KIPPENHAHN'S THEOREM FOR THE JOINT NUMERICAL

RANGE

Daniel Plaumann (TU Dortmund)
Rainer Sinn
(FU Berlin)
Stephan Weis
(University of Coimbra)

Banff Workshop on

Geometry of Polynomials, Convexity and Optimization Berkeley, 27 May, 2019

The numerical range

Let A be a complex $d \times d$-matrix.
The numerical range of A is the set

$$
W(A)=\left\{\overline{x^{T}} A x \mid x \in \mathbb{C}^{d} \text { with }\|x\|=1\right\} \subset \mathbb{C}
$$

The numerical range

Let A be a complex $d \times d$-matrix.
The numerical range of A is the set

$$
W(A)=\left\{\overline{x^{T}} A x \mid x \in \mathbb{C}^{d} \text { with }\|x\|=1\right\} \subset \mathbb{C}
$$

Remark. (1) $W(A)$ contains the eigenvalues of A.
(2) A is Hermitian if and only if $W(A)$ is a real line segment.
(3) If A is normal, $W(A)$ is the convex hull of the eigenvalues.

The numerical range

Let A be a complex $d \times d$-matrix.
The numerical range of A is the set

$$
W(A)=\left\{\overline{x^{T}} A x \mid x \in \mathbb{C}^{d} \text { with }\|x\|=1\right\} \subset \mathbb{C}
$$

Remark. (1) $W(A)$ contains the eigenvalues of A.
(2) A is Hermitian if and only if $W(A)$ is a real line segment.
(3) If A is normal, $W(A)$ is the convex hull of the eigenvalues.

Toeplitz-Hausdorff Theorem (1919).
The set $W(A)$ is a convex subset of $\mathbb{C}=\mathbb{R}^{2}$.

The numerical range

Example.

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
4 & 0 & 0 & 0
\end{array}\right)
$$

Trace trick

$$
x^{*} A x=\operatorname{tr}\left(x^{*} A x\right)=\operatorname{tr}\left(A\left(x x^{*}\right)\right)=\left\langle A, x x^{*}\right\rangle
$$

Trace trick

$$
x^{*} A x=\operatorname{tr}\left(x^{*} A x\right)=\operatorname{tr}\left(A\left(x x^{*}\right)\right)=\left\langle A, x x^{*}\right\rangle
$$

By the Toeplitz-Hausdorff Theorem:

$$
\begin{aligned}
W(A) & =\{\langle A, X\rangle: X \text { Hermitian and psd, } \operatorname{tr}(X)=1, \operatorname{rk}(X)=1\} \\
& =\{\langle A, X\rangle: X \text { Hermitian and psd, } \operatorname{tr}(X)=1\} \\
& =\pi_{A}\left(\operatorname{Her}_{d}^{+} \cap\{\operatorname{tr}=1\}\right)
\end{aligned}
$$

Trace trick

$$
x^{*} A x=\operatorname{tr}\left(x^{*} A x\right)=\operatorname{tr}\left(A\left(x x^{*}\right)\right)=\left\langle A, x x^{*}\right\rangle
$$

By the Toeplitz-Hausdorff Theorem:

$$
\begin{aligned}
W(A) & =\{\langle A, X\rangle: X \text { Hermitian and psd, } \operatorname{tr}(X)=1, \operatorname{rk}(X)=1\} \\
& =\{\langle A, X\rangle: X \text { Hermitian and psd, } \operatorname{tr}(X)=1\} \\
& =\pi_{A}\left(\operatorname{Her}_{d}^{+} \cap\{\operatorname{tr}=1\}\right)
\end{aligned}
$$

Define Hermitian matrices

$$
\operatorname{Re}(A)=\frac{1}{2}\left(A+\bar{A}^{T}\right) \quad \text { and } \quad \operatorname{Im}(A)=\frac{1}{2 i}\left(A-\bar{A}^{T}\right)
$$

