Homogeneous Herglotz class versus homogeneous Herglotz-Agler class

Joseph A. Ball

Department of Mathematics, Virginia Tech, Blacksburg, VA

Banff International Research Station - workshop Herglotz-Nevanlinna theory applied to passive, causal and active systems
10/06/2019-10/11/2019

Overview

(1) Bessmertnyĭ long-resolvent realizations for rational matrix functions
(2) Zoo of metrically-constrained classes of matrix-valued functions

- Schur class over $\mathbb{D}^{d}: \mathcal{S}_{d}\left(\mathbb{C}^{n}\right)$
- Schur-Agler class over $\mathbb{D}^{d}: \mathcal{S} \mathcal{A}_{d}\left(\mathbb{C}^{n}\right)$
- Herglotz class over $\Pi^{d}: \mathcal{H}_{d}\left(\mathbb{C}^{n}\right)$
- Herglotz-Agler class over $\Pi^{d}: \mathcal{H} \mathcal{A}_{d}\left(\mathbb{C}^{n}\right)$
- subclass of rational functions in class $\mathcal{X}\left(\mathbb{C}^{n}\right): \mathcal{X}^{\text {rat }}(\mathbb{C})^{n}$
- homogeneous subclass of class $\mathcal{X}\left(\mathbb{C}^{n}\right)$: $\mathcal{X}^{\text {hom }}\left(\mathbb{C}^{n}\right)$

1. Bessmertny̌̆ realizations for general $n \times n$-matrix

 rational functions in d variables
Theorem (Bessmertnyı̆ 1982)

(1) Any rational $n \times n$ matrix-valued function in d complex variables $F(z)=F\left(z_{1}, \ldots, z_{d}\right)$ can be represented (realized) as $F(z)=L_{11}(z)-L_{12}(z) L_{22}(z)^{-1} L_{21}(z), z=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{C}^{d}$ where $L(z)=L_{0}+z_{1} L_{1}+\cdots+z_{d} L_{d}=\left[\begin{array}{c}L_{11}(z) L_{12}(z) \\ L_{21}(z) L_{22}(z)\end{array}\right]$ is a matrix pencil i.e., $F(z)=$ Schur complement of a matrix pencil
(2) If $F(z)$ is homogeneous $(F(\lambda z)=\lambda F(z)$ for all $\lambda \in \mathbb{C})$, then necessarily $L_{0}=0$ (so also $L(\lambda z)=\lambda L(z)$).

Special cases of Bessmertny̌̌ representation for the

 single-variable case $d=1$- Transfer-function realization : $L(z)=\left[\begin{array}{cc}D & C \\ B & A-z l\end{array}\right] \Rightarrow$ $F(z)=D+C(z I-A)^{-1} B$
System matrix appearing in control theory (Rosenbrock):
$\left[\begin{array}{cc}A-z l & B \\ C & D\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] L(z)\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Such representations exist only for proper $F(z)$
Good uniqueness properties: two controllable \& observable realizations for the same F are similar -not true for general long-resolvent representations
- Descriptor realization: $L(z)=\left[\begin{array}{cc}D & C \\ B & E-z l\end{array}\right] \Rightarrow$ $F(z)=D+C(z E-A)^{-1} B$
(in fact a given $F(z)$ has a realization with $D=0$)
Reasonbly good uniqueness properties worked out recently
- Conclusion: The long-resolvent representation $=$ multivariable version of descriptor realizations

Special cases of Bessmertny̆ representations with $d>1$

- Fornasini-Marchesini realizations:
$L(z)=\left[\begin{array}{c}\left.\stackrel{D}{z_{1} B_{1}+\cdots+z_{d} B_{d}} \begin{array}{c}z_{1} A_{1}+\cdots+z_{d} A_{d}-I\end{array}\right] \Rightarrow \\ D\end{array}\right.$
$F(z)=D+C\left(I-z_{1} A_{1}-\cdots-z_{d} A_{d}\right)^{-1}\left(z_{1} B_{1}+\cdots+z_{d} B_{d}\right)$ (natural for function theory on the ball)
- Givone-Roesser realizations: $L(z)=\left[\begin{array}{cc}D & \mathbf{P}(z) B \\ C & \mathbf{P}(z) A-1\end{array}\right]$ where $\left[\begin{array}{cc}D & B \\ C & A\end{array}\right]:\left[\begin{array}{l}\mathcal{U} \\ \mathcal{X}\end{array}\right] \rightarrow\left[\begin{array}{c}\mathcal{Y} \\ \mathcal{X}\end{array}\right], \mathbf{P}(z)=z_{1} \mathbf{P}_{1}+\cdots+z_{d} \mathbf{P}_{d}$ where $\mathbf{P}_{k}^{2}=\mathbf{P}_{k}, \mathbf{P}_{k} \mathbf{P}_{j}=0$ for $k \neq j, \mathbf{P}_{1}+\cdots+\mathbf{P}_{d}=I \Rightarrow$ $F(z)=D+C(I-\mathbf{P}(z) A)^{-1} \mathbf{P}(z) B$
(natural for function theory on the polydisk)

