# Algebraic Nevanlinna operator functions and applications to electromagnetics

Christian Engström

Linnaeus University, Sweden

christian.engstrom@lnu.se

Joint work with Heinz Langer, Axel Torshage, Christiane Tretter

October 7, 2019

- 1 Physical background Electromagnetic (EM) waves
- 2 The self-adjoint case
- 3 Non-self-adjoint cases
- Ongoing work

Maxwell's equations in E

$$\operatorname{curl}\operatorname{curl} E + rac{\partial^2 D}{\partial t^2} = 0, \quad x = (x_1, x_2, x_3) \in \Omega \subset \mathbb{R}^3$$

with

$$D(x,t) = \left\{ E(x,t) + \int_{-\infty}^{t} K(x,t-\tau) E(x,\tau) \, d\tau \right\}.$$

The Fourier transform  $\hat{f}(\omega) = \int e^{i\omega t} f(t) dt$  gives

$$\mathcal{S}(\omega)E = 0, \quad \mathcal{S}(\omega) = \operatorname{curl}\operatorname{curl} - \omega^2 \epsilon(x, \omega),$$

where  $\epsilon(x,\omega) = 1 + \hat{K}(x,\omega)$  is the permittivity and  $\omega \in \mathcal{D} \subset \mathbb{C}$ .

Properties of the spectrum:  $\sigma(S) = \{\omega \in D : 0 \in \sigma(S(\omega))\}$ 

Resolvent estimates: Behaviour of  $\|S^{-1}(\omega)\|$ 

Properties of the evolution Maxwell equations:

$$\operatorname{curl}\operatorname{curl} E + \frac{\partial^2}{\partial t^2} \left\{ E(x,t) + \int_{-\infty}^t K(x,t-\tau)E(x,\tau) \, d\tau \right\} = 0$$

+ boundary and initial conditions.

### Drude-Lorentz = damped harmonic oscillator

- *d* damping
- $\sqrt{c}$  resonant frequency of undamped oscillator
- $\sqrt{b}$  plasma frequency

$$\theta := \sqrt{c - \frac{d^2}{4}} \neq 0$$
 (under/over - damping):

$$K(t) = rac{b}{ heta} e^{-td/2} \sin( heta t).$$

Assume  $\theta := 0$  (critical damping):

$$K(t) = bte^{-td/2}$$

• 
$$\Omega = \Omega_1 \cup \Omega_2$$
  
•  $\epsilon(x, \omega) = 1 + \hat{K}(x, \omega) := \chi_{\Omega_1}(x) + \epsilon_2(\omega)\chi_{\Omega_2}(x)$ 

# Analytic properties of S?



 $\checkmark \ \omega \mapsto \omega \epsilon(\omega) \text{ maps } \mathbb{C}^+ \text{ on } \bar{\mathbb{C}}^+,$ 

But is the operator function

$$\mathcal{S}(\omega) = \operatorname{curl}\operatorname{curl} - \omega^2 \epsilon(x,\omega)$$

Nevanlinna (after change of variables)?

Consider S with the multi-pole Drude-Lorentz model:

$$\mathcal{S}(\omega) = A_0 - \omega^2 - \omega^2 \sum_{\ell=1}^{L} \frac{M_\ell}{c_\ell - d_\ell \omega - \omega^2}$$

with  $A_0 = \text{curl curl}$ , and  $M_\ell = b_\ell \chi_{\Omega_2}$ .

Set  $\omega = -\sqrt{\lambda}$ . Then  $-\mathcal{S}(\lambda) : L^2(\Omega)^3 \to L^2(\Omega)^3$  with

$$S(\lambda) = A_0 - \lambda - \lambda \sum_{\ell=1}^{L} \frac{M_{\ell}}{c_{\ell} + id_{\ell}\sqrt{\lambda} - \lambda},$$

is Nevanlinna if

•  $A_0$  is self-adjoint &  $M_\ell \ge 0$ 

•  $d_\ell = 0$  or  $c_\ell \leqslant d_\ell^2/4$  for all  $\ell = 1, 2, \dots, L$ 

Consider S with the multi-pole Drude-Lorentz model:

$$\mathcal{S}(\omega) = A_0 - \omega^2 - \omega^2 \sum_{\ell=1}^{L} \frac{M_\ell}{c_\ell - d_\ell \omega - \omega^2},$$

with  $A_0 = \text{curl curl}$ , and  $M_\ell = b_\ell \chi_{\Omega_2}$ .

