Algebraic Nevanlinna operator functions and applications to electromagnetics

Christian Engström

Linnaeus University, Sweden
christian.engstrom@lnu.se
Joint work with Heinz Langer, Axel Torshage, Christiane Tretter
October 7, 2019

Outline

(1) Physical background - Electromagnetic (EM) waves
(2) The self-adjoint case
(3) Non-self-adjoint cases
(4) Ongoing work

EM waves in (non-magnetic) dielectric medium

Maxwell's equations in E

$$
\text { curl curl } E+\frac{\partial^{2} D}{\partial t^{2}}=0, \quad x=\left(x_{1}, x_{2}, x_{3}\right) \in \Omega \subset \mathbb{R}^{3}
$$

with

$$
D(x, t)=\left\{E(x, t)+\int_{-\infty}^{t} K(x, t-\tau) E(x, \tau) d \tau\right\} .
$$

The Fourier transform $\hat{f}(\omega)=\int e^{i \omega t} f(t) d t$ gives

$$
\mathcal{S}(\omega) E=0, \quad \mathcal{S}(\omega)=\text { curl curl }-\omega^{2} \epsilon(x, \omega)
$$

where $\epsilon(x, \omega)=1+\hat{K}(x, \omega)$ is the permittivity and $\omega \in \mathcal{D} \subset \mathbb{C}$.

What do we want to know?

Properties of the spectrum: $\sigma(\mathcal{S})=\{\omega \in \mathcal{D}: 0 \in \sigma(\mathcal{S}(\omega))\}$

Resolvent estimates: Behaviour of $\left\|\mathcal{S}^{-1}(\omega)\right\|$

Properties of the evolution Maxwell equations:
curl curl $E+\frac{\partial^{2}}{\partial t^{2}}\left\{E(x, t)+\int_{-\infty}^{t} K(x, t-\tau) E(x, \tau) d \tau\right\}=0$

+ boundary and initial conditions.

Drude-Lorentz $=$ damped harmonic oscillator

- d-damping
- \sqrt{c} - resonant frequency of undamped oscillator
- \sqrt{b} - plasma frequency
$\theta:=\sqrt{c-\frac{d^{2}}{4}} \neq 0$ (under/over - damping):

$$
K(t)=\frac{b}{\theta} e^{-t d / 2} \sin (\theta t)
$$

Assume $\theta:=0$ (critical damping):

$$
K(t)=b t e^{-t d / 2}
$$

- $\Omega=\Omega_{1} \cup \Omega_{2}$
- $\epsilon(x, \omega)=1+\hat{K}(x, \omega):=\chi_{\Omega_{1}}(x)+\epsilon_{2}(\omega) \chi_{\Omega_{2}}(x)$

Analytic properties of \mathcal{S} ?

$$
\epsilon_{2}(\omega)=1
$$

$\checkmark \omega \mapsto \omega \epsilon(\omega)$ maps \mathbb{C}^{+}on $\overline{\mathbb{C}}^{+}$,

- But is the operator function

$$
\mathcal{S}(\omega)=\text { curl curl }-\omega^{2} \epsilon(x, \omega)
$$

Nevanlinna (after change of variables)?

Consider \mathcal{S} with the multi-pole Drude-Lorentz model:

$$
\mathcal{S}(\omega)=A_{0}-\omega^{2}-\omega^{2} \sum_{\ell=1}^{L} \frac{M_{\ell}}{c_{\ell}-d_{\ell} \omega-\omega^{2}}
$$

with $A_{0}=$ curl curl, and $M_{\ell}=b_{\ell} \chi_{\Omega_{2}}$.

Set $\omega=-\sqrt{\lambda}$. Then $-\mathcal{S}(\lambda): L^{2}(\Omega)^{3} \rightarrow L^{2}(\Omega)^{3}$ with

is Nevanlinna if

- A_{0} is self-adjoint \& $M_{\ell} \geqslant 0$
- $d_{\ell}=0$ or $c_{\ell} \leqslant d_{\ell}^{2} / 4$ for all $\ell=1,2, \ldots, L$

Consider \mathcal{S} with the multi-pole Drude-Lorentz model:

$$
\mathcal{S}(\omega)=A_{0}-\omega^{2}-\omega^{2} \sum_{\ell=1}^{L} \frac{M_{\ell}}{c_{\ell}-d_{\ell} \omega-\omega^{2}}
$$

with $A_{0}=$ curl curl, and $M_{\ell}=b_{\ell} \chi_{\Omega_{2}}$.