The zoo of function classes: Schur class over \mathbb{D}

Define $\mathcal{S}_{d}\left(\mathbb{C}^{n}\right)=$ functions $S: \mathbb{D}^{d} \underset{\text { holo }}{\rightarrow} \mathcal{L}\left(\mathbb{C}^{n}\right)$ with $\|S(z)\| \leq 1$ for $z \in \mathbb{D}^{d}$. For $d=1$ we have

Theorem
Given $S: \mathbb{D} \rightarrow \mathcal{L}\left(\mathbb{C}^{n}\right)$ TFAE:
(1) $S \in \mathcal{S}_{1}\left(\mathbb{C}^{n}\right)$
(2) $K_{S}(z, w)=\frac{l-S(z) S(w)^{*}}{1-z \bar{w}}$ is a positive kernel on \mathbb{D} :
$\sum_{i, j=1}^{N} u_{i}^{*} K_{S}\left(z_{i}, z_{j}\right) u_{j} \geq 0$ for all u_{i} 's in \mathbb{C}^{n}, z_{i} 's in $\mathbb{C}^{n}, N \in \mathbb{N}$
(3) \exists contractive $\mathbf{U}=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]:\left[\begin{array}{l}\mathcal{X} \\ \mathbb{C}^{n}\end{array}\right] \rightarrow\left[\begin{array}{c}\mathcal{X} \\ \mathbb{C}^{n}\end{array}\right]$
$\left(\mathcal{X}=\right.$ a Hilbert space) so that $S(z)=D+z C(I-z A)^{-1} B$

The rational Schur class $\mathcal{S}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)$ over \mathbb{D}^{d} : the $d=1$ case

Define: $\mathcal{S}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)=$ functions $S: \mathbb{D}^{d} \underset{\text { rat }}{\rightarrow} \mathcal{L}\left(\mathbb{C}^{n}\right)$ so that $\|S(z)\| \leq 1$ for $z \in \mathbb{D}^{d}$
Theorem
Given $S: \mathbb{D} \rightarrow \mathcal{L}\left(\mathbb{C}^{n}\right)$ TFAE:
(1) $S=P^{-1} Q \in \mathcal{S}_{1}^{\mathrm{rat}}\left(\mathbb{C}^{n}\right)$
(2) \exists matrix polynomials G_{j} in $\mathbb{C}^{n \times K_{j}}[z](j=1,2)$ so that
$P(z) P(w)^{*}-Q(z) Q(w)^{*}=(1-z \bar{w}) G_{1}(z) G_{1}(w)^{*}+G_{2}(z) G_{2}(w)^{*}$
(3) \exists contractive $\mathbf{U}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]:\left[\begin{array}{l}\mathbb{C}^{K} \\ \mathbb{C}^{n}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathbb{C}^{K} \\ \mathbb{C}^{n}\end{array}\right]$ (i.e., $\mathcal{X}=\mathbb{C}^{K}$
finite-dimensional) so that $S(z)=D+z C(I-z A)^{-1} B$

The rational inner Schur class $\mathcal{I} \mathcal{S}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)$ over $\mathbb{D}^{d}: d=1$

Define: $\mathcal{I}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)=$ functions $S: \mathbb{D}^{d} \underset{\text { rat }}{\rightarrow} \mathcal{L}\left(\mathbb{C}^{n}\right)$ so that
$\|S(z)\| \leq 1$ for $z \in \mathbb{D}^{d}$ and $S\left(1 / z^{*}\right) S(z)=I_{n}$
where $\left(1 / z^{*}\right)=\left(1 / \overline{z_{1}}, \ldots, 1 / \overline{z_{d}}\right)$ if $z=\left(z_{1}, \ldots, z_{d}\right)$

