol{e}} \cdot \gamma_{\infty} \cdot \hat{\boldsymbol{e}}
$$

where γ_{e} and γ_{∞} are the (static) polarizability dyadic of the object and high contrast polarizability dyadic of the region Ω, respectively.
An identity showing that the area under the curve $\sigma_{\mathrm{t}}(\lambda)$ is given by the polarizability (many good properties, analytic expressions, and easily computable), here $4 \pi a^{3}$.

Same area but different peak values [Gus10b]. No sum rule bound on the peak value. Theoretical constructions have $\sigma_{\mathrm{t}} \rightarrow \infty$, cf., superdirectivity.

Extinction cross section σ_{t} for Au (circumscribing) spheres

Use dual form of the QCLP (QCQP for $\sigma_{\mathrm{a}}, \sigma_{\mathrm{s}}$)
maximize $\operatorname{Re}\left\{\mathbf{V}^{\mathrm{H}} \mathbf{I}\right\}$
subject to $\operatorname{Re}\left\{\mathbf{V}^{\mathbf{H}} \mathbf{I}\right\}-\mathbf{I}^{\mathbf{H}} \mathbf{R I}=0$

$$
\operatorname{Im}\left\{\mathbf{V}^{\mathrm{H}} \mathbf{I}\right\}-\mathbf{I}^{\mathrm{H}} \mathbf{X I}=0
$$

Bounds based on
Blue Volume and ρ_{r}
Red Shape and ρ_{r}
Green Shape, ρ_{r}, and ρ_{i}
The bounds are compared with
Yellow Solid sphere
Purple Optimized layered sphere

Bounds on $\sigma_{\text {ext }}$ for Au spherical $a=10 \mathrm{~nm}$ regions

Extinction cross section σ_{t} for Au (circumscribing) spheres

Use dual form of the QCLP (QCQP for $\sigma_{\mathrm{a}}, \sigma_{\mathrm{s}}$)
maximize $\operatorname{Re}\left\{\mathbf{V}^{\mathrm{H}} \mathbf{I}\right\}$
subject to $\operatorname{Re}\left\{\mathbf{V}^{\mathbf{H}} \mathbf{I}\right\}-\mathbf{I}^{\mathbf{H}} \mathbf{R I}=0$

$$
\operatorname{Im}\left\{\mathbf{V}^{\mathrm{H}} \mathbf{I}\right\}-\mathbf{I}^{\mathrm{H}} \mathbf{X I}=0
$$

Bounds based on
Blue Volume and ρ_{r}
Red Shape and ρ_{r}
Green Shape, ρ_{r}, and ρ_{i}
The bounds are compared with
Yellow Solid sphere
Purple Optimized layered sphere

Bounds on $\sigma_{\text {ext }}$ for Au spherical $a=20 \mathrm{~nm}$ regions

Extinction cross section σ_{t} for Au (circumscribing) spheres

Use dual form of the QCLP (QCQP for $\sigma_{\mathrm{a}}, \sigma_{\mathrm{s}}$)
maximize $\operatorname{Re}\left\{\mathbf{V}^{\mathbf{H}} \mathbf{I}\right\}$
subject to $\operatorname{Re}\left\{\mathbf{V}^{\mathbf{H}} \mathbf{I}\right\}-\mathbf{I}^{\mathbf{H}} \mathbf{R I}=0$

$$
\operatorname{Im}\left\{\mathbf{V}^{\mathrm{H}} \mathbf{I}\right\}-\mathbf{I}^{\mathrm{H}} \mathbf{X I}=0
$$

Bounds based on
Blue Volume and ρ_{r}
Red Shape and ρ_{r}
Green Shape, ρ_{r}, and ρ_{i}
The bounds are compared with
Yellow Solid sphere
Purple Optimized layered sphere

Bounds on $\sigma_{\text {ext }}$ for Au spherical $a=50 \mathrm{~nm}$ regions

Extinction cross section σ_{t} for Au (circumscribing) spheres

Use dual form of the QCLP (QCQP for $\sigma_{\mathrm{a}}, \sigma_{\mathrm{s}}$)
maximize $\operatorname{Re}\left\{\mathbf{V}^{\mathbf{H}} \mathbf{I}\right\}$
subject to $\operatorname{Re}\left\{\mathbf{V}^{\mathbf{H}} \mathbf{I}\right\}-\mathbf{I}^{\mathbf{H}} \mathbf{R I}=0$

$$
\operatorname{Im}\left\{\mathbf{V}^{\mathrm{H}} \mathbf{I}\right\}-\mathbf{I}^{\mathrm{H}} \mathbf{X I}=0
$$

Bounds based on
Blue Volume and ρ_{r}
Red Shape and ρ_{r}
Green Shape, ρ_{r}, and ρ_{i}
The bounds are compared with
Yellow Solid sphere

Bounds on $\sigma_{\text {ext }}$ for Au spherical $a=100 \mathrm{~nm}$ regions

Can we combine them?