Set $\omega=-\sqrt{\lambda}$. Then $-\mathcal{S}(\lambda): L^{2}(\Omega)^{3} \rightarrow L^{2}(\Omega)^{3}$ with

$$
\mathcal{S}(\lambda)=A_{0}-\lambda-\lambda \sum_{\ell=1}^{L} \frac{M_{\ell}}{c_{\ell}+i d_{\ell} \sqrt{\lambda}-\lambda}
$$

is Nevanlinna if

- A_{0} is self-adjoint \& $M_{\ell} \geqslant 0$
- $d_{\ell}=0$ or $c_{\ell} \leqslant d_{\ell}^{2} / 4$ for all $\ell=1,2, \ldots, L$

Case $d_{\ell}=0$

Polynomial long division gives

$$
\lambda \epsilon(x, \lambda)=\lambda-\sum_{\ell=1}^{L} b_{\ell} \chi_{\Omega_{2}}(x)+\sum_{\ell=1}^{L} \frac{c_{\ell} b_{\ell}}{c_{\ell}-\lambda} \chi_{\Omega_{2}}(x)
$$

Set

- $A=A_{0}+\sum_{\ell=1}^{L} b_{\ell} \chi_{\Omega_{2}}$
- $B_{\ell}^{*}=\sqrt{c_{\ell} b_{\ell}} \chi_{\Omega_{2}}$, where $\chi_{\Omega_{2}}: L^{2}(\Omega)^{3} \rightarrow \widehat{\mathcal{H}}_{2}, \widehat{\mathcal{H}}_{2}=\operatorname{ran} \chi_{\Omega_{2}}$.

Then

$$
\mathcal{S}(\lambda)=A-\lambda-\sum_{\ell=1}^{L} \frac{B_{\ell} B_{\ell}^{*}}{c_{\ell}-\lambda},
$$

Equivalent block operator matrix

$\mathcal{S}(\lambda)=A-\lambda-\sum_{\ell=1}^{L} \frac{B_{\ell} B_{\ell}^{*}}{c_{\ell}-\lambda}, \quad \operatorname{dom} \mathcal{S}(\lambda)=\operatorname{dom} \mathrm{A}, \quad \lambda \in \mathbb{C} \backslash\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{L}}\right\}$,
where $B_{\ell}: \hat{\mathcal{H}}_{2} \rightarrow L^{2}(\Omega)^{3}, \ell=1,2, \ldots, L$.

- $\tilde{\mathcal{H}}=L^{2}(\Omega)^{3} \oplus \widehat{\mathcal{H}}, \widehat{\mathcal{H}}=\widehat{\mathcal{H}}_{2} \oplus \cdots \oplus \widehat{\mathcal{H}}_{2}$
\mathcal{S} is the Schur complement of $\mathcal{A}: \widetilde{\mathcal{H}} \rightarrow \widetilde{\mathcal{H}}$,

$$
\mathcal{A}=\left(\begin{array}{cc}
A & B \\
B^{*} & D
\end{array}\right)=\left(\begin{array}{ccccc}
A & B_{1} & B_{2} & \cdots & B_{L} \\
B_{1}^{*} & c_{1} & 0 & \cdots & 0 \\
B_{2}^{*} & 0 & c_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
B_{L}^{*} & 0 & 0 & \cdots & c_{L}
\end{array}\right), \quad \operatorname{dom} \mathcal{A}=\operatorname{dom} A \oplus \widehat{\mathcal{H}}
$$

Classical min-max principle for self-adjoint operators

Assumptions

- A has discrete spectrum, (e.g. $E=\left(0,0, u\left(x_{1}, x_{2}\right)\right)$ in electromagnetics)
- A is self-adjoint and bounded from below
- $B_{\ell}, \ell=1,2, \ldots, L$ are bounded

Then
(1) $\sigma_{\text {ess }}(\mathcal{A})=\left\{c_{1}, c_{2}, \ldots, c_{L}\right\}$ (Adamjan, Atkinson, H. Langer, Mennicken, Shkalikov)
(2) \mathcal{A} is self-adjoint and bounded from below

From the min-max principle (Rayleigh-Ritz, Courant-Fischer) follows

where $((\mathcal{A}-\lambda) u, u)=0$ has solution $p(u)$ and $\lambda_{n} \rightarrow \min \sigma_{\operatorname{ess}}(\mathcal{A})=c_{1}$

Classical min-max principle for self-adjoint operators

Assumptions

- A has discrete spectrum, (e.g. $E=\left(0,0, u\left(x_{1}, x_{2}\right)\right)$ in electromagnetics)
- A is self-adjoint and bounded from below
- $B_{\ell}, \ell=1,2, \ldots, L$ are bounded

Then

(1) $\sigma_{\text {ess }}(\mathcal{A})=\left\{c_{1}, c_{2}, \ldots, c_{L}\right\}$ (Adamjan, Atkinson, H. Langer, Mennicken, Shkalikov)
(2) \mathcal{A} is self-adjoint and bounded from below

From the min-max principle (Rayleigh-Ritz, Courant-Fischer) follows

$$
\lambda_{n}=\min _{\substack{\mathcal{L} \subset \operatorname{dom} \mathcal{A} \\ \operatorname{dim} \mathcal{L}=\mathrm{n}}} \max _{\substack{u \in \mathcal{C} \\ u \neq 0}} p(u), p(u):=\frac{(\mathcal{A} u, u)}{\|u\|^{2}}
$$

where $((\mathcal{A}-\lambda) u, u)=0$ has solution $p(u)$ and $\lambda_{n} \rightarrow \min \sigma_{\text {ess }}(\mathcal{A})=c_{1}$.