Theorem

Given $S(z)=P(z)^{-1} Q(z): \mathbb{D} \underset{\text { rat }}{\rightarrow} \mathcal{L}\left(\mathbb{C}^{n}\right)$ where $Q, P=$ matrix polynomials with $P(z)$ invertible for $z \in \mathbb{D}$, TFAE:
(1) $S \in \mathcal{I S}_{1}^{\text {rat }}\left(\mathbb{C}^{n}\right)$
(2) $\exists K \in \mathbb{N}$ so that
$P(z) P(w)^{*}-Q(z) Q(w)^{*}=(1-z \bar{w}) G(z) G(w)^{*}$ with
$G \in \mathbb{C}^{n \times K}[z]$ a polynomial
(3) \exists unitary $\mathbf{U}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]:\left[\begin{array}{l}\mathbb{C}^{K} \\ \mathbb{C}^{n}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathbb{C}^{K} \\ \mathbb{C}^{n}\end{array}\right]$ with
$S(z)=P(z)^{-1} Q(z)=D+z C(I-z A)^{-1} B$

The case $d>1$

Theorem

Given $S: \mathbb{D}^{d} \underset{\text { holo }}{\rightarrow} \mathcal{L}\left(\mathbb{C}^{n}\right)$, TFAE:
(1) $S \in \mathcal{S}_{d}\left(\mathbb{C}^{n}\right)$
(2a) $\frac{I_{n}-S(z) S(w)^{*}}{\Pi_{1 \leq k \leq d}\left(1-z_{k} \overline{w_{k}}\right)}=$ positive kernel
(2b) For each $p, q \in\{1, \ldots, d\} \exists$ positive kernels $K_{p, q}^{\prime}$ and $K_{p, q}^{I I}$ on \mathbb{D}^{d} so that
$I_{n}-S(z) S(w)^{*}=$
$\left(\Pi_{k: k \neq p}\left(1-z_{k} \overline{w_{k}}\right)\right) K_{p q}^{\prime}(z, w)+\left(\Pi_{k: k \neq q}\left(1-z_{k} \overline{w_{k}}\right)\right) K_{p q}^{\prime \prime}(z, w)$
(Grinshpan-Kaliuzhnyi-Verbovetskyi-Vinnikov-Woerdeman 2009)
(3) Realization formula ?

The Schur-Agler classes $\mathcal{S} \mathcal{A}_{d}\left(\mathbb{C}^{n}\right)$

Define: $\mathcal{S} \mathcal{A}_{d}\left(\mathbb{C}^{n}\right)=$ functions $S: \mathbb{D}_{d} \rightarrow \mathcal{\text { hol }} \mathcal{L}\left(\mathbb{C}^{n}\right)$ so that
$\left\|S\left(T_{1}, \ldots, T_{d}\right)\right\| \leq 1$ for all commuting operator tuples
$\left(T_{1}, \ldots, T_{d}\right)$ with $\left\|T_{j}\right\|<1$ for each $j=1, \ldots, d$
Theorem (Agler 1990)
Given $S: \mathbb{D}^{d} \underset{\text { holo }}{\rightarrow} \mathcal{L}\left(\mathbb{C}^{n}\right)$, TFAE:
(1) $S \in \mathcal{S} \mathcal{A}_{d}\left(\mathbb{C}^{n}\right)$
(2) \exists positive kernels K_{j} on \mathbb{D}^{d} so that
$I_{n}-S(z) S(w)^{*}=\sum_{j=1}^{d}\left(1-z_{j} \overline{w_{j}}\right) K_{j}(z, w)$
(3) \exists unitary/contractive $\mathbf{U}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]:\left[\begin{array}{l}\mathcal{X} \\ \mathbb{C}^{n}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathcal{X} \\ \mathbb{C}^{n}\end{array}\right]$ and spectral resolution $\mathbf{P}(z)=z_{1} \mathbf{P}_{1}+\cdots+z_{d} \mathbf{P}_{d}$ on \mathcal{X} so that $S(z)=D+C(I-\mathbf{P}(z) A)^{-1} \mathbf{P}(z) B$

Comparison of $\mathcal{S}_{d}\left(\mathbb{C}^{n}\right)$ vs $\mathcal{S} \mathcal{A}_{d}\left(\mathbb{C}^{n}\right)$

Note: In particular, can take $\left(T_{1}, \ldots, T_{d}\right)=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{D}^{d}$ in definition of Schur-Agler class $\Rightarrow \mathcal{S} \mathcal{A}_{d}\left(\mathbb{C}^{n}\right) \subset \mathcal{S}_{d}\left(\mathcal{C}^{n}\right)$

Corollary of GK-VVW result above: $\mathcal{S} \mathcal{A}_{2}\left(\mathbb{C}^{n}\right)=\mathcal{S}_{2}\left(\mathbb{C}^{n}\right)$ (but usually (and correctly) attributed to Andô)

For $d>2$ known that $\mathcal{S} \mathcal{A}_{d}\left(\mathbb{C}^{n}\right) \underset{\neq}{\subset} \mathcal{S}_{d}\left(\mathbb{C}^{n}\right)$
(examples due to Crabb-Davie, Holbrook, Varopoulos)