Set 
$$\omega = -\sqrt{\lambda}$$
. Then  $-\mathcal{S}(\lambda) : L^2(\Omega)^3 \to L^2(\Omega)^3$  with

$$\mathcal{S}(\lambda) = A_0 - \lambda - \lambda \sum_{\ell=1}^{L} \frac{M_{\ell}}{c_{\ell} + id_{\ell}\sqrt{\lambda} - \lambda},$$

is Nevanlinna if

• 
$$A_0$$
 is self-adjoint &  $M_\ell \ge 0$   
•  $d_\ell = 0$  or  $c_\ell \le d_\ell^2/4$  for all  $\ell = 1, 2, \dots, L$ 

Polynomial long division gives

$$\lambda \epsilon(x,\lambda) = \lambda - \sum_{\ell=1}^{L} b_{\ell} \chi_{\Omega_2}(x) + \sum_{\ell=1}^{L} \frac{c_{\ell} b_{\ell}}{c_{\ell} - \lambda} \chi_{\Omega_2}(x)$$

Set

Т

• 
$$A = A_0 + \sum_{\ell=1}^{L} b_\ell \chi_{\Omega_2}$$
  
•  $B_\ell^* = \sqrt{c_\ell b_\ell} \chi_{\Omega_2}$ , where  $\chi_{\Omega_2} : L^2(\Omega)^3 \to \hat{\mathcal{H}}_2$ ,  $\hat{\mathcal{H}}_2 = \operatorname{ran} \chi_{\Omega_2}$ .  
then

$$S(\lambda) = A - \lambda - \sum_{\ell=1}^{L} \frac{B_{\ell}B_{\ell}^*}{c_{\ell} - \lambda},$$

## Equivalent block operator matrix

$$\mathcal{S}(\lambda) = A - \lambda - \sum_{\ell=1}^{L} \frac{B_{\ell} B_{\ell}^{*}}{c_{\ell} - \lambda}, \quad \operatorname{dom} \mathcal{S}(\lambda) = \operatorname{dom} A, \quad \lambda \in \mathbb{C} \setminus \{c_{1}, c_{2}, \dots, c_{L}\},$$

where  $B_{\ell}: \widehat{\mathcal{H}}_2 \to L^2(\Omega)^3$ ,  $\ell = 1, 2, \dots, L$ .

• 
$$\widetilde{\mathcal{H}} = L^2(\Omega)^3 \oplus \widehat{\mathcal{H}}, \ \widehat{\mathcal{H}} = \widehat{\mathcal{H}}_2 \oplus \cdots \oplus \widehat{\mathcal{H}}_2$$

 ${\mathcal S}$  is the Schur complement of  ${\mathcal A}: \widetilde{{\mathcal H}} \to \widetilde{{\mathcal H}},$ 

$$\mathcal{A} = \begin{pmatrix} A & B \\ B^* & D \end{pmatrix} = \begin{pmatrix} A & B_1 & B_2 \cdots & B_L \\ B_1^* & c_1 & 0 & \cdots & 0 \\ B_2^* & 0 & c_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ B_L^* & 0 & 0 & \cdots & c_L \end{pmatrix}, \quad \operatorname{dom} \mathcal{A} = \operatorname{dom} \mathcal{A} \oplus \widehat{\mathcal{H}}.$$

Assumptions

- A has discrete spectrum, (e.g.  $E = (0, 0, u(x_1, x_2))$  in electromagnetics )
- A is self-adjoint and bounded from below
- $B_{\ell}$ ,  $\ell = 1, 2, \dots, L$  are bounded

Then

•  $\sigma_{ess}(A) = \{c_1, c_2, \dots, c_L\}$ (Adamjan, Atkinson, H. Langer, Mennicken, Shkalikov)

2  $\mathcal{A}$  is self-adjoint and bounded from below

From the min-max principle (Rayleigh-Ritz, Courant-Fischer) follows

$$\lambda_n = \min_{\substack{\mathcal{L} \subset \dim \mathcal{A} \\ \dim \mathcal{L} = n}} \max_{\substack{u \in \mathcal{L} \\ u \neq 0}} p(u), \ p(u) := \frac{(\mathcal{A}u, u)}{||u||^2}$$

where  $((\mathcal{A} - \lambda)u, u) = 0$  has solution p(u) and  $\lambda_n \to \min \sigma_{ess}(\mathcal{A}) = c_1$ .