Trace trick

$$
x^{*} A x=\operatorname{tr}\left(x^{*} A x\right)=\operatorname{tr}\left(A\left(x x^{*}\right)\right)=\left\langle A, x x^{*}\right\rangle
$$

By the Toeplitz-Hausdorff Theorem:

$$
\begin{aligned}
W(A) & =\{\langle A, X\rangle: X \text { Hermitian and psd, } \operatorname{tr}(X)=1, \operatorname{rk}(X)=1\} \\
& =\{\langle A, X\rangle: X \text { Hermitian and psd, } \operatorname{tr}(X)=1\} \\
& =\pi_{A}\left(\operatorname{Her}_{d}^{+} \cap\{\operatorname{tr}=1\}\right)
\end{aligned}
$$

Define Hermitian matrices

$$
\begin{aligned}
& \operatorname{Re}(A)=\frac{1}{2}\left(A+\bar{A}^{T}\right) \quad \text { and } \quad \operatorname{Im}(A)=\frac{1}{2 i}\left(A-\bar{A}^{T}\right) \\
& \Longrightarrow A=\operatorname{Re}(A)+i \operatorname{Im}(A)
\end{aligned}
$$

Trace trick

$$
x^{*} A x=\operatorname{tr}\left(x^{*} A x\right)=\operatorname{tr}\left(A\left(x x^{*}\right)\right)=\left\langle A, x x^{*}\right\rangle
$$

By the Toeplitz-Hausdorff Theorem:

$$
\begin{aligned}
W(A) & =\{\langle A, X\rangle: X \text { Hermitian and } \operatorname{psd}, \operatorname{tr}(X)=1, \operatorname{rk}(X)=1\} \\
& =\{\langle A, X\rangle: X \text { Hermitian and } \operatorname{psd}, \operatorname{tr}(X)=1\} \\
& =\pi_{A}\left(\operatorname{Her}_{d}^{+} \cap\{\operatorname{tr}=1\}\right)
\end{aligned}
$$

Define Hermitian matrices

$$
\begin{aligned}
& \operatorname{Re}(A)=\frac{1}{2}\left(A+\bar{A}^{T}\right) \quad \text { and } \operatorname{Im}(A)=\frac{1}{2 i}\left(A-\bar{A}^{T}\right) \\
& \Longrightarrow A=\operatorname{Re}(A)+i \operatorname{Im}(A) \\
& A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
4 & 0 & 0 & 0
\end{array}\right) \quad \operatorname{Re}(A)=\left(\begin{array}{cccc}
0 & \frac{1}{2} & 0 & 2 \\
\frac{1}{2} & 0 & 1 & 0 \\
0 & 1 & 0 & \frac{3}{2} \\
2 & 0 & \frac{3}{2} & 0
\end{array}\right) \quad \operatorname{Im}(A)=\left(\begin{array}{cccc}
0 & -\frac{i}{2} & 0 & 2 i \\
\frac{i}{2} & 0 & -i & 0 \\
0 & i & 0 & -\frac{3 i}{2} \\
-2 i & 0 & \frac{3 i}{2} & 0
\end{array}\right)
\end{aligned}
$$

Kippenhahn's Theorem

Let A be a complex $d \times d$ matrix and let

$$
p=\operatorname{det}\left(x_{0} I_{d}+x_{1} \operatorname{Re}(A)+x_{2} \operatorname{Im}(A)\right)
$$

with spectrahedron

$$
S(A)=\left\{\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2} \mid I_{d}+a_{1} \operatorname{Re}(A)+a_{2} \operatorname{Im}(A) \geq 0\right\}
$$

Kippenhahn's Theorem

Let A be a complex $d \times d$ matrix and let

$$
p=\operatorname{det}\left(x_{0} I_{d}+x_{1} \operatorname{Re}(A)+x_{2} \operatorname{Im}(A)\right)
$$

with spectrahedron

$$
S(A)=\left\{\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2} \mid I_{d}+a_{1} \operatorname{Re}(A)+a_{2} \operatorname{Im}(A) \geq 0\right\}
$$