The rational Schur-Agler class

Define: $\quad S \in \mathcal{S} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)=$ rational matrix functions $S: \mathbb{D}^{n} \underset{\text { rat }}{\rightarrow} \mathcal{L}\left(\mathbb{C}^{n}\right)$ such that $\|S(T)\| \leq 1$ for all commuting tuples $T=\left(\stackrel{\text { rat }}{T_{1}}, \ldots, T_{d}\right)$ of Hilbert space operators with $\left\|T_{j}\right\|<1$ Define: $\quad S \in \mathcal{S} \mathcal{A}_{d}^{\text {orat }}\left(\mathbb{C}^{n}\right)=$ functions in $\mathcal{S} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)$) with $\|S(T)\| \leq \rho<1$ for all commuting operator tuples
$T=\left(T_{1}, \ldots, T_{d}\right)$ with $\left\|T_{j}\right\|<1$ for each $j=1, \ldots, d$ for some fixed $\rho<1$

Results for $\mathcal{S} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)$

Theorem
Given $S=P^{-1} Q: \mathbb{D}^{d} \underset{\text { rat }}{\rightarrow} \mathcal{L}\left(\mathbb{C}^{n}\right)$, TFAE:
(1) $S=P^{-1} Q \in \mathcal{S} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)$
(2) \exists polynomials $G_{j} \in \mathbb{C}^{n \times K_{j}}\left[z_{1}, \ldots, z_{d}\right](0 \leq j \leq d)$ so that
$P(z) P(w)^{*}-Q(z) Q(w)^{*}=$
$\sum_{j=1}^{d}\left(1-z_{j} \overline{w_{j}}\right) G_{j}(z) G_{j}(w)^{*}+G_{0}(z) G_{0}(w)^{*}$
Assume that $S=P^{-1} Q \in \mathcal{S} \mathcal{A}_{d}^{o, \text { rat }}\left(\mathbb{C}^{n}\right)$ Then
(3) \exists contractive $\mathbf{U}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]:\left[\begin{array}{l}\mathbb{C}^{k} \\ \mathbb{C}^{n}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathbb{C}^{K} \\ \mathbb{C}^{n}\end{array}\right]$ and a spectral resolution $\mathbf{P}(z)=z_{1} \mathbf{P}_{1}+\cdots+z_{d} \mathbf{P}_{d}$ so that
$F(z)=D+C(I-\mathbf{P}(z) A)^{-1} \mathbf{P}(z) B$
Conversely, (3) $\Rightarrow S \in \mathcal{S} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)$
Grinspan-Kaliuzhnyi-Verbovetskyi-Vinnikov-Woerdeman

Inner rational Schur class $\mathcal{I S} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)$

Define: $\mathcal{I} \mathcal{S} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)=$ functions S in $\mathcal{S} \mathcal{A}_{d}^{\text {rat }}$ such that $S(1 / \bar{z})^{*} S(z)=I_{n}$ where $1 / \bar{z}=\left(1 / \overline{z_{1}}, \ldots, 1 \overline{z_{d}}\right)$ if $z=\left(z_{1}, \ldots, z_{d}\right)$
Th (B.-Kaliuzhnyi-Verbovetskyi \leftarrow Agler, Knese, CW)
Given $S=P^{-1} Q: \mathbb{D}^{d} \underset{\text { rat }}{\rightarrow} \mathcal{L}\left(\mathbb{C}^{n}\right)$, TFAE:
(1) $S=P^{-1} Q \in \mathcal{I S} \mathcal{A}_{d}^{\text {rat }}\left(\mathcal{L}\left(\mathbb{C}^{n}\right)\right.$
(2) $\exists N_{j} \in \mathbb{N}$ and G_{j} matrix polynomials in $\mathbb{C}^{n \times N_{j}}\left[z_{1}, \ldots, z_{d}\right]$
$(j=1, \ldots, d)$ so that
$P(z) P(w)^{*}-Q(z) Q(w)^{*}=\sum_{j=1}^{d}\left(1-z_{j} \overline{w_{j}}\right) G_{j}(z) G_{j}(w)^{*}$
(3) \exists unitary $\mathbf{U}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]:\left[\begin{array}{l}\mathbb{C}^{k} \\ \mathbb{C}^{n}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathbb{C}^{k} \\ \mathbb{C}^{n}\end{array}\right]$ and a spectral resolution $\mathbf{P}(z)=z_{1} \mathbf{P}_{1}+\cdots+z_{d} \mathbf{P}_{d}$ so that $S(z)=D+C(I-\mathbf{P}(z) A)^{-1} \mathbf{P}(z) B$