- Area from sum rule and maximum value from optimization.
- Single resonance model (Lorentzian) for bandwidth.
- Sum rule for a product $g h$, where g is real valued at the frequency axis and has simple poles in the upper complex half plane, cf., [Shi+19].
- Optimization approaches.

- Area from sum rule and maximum value from optimization.
- Single resonance model (Lorentzian) for bandwidth.
- Sum rule for a product $g h$, where g is real valued at the frequency axis and has simple poles in the upper complex half plane, cf., [Shi+19].
- Optimization approaches.

Conclusions

- Passive systems and HN functions
- Sum rules
- Bounds for weighted averages
- Closed for expressions
- Hard to add information
- Optimization problems

Bounds on $\sigma_{\text {ext }}$ for Au spherical $a=50 \mathrm{~nm}$ regions

- Very general and easy to add information
- Solution from dual form
- Pointwise bounds

Work in progress

- Combinations between the two approaches
- Generalization from passive to causal and active

References I

[Akh65] N. I. Akhiezer. The classical moment problem. Oliver and Boyd, 1965.
[BGN11] A. Bernland, M. Gustafsson, and S. Nordebo. "Physical limitations on the scattering of electromagnetic vector spherical waves". J. Phys. A: Math. Theor. 44.145401 (2011), pp. 1-21.
[BLG11] A. Bernland, A. Luger, and M. Gustafsson. "Sum rules and constraints on passive systems". J. Phys. A: Math. Theor. 44.145205 (2011), pp. 1-20.
[Bod45] H. W. Bode. Network analysis and feedback amplifier design, 1945. Van Nostrand, 1945.
[Cap+19] M. Capek, L. Jelinek, K. Schab, M. Gustafsson, B. L. G. Jonsson, F. Ferrero, and C. Ehrenborg. "Optimal Planar Electric Dipole Antenna". IEEE AP magazine (2019).
[Cau32] W. Cauer. "The Poisson integral for functions with positive real part". Bull. Am. Math. Soc. 38.1919 (1932), pp. 713-717.
[CG14] M. Cismasu and M. Gustafsson. "Antenna Bandwidth Optimization with Single Frequency Simulation". IEEE Trans. Antennas Propag. 62.3 (2014), pp. 1304-1311.
[CGS17] M. Capek, M. Gustafsson, and K. Schab. "Minimization of Antenna Quality Factor". IEEE Trans. Antennas Propag. 65.8 (2017), pp. 4115-4123.
[DSV13] J. P. Doane, K. Sertel, and J. L. Volakis. "Matching bandwidth limits for arrays backed by a conducting ground plane". IEEE Trans. Antennas Propag. 61.5 (2013), pp. 2511-2518.
[Fan50] R. M. Fano. "Theoretical limitations on the broadband matching of arbitrary impedances". Journal of the Franklin Institute 249.1,2 (1950), 57-83 and 139-154.
[GC19] M. Gustafsson and M. Capek. "Maximum Gain, Effective Area, and Directivity". IEEE Trans. Antennas Propag. 67.8 (2019), pp. 5282-5293.
[GCS19] M. Gustafsson, M. Capek, and K. Schab. "Tradeoff between antenna efficiency and Q-factor". IEEE Trans. Antennas Propag. 67.4 (2019), pp. 2482-2493.
[GN13] M. Gustafsson and S. Nordebo. "Optimal Antenna Currents for Q, Superdirectivity, and Radiation Patterns Using Convex
Optimization". IEEE Trans. Antennas Propag. 61.3 (2013), pp. 1109-1118.
[GS10] M. Gustafsson and D. Sjöberg. "Sum rules and physical bounds on passive metamaterials". New Journal of Physics 12.043046 (2010), pp. 1-18.