Theorem. (Kippenhahn 1951)
The numerical range $W(A)$ is the convex dual

$$
S(A)^{\circ}=\left\{\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2} \mid\langle u, a\rangle \geqslant-1 \text { for all } a \in S(A)\right\}
$$

of $S(A)$. It is the convex hull of the points $\left(u_{1}, u_{2}\right)$ for which $\left[1, u_{1}, u_{2}\right]$ lies on the dual curve of $V=\{p=0\}$.

The dual curve V^{*} is the closure of the set of points $\left(1, u_{1}, u_{2}\right)$ for which the line

$$
x_{0}+u_{1} x_{1}+u_{2} x_{2}=0
$$

is tangent to V (at some regular point).

Hyperbolic Curves

For any hermitian matrices A_{1}, A_{2}, the polynomial $f=\operatorname{det}\left(x_{0} I_{d}+x_{1} A_{1}+x_{2} A_{2}\right)$ is hyperbolic with respect to $e=(1,0,0)$, i.e. all roots of $f\left(t, a_{1}, a_{2}\right)$ are real for all $\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}$.

Hyperbolic curves

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
4 & 0 & 0 & 0
\end{array}\right) \quad \operatorname{Re}(A)=\left(\begin{array}{llll}
0 & \frac{1}{2} & 0 & 2 \\
\frac{1}{2} & 0 & 1 & 0 \\
0 & 1 & 0 & \frac{3}{2} \\
2 & 0 & \frac{3}{2} & 0
\end{array}\right) \quad \operatorname{Im}(A)=\left(\begin{array}{cccc}
0 & -\frac{i}{2} & 0 & 2 i \\
\frac{i}{2} & 0 & -i & 0 \\
0 & i & 0 & -\frac{3 i}{2} \\
-2 i & 0 & \frac{3 i}{2} & 0
\end{array}\right)
$$

$$
p=\operatorname{det}\left(x_{0} I_{4}+x_{1} \operatorname{Re}(A)+x_{2} \operatorname{Im}(A)\right)
$$

$$
=\frac{1}{16}\left(25 x_{1}^{4}+25 x_{2}^{4}+434 x_{1}^{2} x_{2}^{2}-120 x_{0}^{2} x_{1}^{2}-120 x_{0}^{2} x_{2}^{2}+16 x_{0}^{4}\right)
$$

Hyperbolic curves

$$
p=\frac{1}{16}\left(25 x_{1}^{4}+25 x_{2}^{4}+434 x_{1}^{2} x_{2}^{2}-120 x_{0}^{2} x_{1}^{2}-120 x_{0}^{2} x_{2}^{2}+16 x_{0}^{4}\right)
$$

Dual curve is given by

$$
\begin{aligned}
& 250000 u_{1}^{12}+4380000 u_{1}^{10} u_{2}^{2}-5475000 u_{0}^{2} u_{1}^{10}+1446000 u_{1}^{8} u_{2}^{4}-68559000 u_{0}^{2} u_{1}^{8} u_{2}^{2}+47610625 u_{0}^{4} u_{1}^{8}+8787776 u_{1}^{6} u_{2}^{6} \\
& +179739600 u_{0}^{2} u_{1}^{6} u_{2}^{4}+429249700 u_{0}^{4} u_{1}^{6} u_{2}^{2}-209547000 u_{0}^{6} u_{1}^{6}+1446000 u_{1}^{4} u_{2}^{8}+179739600 u_{0}^{2} u_{1}^{4} u_{2}^{6}-1058169786 u_{0}^{4} u_{1}^{4} u_{2}^{4} \\
& -1493997400 u_{0}^{6} u_{1}^{4} u_{2}^{2}+476341350 u_{0}^{8} u_{1}^{4}+4380000 u_{1}^{2} u_{2}^{10}-68559000 u_{0}^{2} u_{1}^{2} u_{2}^{8}+429249700 u_{0}^{4} u_{1}^{2} u_{2}^{6}-1493997480 u_{0}^{6} u_{1}^{2} u_{2}^{4} \\
& +2442311100 u_{0}^{8} u_{1}^{2} u_{2}^{2}-476982000 u_{0}^{10} u_{1}^{2}+250000 u_{2}^{12}-5475000 u_{0}^{2} u_{2}^{10}+47610625 u_{0}^{4} u_{2}^{8}-209547000 u_{0}^{6} u_{2}^{6}+476341350 u_{0}^{8} u_{2}^{4} \\
& -476982000 u_{0}^{10} u_{2}^{2}+82355625 u_{0}^{12}=0
\end{aligned}
$$