Inner Schur class versus inner Schur-Agler class

Note: $\quad \mathcal{S} \mathcal{A}_{d}\left(\mathbb{C}^{n}\right) \subset \mathcal{S}_{d}\left(\mathbb{C}^{n}\right) \Rightarrow \mathcal{I S} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right) \subset \mathcal{I} \mathcal{S}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)$
Result of GK-VVW: This last inclusion is strict:
$\mathcal{I} \mathcal{S} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right) \underset{\neq}{\subset} \mathcal{S}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)$

Herglotz classes over the poly-right half-plane

Define: $\quad \mathcal{H}_{d}\left(\mathbb{C}^{n}\right)=$ functions $H: \Pi^{d} \rightarrow \mathcal{L}\left(\mathbb{C}^{n}\right)$ such that $\Re H(s) \succeq 0$ for $s=\left(s_{1}, \ldots, s_{d}\right) \in \Pi^{d}(\Pi=$ open right half plane $)$
Define: $\mathcal{H} \mathcal{A}_{d}\left(\mathbb{C}^{n}\right)=$ functions $H: \Pi^{d} \rightarrow \mathcal{L}\left(\mathbb{C}^{n}\right)$ so that $\Re H\left(T_{1}, \ldots, T_{d}\right) \succeq 0$ whenever $T=\left(T_{1}, \ldots, T_{d}\right)$ is a commutative operator tuple with $\Re T_{j} \succ 0$ for each $j=1, \ldots, d$ Define: $\mathcal{H}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)=$ rational functions in $\mathcal{H}_{d}\left(\mathbb{C}^{n}\right)$
Define: $\mathcal{H} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)=$ rational functions in $\mathcal{H} \mathcal{A}_{d}\left(\mathbb{C}^{n}\right)$

Double Cayley transform

Recall Cayley transform:
$z \in \mathbb{D} \mapsto s=\frac{1+z}{1-z} \in \Pi$ with inverse $s \in \Pi \mapsto z=\frac{s-1}{s+1} \in \mathbb{D}$
Given $H: \Pi^{d} \rightarrow \mathcal{L}\left(\mathbb{C}^{n}\right.$, define double Cayley transform
$\mathcal{C}(H): \mathbb{D}^{d} \rightarrow \mathcal{L}\left(\mathcal{U}^{n}\right)$ of H by
$\mathcal{C}(H)(z)=\left(H\left(\frac{1+z_{1}}{1-z_{1}}, \cdots, \frac{1+z_{d}}{1-z_{d}}\right)-I_{n}\right)\left(H\left(\frac{1+z_{1}}{1-z_{1}}, \cdots, \frac{1+z_{d}}{1-z_{d}}\right)+I_{n}\right)^{-1}$
Given $S: \mathbb{D}^{d} \rightarrow \mathcal{L}\left(\mathbb{C}^{n}\right)$, then
$\mathcal{C}^{-1}(S)(s)=\left(I_{n}+S\left(\frac{s_{1}-1}{s_{1}+1}, \cdots \frac{s_{d}-1}{s_{d}+1}\right)\right)\left(I_{n}-S\left(\frac{s_{1}-1}{s_{1}+1}, \cdots \frac{s_{d}-1}{s_{d}+1}\right)\right)^{-1}$
$\left(\mathcal{H}_{d}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{S}_{d}\left(\mathbb{C}^{n}\right)\right.$
Then \mathcal{C} :

$$
\begin{aligned}
& \mathcal{H} \mathcal{A}_{d}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{S} \mathcal{A}_{d}\left(\mathbb{C}^{n}\right) \\
& \mathcal{H}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{S}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right) \\
& \mathcal{H} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{S} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)
\end{aligned}
$$

and \mathcal{C}^{-1} the reverse

Cayley-inner Herglotz/Herglotz-Agler class

Define: $\mathcal{C I} \mathcal{H}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)=$ functions in $H \in \mathcal{H}_{d}\left({ }^{\text {rat }} \mathbb{C}^{n}\right)$ such that $H(-\bar{s})+H(s)=0$, where $-\bar{s}=\left(-\overline{s_{1}}, \ldots,-\overline{s_{d}}\right)$ if $s=\left(s_{1}, \ldots, s_{d}\right)$
Define: $\mathcal{C I} \mathcal{H} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)=$ functions in $\mathcal{H} \mathcal{A}_{d}^{\mathrm{n}}\left(\mathbb{C}^{n}\right)$ such that $H(-\bar{s})+H(s)=0$
Then also
$\mathcal{C}:\left\{\begin{array}{l}\mathcal{C} \mathcal{I} \mathcal{H}_{d}^{\mathrm{rat}}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{I S}_{d}^{\mathrm{rat}}\left(\mathbb{C}^{n}\right) \\ \mathcal{C} \mathcal{I} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{I S} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)\end{array}\right.$
and \mathcal{C}^{-1} the reverse