References II

[GS11] M. Gustafsson and D. Sjöberg. "Physical bounds and sum rules for high-impedance surfaces". IEEE Trans. Antennas Propag. 59.6 (2011), pp. 2196-2204.
[GSK07] M. Gustafsson, C. Sohl, and G. Kristensson. "Physical limitations on antennas of arbitrary shape". Proc. R. Soc. A 463 (2007), pp. 2589-2607.
[GSK09] M. Gustafsson, C. Sohl, and G. Kristensson. "Illustrations of New Physical Bounds on Linearly Polarized Antennas". IEEE Trans. Antennas Propag. 57.5 (2009), pp. 1319-1327.
[GT00] F. Gesztesy and E. Tsekanovskii. "On matrix-valued Herglotz functions". Mathematische Nachrichten 218.1 (2000), pp. 61-138.
[Gus09] M. Gustafsson. "Sum rule for the transmission cross section of apertures in thin opaque screens". Opt. Lett. 34.13 (2009), pp. 2003-2005.
[Gus10a] M. Gustafsson. "Sum rules for lossless antennas". IET Microwaves, Antennas \& Propagation 4.4 (2010), pp. 501-511.
[Gus10b] M. Gustafsson. "Time-domain approach to the forward scattering sum rule". Proc. R. Soc. A 466 (2010), pp. 3579-3592.
[Gus12] M. Gustafsson. "Bandwidth constraints for passive superluminal propagation through metamaterials". Applied Physics A 109.4 (2012), pp. 1015-1021.
[Gus+12] M. Gustafsson, I. Vakili, S. E. B. Keskin, D. Sjöberg, and C. Larsson. "Optical theorem and forward scattering sum rule for periodic structures". IEEE Trans. Antennas Propag. 60.8 (2012), pp. 3818-3826.
[Gus+16] M. Gustafsson, D. Tayli, C. Ehrenborg, M. Cismasu, and S. Nordebo. "Antenna current optimization using MATLAB and CVX". FERMAT 15.5 (2016), pp. 1-29.
[Har68] R. F. Harrington. Field Computation by Moment Methods. Macmillan, 1968.
[Her11] G. Herglotz. "Über Potenzreihen mit positivem, reellem Teil im Einheitskreis". Leipziger Berichte 63 (1911), pp. 501-511.
[HM71] R. F. Harrington and J. R. Mautz. "Theory of characteristic modes for conducting bodies". IEEE Trans. Antennas Propag. 19.5 (1971), pp. 622-628.
[JC17] L Jelinek and M Capek. "Optimal Currents on Arbitrarily Shaped Surfaces". IEEE Trans. Antennas Propag. 65.1 (2017), pp. 329-341.
[JKH13] B. L. G. Jonsson, C. I. Kolitsidas, and N Hussain. "Array Antenna Limitations". IEEE Antennas Wireless Propag. Lett. 12 (2013), pp. 1539-1542.
[Jon +17] B. L. G. Jonsson, S. Shi, L. Wang, F. Ferrero, and L. Lizzi. "On Methods to Determine Bounds on the Q-Factor for a Given Directivity". IEEE Trans. Antennas Propag. 65.11 (2017), pp. 5686-5696.

References III

[LO+19]	A. Ludvig-Osipov, J. Lundgren, C. Ehrenborg, Y. Ivanenko, A. Ericsson, M. Gustafsson, B. Jonsson, and D. Sjöberg. "Fundamental bounds on transmission through periodically perforated metal screens with experimental validation". IEEE Trans. Antennas Propag. (2019).
[Ned+19]	M. Nedic, C. Ehrenborg, Y. Ivanenko, A. Ludvig-Osipov, S. Nordebo, A. Luger, B. L. G. Jonsson, D. Sjöberg, and M. Gustafsson. "Herglotz functions and applications in electromagnetics". In: Advances in Mathematical Methods for Electromagnetics. Ed. by K. Kobayashi and P. Smith. IET, 2019.
[Nev 22]	R. H. Nevanlinna. "Asymptotische Entwicklungen beschränkter Funktionen und das Stieltjes'sche Momentenproblem". Annales Academiae Scientiarum Fennicae A 18.5 (1922), pp. 1-53.
[Pur69]	E. M. Purcell. "On the absorption and emission of light by interstellar grains". J. Astrophys. 158 (1969), pp. 433-440.
[Roz00]	K. N. Rozanov. "Ultimate Thickness to Bandwidth Ratio of Radar Absorbers". IEEE Trans. Antennas Propag. 48.8 (2000), pp. 1230-1234.
[SGK07]	C. Sohl, M. Gustafsson, and G. Kristensson. "Physical limitations on broadband scattering by heterogeneous obstacles". J. Phys. A: Math. Theor. 40 (2007), pp. 11165-11182.
[Shi+19]	H. Shim, L. Fan, S. G. Johnson, and O. D. Miller. "Fundamental Limits to Near-Field Optical Response over Any Bandwidth". Phys. Rev. X 9 (1 2019), p. 011043.
[VCF10]	J. Volakis, C. C. Chen, and K. Fujimoto. Small Antennas: Miniaturization Techniques \& Applications. McGraw-Hill, 2010.
[WAJ14]	A. Welters, Y. Avniel, and S. G. Johnson. "Speed-of-light limitations in passive linear media". Phys. Rev. A 90 (2 2014), p. 023847.
[WB65]	M. Wohlers and E. Beltrami. "Distribution theory as the basis of generalized passive-network analysis". IEEE Transactions on Circuit Theory 12.2 (1965), pp. 164-170.
[YCC59]	D. Youla, L. Castriota, and H. Carlin. "Bounded real scattering matrices and the foundations of linear passive network theory". IRE Transactions on Circuit Theory 6.1 (1959), pp. 102-124.
[Zem63]	A. H. Zemanian. "An n-port realizability theory based on the theory of distributions". IEEE Transactions on Circuit Theory 10.2 (1963), pp. 265-274.
[Zem65]	A. H. Zemanian. Distribution theory and transform analysis: an introduction to generalized functions, with applications. McGraw-Hill, 1965.