Assumptions

- A has discrete spectrum, (e.g.  $E = (0, 0, u(x_1, x_2))$  in electromagnetics )
- A is self-adjoint and bounded from below
- $B_{\ell}$ ,  $\ell = 1, 2, \dots, L$  are bounded

Then

σ<sub>ess</sub>(A) = {c<sub>1</sub>, c<sub>2</sub>,..., c<sub>L</sub>}(Adamjan, Atkinson, H. Langer, Mennicken, Shkalikov)
 A is self-adjoint and bounded from below

From the min-max principle (Rayleigh-Ritz, Courant-Fischer) follows

$$\lambda_n = \min_{\substack{\mathcal{L} \subset \operatorname{dom} \mathcal{A} \\ \dim \mathcal{L} = n}} \max_{\substack{u \in \mathcal{L} \\ u \neq 0}} p(u), \ p(u) := \frac{(\mathcal{A}u, u)}{||u||^2}$$

where  $((\mathcal{A} - \lambda)u, u) = 0$  has solution p(u) and  $\lambda_n \rightarrow \min \sigma_{ess}(\mathcal{A}) = c_1$ .

• 
$$(\mathcal{S}(\lambda)u, u) = 0$$
 has solution  $p_{\ell+1}(u)$  in  $(c_{\ell}, c_{\ell+1})$ 

From the Nevanlinna property follows

$$\frac{d}{d\lambda}(\mathcal{S}(\lambda)u, u) = -\|u\|^2 - \sum_{\ell=1}^{L} \frac{\|B_{\ell}^*\|^2}{(c_{\ell} - \lambda)^2} \leq -\|u\|^2, \quad u \in \operatorname{dom} \mathcal{S}, u \neq 0$$

Morover,  $S(\lambda) = \operatorname{dom} A$  independent of  $\lambda$ .

 These properties (and some additional) imply variational principles (M. Langer/Eschwé (2004))

#### Simplified result for one rational term

Assume  $A \ge c_1$ . Then the eigenvalues of  $\mathcal{A}$  (and  $\mathcal{S}$ ) are

$$\lambda_{1,n} = \min_{\substack{\mathcal{L} \subset \operatorname{dom A} \\ \dim \mathcal{L} = n}} \max_{\substack{u \in \mathcal{L} \\ u \neq 0}} p_1(u), \quad \lambda_{1,n} \to c_1$$

$$\lambda_{2,n} = \min_{\substack{\mathcal{L} \subset \operatorname{dom A} \\ \dim \mathcal{L} = n}} \max_{\substack{u \in \mathcal{L} \\ u \neq 0}} p_2(u), \quad \lambda_{2,n} \to \infty,$$

where

$$p_{1,2}(u) := \frac{1}{2} \left( \frac{(Au, u)}{\|u\|^2} + c_1 \right) \mp \sqrt{\frac{1}{4} \left( \frac{(Au, u)}{\|u\|^2} - c_1 \right)^2 + \frac{\|B_1^* u\|^2}{\|u\|^2}}.$$

Note that  $p_{1,2}(u)$  are the solutions of  $(P(\lambda)u, u) = 0$ , where

$$P(\lambda) := (c_1 - \lambda)S(\lambda) = \lambda^2 - \lambda(A + c_1) - B_1B_1^*$$

# Main results in E./Langer/Tretter (2017)

- ✓ gaps in the spectrum to the right of  $c_\ell$ ,  $\ell = 1, \ldots, L$
- $\checkmark~c_\ell$  is an accumulation point of eigenvalues of  $\mathcal A$  from the left
- ✓ min-max characterisation of the eigenvalues:

$$\lambda_{\ell,n} = \min_{\substack{\mathcal{L} \subset \mathrm{dom \, A} \\ \dim \mathcal{L} = n + \kappa_{\ell}}} \max_{\substack{u \in \mathcal{L} \\ u \neq 0}} p_{\ell}(u)$$

where  $\kappa_{\ell}$  is the number of negative eigenvalues of  $S(\eta_{\ell}^+)$ .

• No index shift (i.e.  $\kappa_{\ell} = 0$ ) if  $A > c_L$ .



What can we say about the spectrum of

$$\mathcal{S}(\omega) = A_0 - \omega^2 - \omega^2 \sum_{\ell=1}^{L} \frac{M_{\ell}}{c_{\ell} - d_{\ell}\omega - \omega^2},$$

when  $d_{\ell} > 0$  for some  $\ell$ ?

- The tools used when  $d_\ell = 0$  can not be applied
- We need different tools and will use theory of bounded operator polynomials (Keldysh, Krein, Langer, Markus, Matsaev, Russu,...)