Duality for plane curves

Let $V=\{p=0\}$ be a plane curve of degree d.
If V is smooth, the dual curve V^{*} is irreducible of degree $d(d-1)$.
If V is generic (and smooth), then V^{*} has two types of singularities:

- The bitangent lines of V correspond to nodes of V^{*}.
- The inflection lines of V correspond to cusps of V^{*}.

Duality for hyperbolic curves

Theorem. (Kippenhahn for hyperbolic curves)
Let $p \in \mathbb{R}\left[x_{0}, x_{1}, x_{2}\right]$ be hyperbolic with respect to $e=(1,0,0)$.
The convex dual of the hyperbolicity region $\Lambda_{+}(f, e) \cap\left\{x_{0}=1\right\}$ is the convex hull of the dual curve of $\{f=0\}$ in the dual plane $\left\{u_{0}=1\right\}$.

Duality for hyperbolic curves

Theorem. (Kippenhahn for hyperbolic curves)
Let $p \in \mathbb{R}\left[x_{0}, x_{1}, x_{2}\right]$ be hyperbolic with respect to $e=(1,0,0)$.
The convex dual of the hyperbolicity region $\Lambda_{+}(f, e) \cap\left\{x_{0}=1\right\}$ is the convex hull of the dual curve of $\{f=0\}$ in the dual plane $\left\{u_{0}=1\right\}$.

Problem: What about isolated real points (nodes) of the dual curve?

Duality for hyperbolic curves

$$
\begin{aligned}
x_{1}^{4}+x_{2}^{4}+\frac{7}{4} x_{1}^{2} x_{2}^{2}-4 & x_{0}^{2} x_{1}^{2}-4 x_{0}^{2} x_{2}^{2}+3 x_{0}^{4}=0 \\
& 12288 u_{1}^{12}+89088 u_{1}^{10} u_{2}^{2}-4096 u_{1}^{10} u_{0}^{2}+248064 u_{1}^{8} u_{2}^{4}-150784 u_{1}^{8} u_{2}^{2} u_{0}^{2}-14976 u_{1}^{8} u_{0}^{4}+340800 u_{1}^{6} u_{2}^{6}-410560 u_{1}^{6} u_{2}^{4} u_{0}^{2} \\
& +137328 u_{1}^{6} u_{2}^{2} u_{0}^{4}+4800 u_{1}^{6} u_{0}^{6}+248064 u_{1}^{4} u_{2}^{8}-410560 u_{1}^{4} u_{2}^{6} u_{0}^{2}+283881 u_{1}^{4} u_{2}^{4} u_{0}^{4}-85260 u_{1}^{4} u_{2}^{2} u_{0}^{6}+3619 u_{1}^{4} u_{0}^{8} \\
& +89088 u_{1}^{2} u_{2}^{10}-150784 u_{1}^{2} u_{2}^{8} u_{0}^{2}+137328 u_{1}^{2} u_{2}^{6} u_{0}^{4}-85260 u_{1}^{2} u_{2}^{4} u_{0}^{6}+23152 u_{1}^{2} u_{2}^{2} u_{0}^{8}-1860 u_{1}^{2} u_{0}^{10}+12288 u_{2}^{12}
\end{aligned}
$$