Variational principles in ($c_{\ell}, c_{\ell+1}$)?

- $(\mathcal{S}(\lambda) u, u)=0$ has solution $p_{\ell+1}(u)$ in $\left(c_{\ell}, c_{\ell+1}\right)$

From the Nevanlinna property follows

$$
\frac{d}{d \lambda}(\mathcal{S}(\lambda) u, u)=-\|u\|^{2}-\sum_{\ell=1}^{L} \frac{\left\|B_{\ell}^{*}\right\|^{2}}{\left(c_{\ell}-\lambda\right)^{2}} \leqslant-\|u\|^{2}, \quad u \in \operatorname{dom} \mathcal{S}, \mathrm{u} \neq 0
$$

Morover, $\mathcal{S}(\lambda)=$ dom A independent of λ.

- These properties (and some additional) imply variational principles (M. Langer/Eschwé (2004))

Simplified result for one rational term

Assume $A \geqslant c_{1}$. Then the eigenvalues of \mathcal{A} (and \mathcal{S}) are

$$
\begin{aligned}
& \lambda_{1, n}=\min _{\substack{\mathcal{L} \subset \operatorname{domA} A \\
\operatorname{dim} \mathcal{L}=\mathrm{n}}} \max _{\substack{u \in \mathcal{X} \\
u \neq 0}} p_{1}(u), \quad \lambda_{1, n} \rightarrow c_{1} \\
& \lambda_{2, n}=\min _{\substack{\mathcal{L} \subset \operatorname{domA} \\
\operatorname{dim} \mathcal{L}=\mathrm{n}}} \max _{\substack{u \in \mathcal{L} \\
u \neq 0}} p_{2}(u), \quad \lambda_{2, n} \rightarrow \infty,
\end{aligned}
$$

where

$$
p_{1,2}(u):=\frac{1}{2}\left(\frac{(A u, u)}{\|u\|^{2}}+c_{1}\right) \mp \sqrt{\frac{1}{4}\left(\frac{(A u, u)}{\|u\|^{2}}-c_{1}\right)^{2}+\frac{\left\|B_{1}^{*} u\right\|^{2}}{\|u\|^{2}}} .
$$

Note that $p_{1,2}(u)$ are the solutions of $(P(\lambda) u, u)=0$, where

$$
P(\lambda):=\left(c_{1}-\lambda\right) \mathcal{S}(\lambda)=\lambda^{2}-\lambda\left(A+c_{1}\right)-B_{1} B_{1}^{*}
$$

Main results in E./Langer/Tretter (2017)

\checkmark gaps in the spectrum to the right of $c_{\ell}, \ell=1, \ldots, L$
$\checkmark c_{\ell}$ is an accumulation point of eigenvalues of \mathcal{A} from the left
\checkmark min-max characterisation of the eigenvalues:

$$
\lambda_{\ell, n}=\min _{\substack{\mathcal{L} \subset \operatorname{dom} \mathrm{A} \\ \operatorname{dim} \mathcal{L}=\mathrm{n}+\kappa_{\ell}}} \max _{\substack{u \in \mathcal{L} \\ u \neq 0}} p_{\ell}(u)
$$

where κ_{ℓ} is the number of negative eigenvalues of $\mathcal{S}\left(\eta_{\ell}^{+}\right)$.

- No index shift (i.e. $\kappa_{\ell}=0$) if $A>c_{L}$.

Extensions to $d_{\ell}>0$ (joint work with Axel Torshage)

What can we say about the spectrum of

$$
\mathcal{S}(\omega)=A_{0}-\omega^{2}-\omega^{2} \sum_{\ell=1}^{L} \frac{M_{\ell}}{c_{\ell}-d_{\ell} \omega-\omega^{2}},
$$

when $d_{\ell}>0$ for some ℓ ?

- The tools used when $d_{\ell}=0$ can not be applied
- We need different tools and will use theory of bounded operator polynomials (Keldysh, Krein, Langer, Markus, Matsaev, Russu,...)