#### The theory is difficult to use since

• We need good knowledge of the numerical range

 $\mathcal{W}(\mathcal{S}) = \{\omega \in \mathcal{D} : \exists u \in \mathrm{dom}\,(A) \setminus \{0\}, \|u\| = 1, \mathsf{so that}\,(\mathcal{S}(\omega)u, u) = 0\}$ 

• We can only show accumulation of eigenvalues in bounded components of the numerical range

### Basic steps to show accumulation when $d_\ell > 0$

- Reformulate the problem as an operator polynomial *P* with bounded operator coefficients (of a special form)
- Show that it exists operator polynomials R and Q such that

$$P(\omega) = R(\omega)Q(\omega), \sigma(R) = \Gamma \cap \sigma(P), \sigma(Q) \subset \mathbb{C} \setminus \overline{\Gamma},$$

where  $\Gamma \subset \mathbb{C}$  is bounded.



### Application to lossy photonic crystal



Poles at  $\pm\sqrt{8}-i$  for  $\mathcal{S}$  with one rational term

- We can prove accumulation of eigenvalues to the poles
- Solid lines bound the spectrum
- The circles are numerically computed eigenvalues (p-FEM)

## Where are we going now?

#### Other equations

- Full Maxwell's equations with double negative and lossy materials
- Wave equations with viscoelastic materials (Bolzmann integral)
- Scattering resonances (nonlinearity in the DtN-map)

#### **Evolution problems**

• Get to know the resolvent  $\rightarrow$  get to know the semigroup



#### Is $\|\mathcal{S}^{-1}(\lambda)\|$ a Mouse or an Elephant (or a Duck)?

### References



 $\rm C.\ TRETTER.$  Spectral theory of block operator matrices and applications. Imperial College Press, 2008



 $\rm A,\,S,\,Markus.$  Introduction to the spectral theory of polynomial operator pencils. AMS, 1988



- F. V. ATKINSON, H. LANGER, R. MENNICKEN, A. A. SHKALIKOV. The essential spectrum of some matrix operators. Math. Nachr., 167: 5-20, 1994.
- D. ESCHWÉ, M. LANGER. Variational principles for eigenvalues of self-adjoint operator functions. IEOT, 49 (3): 287-321, 2004.
  - C. Engström, A. Torshage, *Spectral properties of conservative, dispersive, and absorptive photonic crystals*, GAMM Mitteilungen, 41:e201800009, 2018



C. Engström, A. Torshage, Accumulation of complex eigenvalues of a class of analytic operator functions, J. Funct. Anal., 275 (2), 442-477, 2018



- C. Engström, A. Torshage, *Enclosure of the Numerical Range of a Class of Non-selfadjoint Rational Operator Functions*. IEOT, **88** (2), 151–184, 2017
- C. Engström, H. Langer, C. Tretter, *Rational eigenvalue problems and applications to photonic crystals.* J. Math. Anal. Appl., **445**(1), 240-279, 2017

# Properties of the eigenvectors

Problem in 1D (E./Grubišić, 2015):



Problem in 2D:



- We can prove that the eigenvectors behave as in the 2D example if the eigenvalues do not accumulate too quickly
- This accumulation rate depends on the geometry!

### In general no gap for all k



- We can in some cases guarantee a band gap by using verified eigenvalue enclosures to show that A<sub>k</sub> > c<sub>2</sub> Hoang/Plum/Wieners (2009)
- In general no accumulation for fixed k, but no gap for all k

### min-max principle for the rational function (main results)

• Define 
$$p_{\ell}(u) \in [c_{\ell-1}, c_{\ell}]$$
 for  $u \in \text{dom}(A) = \text{dom}(\mathcal{S}(\lambda))$  by  

$$p_{\ell}(u) := \begin{cases} \lambda_{\ell}(u) & \text{if } (\mathcal{S}(\lambda_{\ell}(u))u, u) = 0 \text{ for } \lambda_{\ell}(u) \in (c_{\ell-1}, c_{\ell}), \\ c_{\ell-1} & \text{if } (\mathcal{S}(\lambda)u, u) < 0 \text{ for all } \lambda \in (c_{\ell-1}, c_{\ell}), \\ c_{\ell} & \text{if } (\mathcal{S}(\lambda)u, u) > 0 \text{ for all } \lambda \in (c_{\ell-1}, c_{\ell}), \end{cases}$$

✓ The spectrum of S consists of L + 1 eigenvalue sequences  $(\lambda_{\ell,j})_{j=1}^{n_{\ell}} \subset (c_{\ell-1}, c_{\ell}), n_{\ell} \in \mathbb{N}_0 \cup \{\infty\}$ , which may be characterized as

$$\lambda_{\ell,n} = \min_{\substack{\mathcal{L} \subset \mathrm{dom}\,(\mathrm{A})\\ \dim \mathcal{L} = n + \kappa_{\ell}}} \max_{\substack{u \in \mathcal{L}\\ u \neq 0}} p_{\ell}(u)$$