Schur results \Rightarrow Herglotz results via Cayley transform

By using double Cayley transform to reduce results concerning Herglotz classes to results concerning Schur classes, we arrive at

Theorem
Given $H: \Pi \rightarrow \mathcal{L}\left(\mathbb{C}^{n}\right)$, TFAE:
(1) $H \in \mathcal{H}_{1}\left(\mathbb{C}^{n}\right)$
(2) $K_{H}^{\mathcal{H}}(s, t)=\frac{H(s)+H(t)^{*}}{s+\bar{t}}=$ positive kernel over Π^{d}
(3) H has a unbounded Bessmertnyĭ long-resolvent representation
$H(s)=L_{11}(s)-L_{12}(s) L_{22}(s)^{-1} L_{21}(s)$
where $L(s)=L_{0}+s L_{1}=\left[\begin{array}{c}L_{11}(s) L_{12}(s) \\ L_{21}(s) L_{22}(s)\end{array}\right]$ with $L_{0}=-L_{0}^{*}$ and $L_{1}=L_{1}^{*} \succeq 0$

Results for $\mathcal{H}_{1}^{\text {rat }}\left(\mathbb{C}^{n}\right)$

Theorem
Given $H: \Pi \underset{\text { rat }}{\rightarrow} \mathcal{L}\left(\mathbb{C}^{n}\right)$, TFAE:
(1) $H \in \mathcal{H}_{1}^{\text {rat }}\left(\mathbb{C}^{n}\right)$
(2) \exists rational $n \times K_{j}$ matrix $G_{j}(j=0,1)$ so that
$H(s)+H(t)^{*}=(s+\bar{t}) G_{1}(s) G_{1}(t)^{*}+G_{0}(s) G_{0}(t)^{*}$
(3) Realization formula? (should not be hard: analogue of contractive realization for the Schur case)

Results for $\mathcal{H}_{d}\left(\mathbb{C}^{n}\right)$

Theorem

Given $H: \Pi^{d} \rightarrow \mathcal{L}\left(\mathbb{C}^{n}\right)$, TFAE:
(1) $H \in \mathcal{H}_{d}\left(\mathbb{C}^{n}\right)$
(2) For each $1 \leq p<q \leq d \quad \exists$ positive kernels $K_{p, q}^{\prime}, K_{p, q}^{\prime \prime}$ on Π_{d} so that
$H(s)+H(t)^{*}=$
$\left(\prod_{k: k \neq p}\left(s_{k}+\overline{t_{k}}\right)\right) K_{p, q}^{\prime}(s, t)+\left(\prod_{k: k \neq q}\left(s_{k}+\overline{t_{k}}\right)\right) K_{p, q}^{\prime \prime}(s, t)$
(3) Realization formula?

Characterization of $\mathcal{H} \mathcal{A}_{d}\left(\mathbb{C}^{n}\right)$

Theorem

Given $H: \Pi^{d} \rightarrow \mathcal{L}\left(\mathbb{C}^{n}\right)$, TFAE:
(1) $H \in \mathcal{H}_{d}\left(\mathbb{C}^{n}\right)$
(2) \exists positive kernels $K_{j}(1 \leq j \leq d)$ on Π^{d} so that $H(s)+H(r)^{*}=\sum_{j=1}^{d}\left(s_{j}+\overline{t_{j}}\right) K_{j}(s, t)$
(3) H has a unbounded Bessmertnyĭ long-resolvent representation $H(s)=L_{11}(s)-L_{12}(s) L_{22}(s)^{-1} L_{21}(s)$
where $L(s)=L_{0}+s_{1} L_{1}+\cdots+s_{d} L_{d}=\left[\begin{array}{cc}L_{11}(s) & L_{12}(s) \\ L_{21}(s) & L_{22}(s)\end{array}\right]$ with $L_{0}=-L_{0}^{*}$ and $L_{j}=L_{j}^{*} \succeq 0$ for $1 \leq j \leq d$
Caveat: Additional technicalities due to possibly unbounded Hilbert space operators with delicate domain issues
B.-Kaliuzhnyi-Verbovetskyi (also Agler-Tully-Doyle-Young)