Theory of polynomial operator functions

The theory is difficult to use since

- We need good knowledge of the numerical range

$$
W(\mathcal{S})=\{\omega \in \mathcal{D}: \exists u \in \operatorname{dom}(\mathrm{~A}) \backslash\{0\},\|\mathrm{u}\|=1, \text { so that }(\mathcal{S}(\omega) \mathrm{u}, \mathrm{u})=0\}
$$

- We can only show accumulation of eigenvalues in bounded components of the numerical range

Basic steps to show accumulation when $d_{\ell}>0$

- Reformulate the problem as an operator polynomial P with bounded operator coefficients (of a special form)
- Show that it exists operator polynomials R and Q such that

$$
P(\omega)=R(\omega) Q(\omega), \sigma(R)=\Gamma \cap \sigma(P), \sigma(Q) \subset \mathbb{C} \backslash \bar{\Gamma},
$$

where $\Gamma \subset \mathbb{C}$ is bounded.

Γ is the dotted line (\mathcal{S} has one rational term)

Application to lossy photonic crystal

Poles at $\pm \sqrt{8}-i$ for \mathcal{S} with one rational term

- We can prove accumulation of eigenvalues to the poles
- Solid lines bound the spectrum
- The circles are numerically computed eigenvalues (p-FEM)

Where are we going now?

Other equations

- Full Maxwell's equations with double negative and lossy materials
- Wave equations with viscoelastic materials (Bolzmann integral)
- Scattering resonances (nonlinearity in the DtN-map)

Evolution problems

- Get to know the resolvent \rightarrow get to know the semigroup

Is $\left\|\mathcal{S}^{-1}(\lambda)\right\|$ a Mouse or an Elephant (or a Duck)?

References

显
C．Tretter．Spectral theory of block operator matrices and applications．Imperial College Press， 2008

A．S．Markus．Introduction to the spectral theory of polynomial operator pencils．AMS， 1988

F．V．Atkinson，H．Langer，R．Mennicken，A．A．Shkalikov．The essential spectrum of some matrix operators．Math．Nachr．，167：5－20， 1994.

D．Eschwé，M．Langer．Variational principles for eigenvalues of self－adjoint operator functions．IEOT， 49 （3）：287－321， 2004.

C．Engström，A．Torshage，Spectral properties of conservative，dispersive，and absorptive photonic crystals，GAMM－Mitteilungen，41：e201800009， 2018

C．Engström，A．Torshage，Accumulation of complex eigenvalues of a class of analytic operator functions，J．Funct．Anal．， 275 （2），442－477， 2018

C．Engström，A．Torshage，Enclosure of the Numerical Range of a Class of Non－selfadjoint Rational Operator Functions．IEOT， 88 （2），151－184， 2017

C．Engström，H．Langer，C．Tretter，Rational eigenvalue problems and applications to photonic crystals．J．Math．Anal．Appl．，445（1），240－279， 2017

Properties of the eigenvectors

Problem in 1D (E./Grubišić, 2015):

Problem in 2D:

- We can prove that the eigenvectors behave as in the 2D example if the eigenvalues do not accumulate too quickly
- This accumulation rate depends on the geometry!

In general no gap for all k

- We can in some cases guarantee a band gap by using verified eigenvalue enclosures to show that $A_{k}>c_{2}$ Hoang/Plum/Wieners (2009)
- In general no accumulation for fixed k, but no gap for all k

min-max principle for the rational function (main results)

- Define $p_{\ell}(u) \in\left[c_{\ell-1}, c_{\ell}\right]$ for $u \in \operatorname{dom}(\mathrm{~A})=\operatorname{dom}(\mathcal{S}(\lambda))$ by

$$
p_{\ell}(u):=\left\{\begin{aligned}
\lambda_{\ell}(u) & \text { if }\left(\mathcal{S}\left(\lambda_{\ell}(u)\right) u, u\right)=0 \text { for } \lambda_{\ell}(u) \in\left(c_{\ell-1}, c_{\ell}\right), \\
c_{\ell-1} & \text { if }(\mathcal{S}(\lambda) u, u)<0 \text { for all } \lambda \in\left(c_{\ell-1}, c_{\ell}\right), \\
c_{\ell} & \text { if }(\mathcal{S}(\lambda) u, u)>0 \text { for all } \lambda \in\left(c_{\ell-1}, c_{\ell}\right),
\end{aligned}\right.
$$

\checkmark The spectrum of \mathcal{S} consists of $L+1$ eigenvalue sequences $\left(\lambda_{\ell, j}\right)_{j=1}^{n_{\ell}} \subset\left(c_{\ell-1}, c_{\ell}\right), n_{\ell} \in \mathbb{N}_{0} \cup\{\infty\}$, which may be characterized as

$$
\lambda_{\ell, n}=\min _{\substack{\mathcal{L} \subset \operatorname{dom}(\mathrm{A}) \\ \operatorname{dim} \mathcal{L}=\mathrm{n}+\kappa_{\ell}}} \max _{\substack{u \in \mathcal{L} \\ u \neq 0}} p_{\ell}(u)
$$