The joint numerical range

Let A_{1}, \ldots, A_{n} be Hermitian $d \times d$-matrices.
The joint numerical range of A_{1}, \ldots, A_{n} is the set

$$
W\left(A_{1}, \ldots, A_{n}\right)=\left\{\left(\bar{x}^{T} A_{1} x, \ldots, \bar{x}^{T} A_{n} x\right) \mid x \in \mathbb{C}^{n} \text { with } \| x \mid=1\right\} \subset \mathbb{R}^{n}
$$

The joint numerical range

Let A_{1}, \ldots, A_{n} be Hermitian $d \times d$-matrices.
The joint numerical range of A_{1}, \ldots, A_{n} is the set

$$
W\left(A_{1}, \ldots, A_{n}\right)=\left\{\left(\bar{x}^{T} A_{1} x, \ldots, \bar{x}^{T} A_{n} x\right) \mid x \in \mathbb{C}^{n} \text { with } \| x \mid=1\right\} \subset \mathbb{R}^{n}
$$

The joint numerical range is not convex in general (studied by Li\&Poon 2000).

The joint numerical range

Let A_{1}, \ldots, A_{n} be Hermitian $d \times d$-matrices.
The joint numerical range of A_{1}, \ldots, A_{n} is the set

$$
W\left(A_{1}, \ldots, A_{n}\right)=\left\{\left(\bar{x}^{T} A_{1} x, \ldots, \bar{x}^{T} A_{n} x\right) \mid x \in \mathbb{C}^{n} \text { with } \| x \mid=1\right\} \subset \mathbb{R}^{n}
$$

The joint numerical range is not convex in general (studied by Li\&Poon 2000).
The convex hull can be described as

$$
\operatorname{conv} W\left(A_{1}, \ldots, A_{n}\right)=\left\{\left(\left\langle A_{1}, X\right\rangle, \ldots,\left\langle A_{n}, X\right\rangle\right) \mid X \geq 0, \operatorname{trace}(X)=1\right\}
$$

where $\langle A, B\rangle=\operatorname{trace}\left(A \overline{B^{T}}\right)$ and $X \geq 0$ means that X is Hermitian and positive semidefinite.

The joint numerical range

Let A_{1}, \ldots, A_{n} be Hermitian $d \times d$-matrices.
The joint numerical range of A_{1}, \ldots, A_{n} is the set

$$
W\left(A_{1}, \ldots, A_{n}\right)=\left\{\left(\bar{x}^{T} A_{1} x, \ldots, \bar{x}^{T} A_{n} x\right) \mid x \in \mathbb{C}^{n} \text { with } \| x \mid=1\right\} \subset \mathbb{R}^{n}
$$

The joint numerical range is not convex in general (studied by Li\&Poon 2000).
The convex hull can be described as

$$
\operatorname{conv} W\left(A_{1}, \ldots, A_{n}\right)=\left\{\left(\left\langle A_{1}, X\right\rangle, \ldots,\left\langle A_{n}, X\right\rangle\right) \mid X \geq 0, \operatorname{trace}(X)=1\right\}
$$

where $\langle A, B\rangle=\operatorname{trace}\left(A \overline{B^{T}}\right)$ and $X \geq 0$ means that X is Hermitian and positive semidefinite.

The set $\operatorname{conv} W\left(A_{1}, \ldots, A_{n}\right)$ is again the convex dual of the spectrahedron

$$
\left\{x \in \mathbb{R}^{n} \mid I_{d}+x_{1} A_{1}+\cdots+x_{n} A_{n} \geq 0\right\}
$$

Projective duality in higher dimensions

Let $V \subset \mathbb{P}^{n}$ be a projective variety. The dual variety of $V($ over $\mathbb{C})$ is

$$
V^{*}=\overline{\left\{u \in\left(\mathbb{P}^{n}\right)^{*} \mid \exists p \in V_{\text {reg }}: T_{p}(V) \subset\left\{\sum u_{i} x_{i}=0\right\}\right\}} .
$$

In words: V^{*} parametrizes all hyperplanes tangent to V at regular points.