Connections with Staffans-Weiss theory of well-posed linear systems

Rational Herglotz class

Theorem
Given $H=P^{-1} Q: \Pi^{d} \underset{\text { rat }}{\rightarrow} \mathcal{L}\left(\mathbb{C}^{n}\right)$, TFAE:
(1) $H \in \mathcal{H}_{d}^{\mathrm{rat}}\left(\mathbb{C}^{n}\right)$
(2) Conjecture? For each choice of $1 \leq p<q \leq d \exists$ rational matrix functions $G_{p, q}^{\prime}, G_{p, q}^{\prime \prime}, G_{0}$ so that
$H(s)+H(t)^{*}=\left(\prod_{k: k \neq p}\left(s_{k}+\overline{t_{k}}\right)\right) G_{p, q}^{\prime}(s) G_{p, q}^{\prime}(t)^{*}+$
$\left(\prod_{k: k \neq q}\left(s_{k}+\overline{t_{k}}\right)\right) G_{p, q}^{\prime \prime}(s) G_{p, q}^{\prime \prime}(t)^{*}+G_{0}(s) G_{0}(t)^{*}$
(3) Realization formula? (Analogue of GK-VVW partial result on existence of contractive realizations for the Schur case?)

Cayley-inner rational Herglotz-Agler class

Theorem

Given $H: \Pi^{d} \rightarrow \mathcal{L}\left(\mathbb{C}^{n}\right)$, TFAE:
(1) $H \in \mathcal{C I H} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)$
(2) $\exists N_{j} \in \mathbb{N}$ and rational $G_{j} \in \mathbb{C}^{n \times N_{j}}\left(s_{1}, \ldots, s_{d}\right)$ so that $H(s)+H(t)^{*}=\sum_{j=1}^{d}\left(s_{j}+\overline{t_{j}}\right) G_{j}(s) G_{j}(t)^{*}$
(3) H has a finite-dimensional Bessmertnyı̆ realization
$H(s)=L_{11}(s)+L_{12}(s) L_{22}(s)^{-1} L_{21}(s)$
with $L(s)=L_{0}+L_{1} s_{1}+\cdots+L_{d} s_{d}=\left[\begin{array}{cc}L_{11}(s) & L_{12}(s) \\ L_{21}(s) & L_{22}(s)\end{array}\right]$
with matrices L_{0}, \ldots, L_{d} of size $(n+K) \times(n+K)$ such that $L_{0}=-L_{0}^{*}, L_{j}=L_{j}^{*} \succeq 0$ for $j=1, \ldots, d$

Homogeneous Herglotz classes

Define: $\mathcal{C I} \mathcal{H}_{d}^{\text {hom, rat }}\left(\mathbb{C}^{n}\right)=$ functions H in $\mathcal{C I H}{ }_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)$ which are homogeneous: $H(\lambda s)=\lambda H(s)$ for $\lambda \in \mathbb{C}$, $s \in \mathbb{C}^{d}$ Define: $\mathcal{C I} \mathcal{H} \mathcal{A}_{d}^{\text {hom, rat }}\left(\mathbb{C}^{n}\right)=$ functions H in $\mathcal{C I H} \mathcal{A}_{d}^{\text {rat }}\left(\mathbb{C}^{n}\right)$ which are homogeneous
Fake-homogeneous Schur/Schur-Agler classes
Define: $\mathcal{I S}_{d}^{\text {hom }}\left(\mathbb{C}^{n}\right)=$ functions S in $\mathcal{I} \mathcal{S}_{d}\left(\mathbb{C}^{n}\right)$ such that $H=\mathcal{C}^{-1}(S)$ is in $\mathcal{C I H}{ }_{d}^{\text {hom }}\left(\mathbb{C}^{n}\right)$
Define: $\mathcal{I S} \mathcal{A}_{d}^{\text {hom, rat }}\left(\mathbb{C}^{n}\right)=$ functions S in $\mathcal{I S} \mathcal{A}_{d}\left(\mathbb{C}^{n}\right)$ such that $H=\mathcal{C}^{-1}(S)$ is in $\mathcal{C I} \mathcal{H} \mathcal{A}_{d}^{\text {hom, rat }}\left(\mathbb{C}^{n}\right)$
By definition, $\mathcal{C}:\left\{\begin{array}{l}\mathcal{C} \mathcal{I} \mathcal{H}_{d}^{\text {hom, rat }}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{I} \mathcal{S}_{d} \text { hom, rat }\left(\mathbb{C}^{n}\right) \\ \mathcal{C} \mathcal{I} \mathcal{A} \mathcal{A}_{d}^{\text {hom, rat }}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{I} \mathcal{S} \mathcal{A}_{d}{ }^{\text {hom, rat }}\left(\mathbb{C}^{n}\right)\end{array}\right.$ and \mathcal{C}^{-1} the reverse

Relation between Herglotz homogeneous class and Schur

 fake-homogeneous classTheorem (Kaliuzhnyi-Verbovetskyi)
Given $S: \mathbb{D}^{d} \underset{\text { rat }}{\rightarrow} \mathcal{L}\left(\mathbb{C}^{n}\right)$, TFAE:
(1) $S \in \mathcal{I S} \mathcal{A}_{d}^{\text {hom, rat }}\left(\mathbb{C}^{n}\right)$
(2) S has a finite-dimensional Givone-Roesser realization
$S(z)=D+C(I-\mathbf{P}(z) A)^{-1} \mathbf{P}(z) B$ (with
$\mathbf{P}(z)=z_{1} \mathbf{P}_{1}+\cdots+z_{d} \mathbf{P}_{d}$ a spectral resolution) such that the system matrix $\mathbf{U}=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ is self-adjoint and unitary:
$U=U^{*}=U^{-1}$

Characterization of $\mathcal{C L H} \mathcal{A} \mathcal{A}_{d}^{\text {hom, rat }}\left(\mathbb{C}^{n}\right)$

Theorem

Given $H: \Pi^{d} \underset{\text { rat }}{\rightarrow} \mathcal{L}\left(\mathbb{C}^{n}\right)$, TFAE:
(1) $H \in \mathcal{C} \mathcal{I} \mathcal{H} \mathcal{A}_{d}{ }^{\text {hom, rat }}\left(\mathbb{C}^{n}\right)$
(2) \exists rational $\left(n \times K_{j}\right)$ matrix functions G_{j} satisfying $G_{j}(\lambda z)=G_{j}(z)$ for $\lambda \in \mathbb{C}$ so that $H(s)=\sum_{j=1}^{d} s_{j} G_{j}(s) G_{j}(t)^{*}$ for all $s, t \in \Pi^{d}$
(3) $H(s)=L_{11}(s)+L_{12}(s) L_{22}(s)^{-1} L_{21}(s)$ with $L(s)=L_{1} s_{1}+\cdots+L_{d} s_{d}$ a homogeneous Bessmertny̆̌ matrix pencil $\left(L_{0}=0\right)$ with $L_{j}=L_{j}^{*} \succeq 0$ for $j=1, \ldots, d$
(Corollary of general Bessmertnyı̆ result: in general $H(s)=L_{11}(s)+L_{12}(s) L_{22}(s)^{-1} L_{21}(s)$ homogeneous $\Rightarrow L_{0}=0$

$\mathcal{C I H}{ }_{d}^{\text {hom, rat }}\left(\mathbb{C}^{n}\right)$ versus $\mathcal{C I H} \mathcal{A}_{d}^{\text {hom, rat }}\left(\mathbb{C}^{n}\right)$?

Summary

Known: $\mathcal{I S}_{d}^{\text {rat }}(\mathbb{C}) \nsubseteq \mathcal{I S A}_{d}^{\text {rat }}(\mathbb{C})($ GK-VVW 2014)
Application of double Cayley transform $\mathcal{C} \Rightarrow$
$\mathcal{C I H} \mathcal{A}_{d}^{\text {rat }}(\mathbb{C}) \varsubsetneqq \mathcal{F} \mathcal{I H}_{d}^{\text {rat }}(\mathbb{C})$
By definition, $\mathcal{C \mathcal { H }} \mathcal{A}_{d}^{\text {hom, rat }}(\mathbb{C}) \subset \mathcal{C} \mathcal{H} \mathcal{H}_{d}^{\text {hom, rat }}(\mathbb{C})$
Open question: Does above hold with $\not \models$ or with $=$?
Difficulty: GK-VVW give us examples of functions S in the crack $\mathcal{I S}_{d}^{\text {rat }}(\mathbb{C}) \backslash \mathcal{I S} \mathcal{A}_{d}^{\text {rat }}(\mathbb{C})$
It remains to find a such an example S (or to show that no such example exists) such that $H=\mathcal{C}^{-1}(S)$ is homogeneous?

Summary continued

Tool for Schur setting: Rudin representation for a multivariable inner function S in $\mathcal{I} \mathcal{S}_{d}^{\text {rat }}(\mathbb{C})$ in terms of \mathbb{D}^{d} stable polynomial denominator

Difficulty for Herglotz setting: Apparently there is no such convenient canonical form for elements H of $\mathcal{C I} \mathcal{H}_{d}^{\text {rat }}(\mathbb{C})$
Possible new approach: Characterize $\mathcal{C} \mathcal{I H}_{d}^{\text {hom, rat }}(\mathbb{C})$ in terms of representation in terms of Koranyi-Pukánszky measure?

Thanks for your attention!