Projective duality in higher dimensions

Let $V \subset \mathbb{P}^{n}$ be a projective variety. The dual variety of V (over \mathbb{C}) is

$$
V^{*}=\overline{\left\{u \in\left(\mathbb{P}^{n}\right)^{*} \mid \exists p \in V_{\mathrm{reg}}: T_{p}(V) \subset\left\{\sum u_{i} x_{i}=0\right\}\right\}} .
$$

In words: V^{*} parametrizes all hyperplanes tangent to V at regular points.

Facts:

(1) If V is irreducible, then biduality holds: $\left(V^{*}\right)^{*}=V$.
(2) If $V=\{f=0\}$ is a generic hypersurface of degree d, then V^{*} is a hypersurface of degree $d(d-1)^{n-1}$.

Projective duality in higher dimensions

Let $V \subset \mathbb{P}^{n}$ be a projective variety. The dual variety of $V($ over $\mathbb{C})$ is

$$
V^{*}=\overline{\left\{u \in\left(\mathbb{P}^{n}\right)^{*} \mid \exists p \in V_{\mathrm{reg}}: T_{p}(V) \subset\left\{\sum u_{i} x_{i}=0\right\}\right\}} .
$$

In words: V^{*} parametrizes all hyperplanes tangent to V at regular points.

Facts:

(1) If V is irreducible, then biduality holds: $\left(V^{*}\right)^{*}=V$.
(2) If $V=\{f=0\}$ is a generic hypersurface of degree d, then V^{*} is a hypersurface of degree $d(d-1)^{n-1}$.
(3) Determinantal hypersurfaces are not generic in this sense, for $n \geqslant 3$: The variety V^{*} is usually not a hypersurface.

Projective duality in higher dimensions

Let $V \subset \mathbb{P}^{n}$ be a projective variety. The dual variety of $V($ over $\mathbb{C})$ is

$$
V^{*}=\overline{\left\{u \in\left(\mathbb{P}^{n}\right)^{*} \mid \exists p \in V_{\mathrm{reg}}: T_{p}(V) \subset\left\{\sum u_{i} x_{i}=0\right\}\right\}} .
$$

In words: V^{*} parametrizes all hyperplanes tangent to V at regular points.

Facts:

(1) If V is irreducible, then biduality holds: $\left(V^{*}\right)^{*}=V$.
(2) If $V=\{f=0\}$ is a generic hypersurface of degree d, then V^{*} is a hypersurface of degree $d(d-1)^{n-1}$.
(3) Determinantal hypersurfaces are not generic in this sense, for $n \geqslant 3$: The variety V^{*} is usually not a hypersurface.

Examples. For the general determinantal hypersurface $\{\operatorname{det}(X)=0\}$ in the space $\mathbb{P}^{\binom{d+1}{2}}$ of all symmetric $d \times d$-matrices, the dual variety is the set of all symmetric matrices of rank 1 (the Veronese variety).

Famous example

Cayley's cubic

$$
\begin{aligned}
& 2 x_{1} x_{2} x_{3}-x_{0} x_{1}^{2}-x_{0} x_{2}^{2}-x_{0} x_{3}^{2}+x_{0}^{3} \\
& =\operatorname{det}\left(\begin{array}{lll}
x_{0} & x_{1} & x_{2} \\
x_{1} & x_{0} & x_{3} \\
x_{2} & x_{3} & x_{0}
\end{array}\right)=0
\end{aligned}
$$

Steiner's quartic
$u_{1}^{2} u_{2}^{2}-u_{1}^{2} u_{3}^{2}-u_{2}^{2} u_{3}^{2}-2 u_{0} u_{1} u_{2} u_{3}=0$

Example

$$
A_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

(Chien and Nakazato 2010)

$$
\begin{aligned}
p\left(u_{0}, u_{1}, u_{2}, u_{3}\right) & =\operatorname{det}\left(u_{0} \mathrm{id}+u_{1} A_{1}+u_{2} A_{2}+u_{3} A_{3}\right) \\
& =u_{0}^{3}+u_{0}^{2} u_{3}-2 u_{0} u_{1}^{2}-u_{0} u_{2}^{2}-u_{1}^{3}-u_{1}^{2} u_{3}+u_{1} u_{2}^{2}
\end{aligned}
$$

The projective dual is a surface defined by

$$
\begin{aligned}
q\left(x_{0}, x_{1}, x_{2}, x_{3}\right)= & 4 x_{0}^{2} x_{3}^{2}+8 x_{0} x_{1} x_{3}^{2}-4 x_{0} x_{2}^{2} x_{3}-24 x_{0} x_{3}^{3}+4 x_{1}^{2} x_{3}^{2} \\
& -4 x_{1} x_{2}^{2} x_{3}-8 x_{1} x_{3}^{3}+x_{2}^{4}+8 x_{2}^{2} x_{3}^{2}+20 x_{3}^{4} .
\end{aligned}
$$

Its singular locus is $\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbb{P}^{3}: x_{2}=x_{3}=0\right\}$

Example

The projective dual is a surface defined by

$$
\begin{aligned}
q\left(x_{0}, x_{1}, x_{2}, x_{3}\right)= & 4 x_{0}^{2} x_{3}^{2}+8 x_{0} x_{1} x_{3}^{2}-4 x_{0} x_{2}^{2} x_{3}-24 x_{0} x_{3}^{3}+4 x_{1}^{2} x_{3}^{2} \\
& -4 x_{1} x_{2}^{2} x_{3}-8 x_{1} x_{3}^{3}+x_{2}^{4}+8 x_{2}^{2} x_{3}^{2}+20 x_{3}^{4} .
\end{aligned}
$$

Its singular locus is $\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbb{P}^{3}: x_{2}=x_{3}=0\right\}$

How to fix it

Theorem. (Sinn 2015/P-Sinn-Weis 2019)
Let $p \in \mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$ be irreducible and hyperbolic with respect to $e=(1,0 \ldots, 0)$. Let $V=\{p=0\} \subset \mathbb{P}^{n}$ and let V^{*} be the dual projective variety. The convex dual of the hyperbolicity region $C(p, e) \cap\left\{x_{0}=1\right\}$ is the closure of the convex hull of $V_{\text {reg }}^{*}(\mathbb{R}) \cap\left\{u_{0}=1\right\}$, where $V_{\text {reg }}(\mathbb{R})$ is the set of regular real points of V^{*}.

How to fix it

Theorem. (Sinn 2015/P-Sinn-Weis 2019)
Let $p \in \mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$ be irreducible and hyperbolic with respect to $e=(1,0 \ldots, 0)$. Let $V=\{p=0\} \subset \mathbb{P}^{n}$ and let V^{*} be the dual projective variety.
The convex dual of the hyperbolicity region $C(p, e) \cap\left\{x_{0}=1\right\}$ is the closure of the convex hull of $V_{\text {reg }}^{*}(\mathbb{R}) \cap\left\{u_{0}=1\right\}$, where $V_{\text {reg }}(\mathbb{R})$ is the set of regular real points of V^{*}.

Corollary. (PSW 2019) The convex hull of the joint numerical range of Hermitian $d \times d$ matrices A_{1}, \ldots, A_{n} is the closure of the convex hull of the real non-singular part of the dual variety of the hyperbolic hypersurface $\operatorname{det}\left(x_{0} I_{d}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)$.

