KIPPENHAHN'S THEOREM FOR THE JOINT NUMERICAL

RANGE

Daniel Plaumann (TU Dortmund)

Rainer Sinn (FU Berlin)

Stephan Weis (University of Coimbra)

Banff Workshop on

Geometry of Polynomials, Convexity and Optimization Berkeley, 27 May, 2019

Let A be a complex $d \times d$ -matrix. The **numerical range** of A is the set

$$W(A) = \left\{ \overline{x^T} A x \mid x \in \mathbb{C}^d \text{ with } \|x\| = 1 \right\} \subset \mathbb{C}$$

Let A be a complex $d \times d$ -matrix. The **numerical range** of A is the set

$$W(A) = \left\{ \overline{x^T} A x \mid x \in \mathbb{C}^d \text{ with } \|x\| = 1 \right\} \subset \mathbb{C}$$

Remark. (1) W(A) contains the eigenvalues of A. (2) A is Hermitian if and only if W(A) is a real line segment. (3) If A is normal, W(A) is the convex hull of the eigenvalues.

Let A be a complex $d \times d$ -matrix. The **numerical range** of A is the set

$$W(A) = \left\{ \overline{x^T} A x \mid x \in \mathbb{C}^d \text{ with } \|x\| = 1 \right\} \subset \mathbb{C}$$

Remark. (1) W(A) contains the eigenvalues of A. (2) A is Hermitian if and only if W(A) is a real line segment. (3) If A is normal, W(A) is the convex hull of the eigenvalues.

Toeplitz-Hausdorff Theorem (1919).

The set W(A) is a convex subset of $\mathbb{C} = \mathbb{R}^2$.

Example.

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 4 & 0 & 0 & 0 \end{pmatrix}$$

$x^*Ax = \operatorname{tr}(x^*Ax) = \operatorname{tr}(A(xx^*)) = \langle A, xx^* \rangle$

$$x^*Ax = \operatorname{tr}(x^*Ax) = \operatorname{tr}(A(xx^*)) = \langle A, xx^* \rangle$$

By the Toeplitz-Hausdorff Theorem:

$$W(A) = \{ \langle A, X \rangle : X \text{ Hermitian and psd}, tr(X) = 1, rk(X) = 1 \}$$

= $\{ \langle A, X \rangle : X \text{ Hermitian and psd}, tr(X) = 1 \}$
= $\pi_A(\text{Her}_d^+ \cap \{\text{tr} = 1\})$

$$x^*Ax = \operatorname{tr}(x^*Ax) = \operatorname{tr}(A(xx^*)) = \langle A, xx^* \rangle$$

By the Toeplitz-Hausdorff Theorem:

$$W(A) = \{ \langle A, X \rangle : X \text{ Hermitian and psd}, tr(X) = 1, rk(X) = 1 \}$$
$$= \{ \langle A, X \rangle : X \text{ Hermitian and psd}, tr(X) = 1 \}$$
$$= \pi_A(\text{Her}_d^+ \cap \{\text{tr} = 1\})$$

Define Hermitian matrices

$$\operatorname{Re}(A) = \frac{1}{2} (A + \overline{A}^{T})$$
 and $\operatorname{Im}(A) = \frac{1}{2i} (A - \overline{A}^{T})$

$$x^*Ax = \operatorname{tr}(x^*Ax) = \operatorname{tr}(A(xx^*)) = \langle A, xx^* \rangle$$

By the Toeplitz-Hausdorff Theorem:

$$W(A) = \{ \langle A, X \rangle : X \text{ Hermitian and psd}, tr(X) = 1, rk(X) = 1 \}$$
$$= \{ \langle A, X \rangle : X \text{ Hermitian and psd}, tr(X) = 1 \}$$
$$= \pi_A(\text{Her}_d^+ \cap \{\text{tr} = 1\})$$

Define Hermitian matrices

$$\operatorname{Re}(A) = \frac{1}{2} \left(A + \overline{A}^T \right)$$
 and $\operatorname{Im}(A) = \frac{1}{2i} \left(A - \overline{A}^T \right)$

 $\implies A = \operatorname{Re}(A) + i\operatorname{Im}(A)$

$$x^*Ax = \operatorname{tr}(x^*Ax) = \operatorname{tr}(A(xx^*)) = \langle A, xx^* \rangle$$

By the Toeplitz-Hausdorff Theorem:

$$W(A) = \{ \langle A, X \rangle : X \text{ Hermitian and psd}, tr(X) = 1, rk(X) = 1 \}$$

= $\{ \langle A, X \rangle : X \text{ Hermitian and psd}, tr(X) = 1 \}$
= $\pi_A(\text{Her}_d^+ \cap \{\text{tr} = 1\})$

Define Hermitian matrices

$$\operatorname{Re}(A) = \frac{1}{2} (A + \overline{A}^{T}) \quad \text{and} \quad \operatorname{Im}(A) = \frac{1}{2i} (A - \overline{A}^{T})$$
$$\implies A = \operatorname{Re}(A) + i \operatorname{Im}(A)$$
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 4 & 0 & 0 & 0 \end{pmatrix} \quad \operatorname{Re}(A) = \begin{pmatrix} 0 & \frac{1}{2} & 0 & 2 \\ \frac{1}{2} & 0 & 1 & 0 \\ 0 & 1 & 0 & \frac{3}{2} \\ 2 & 0 & \frac{3}{2} & 0 \end{pmatrix} \quad \operatorname{Im}(A) = \begin{pmatrix} 0 & -\frac{i}{2} & 0 & 2i \\ \frac{i}{2} & 0 & -i & 0 \\ 0 & i & 0 & -\frac{3i}{2} \\ -2i & 0 & \frac{3i}{2} & 0 \end{pmatrix}$$

Kippenhahn's Theorem

Let A be a complex $d \times d$ matrix and let

$$p = \det(x_0I_d + x_1\operatorname{Re}(A) + x_2\operatorname{Im}(A))$$

with spectrahedron

$$S(A) = \{ (a_1, a_2) \in \mathbb{R}^2 \mid I_d + a_1 \operatorname{Re}(A) + a_2 \operatorname{Im}(A) \ge 0 \}$$

Kippenhahn's Theorem

Let A be a complex $d \times d$ matrix and let

 $p = \det(x_0I_d + x_1\operatorname{Re}(A) + x_2\operatorname{Im}(A))$

with spectrahedron

 $S(A) = \{(a_1, a_2) \in \mathbb{R}^2 \mid I_d + a_1 \operatorname{Re}(A) + a_2 \operatorname{Im}(A) \ge 0\}$

Theorem. (*Kippenhahn* 1951) The numerical range W(A) is the convex dual

 $S(A)^{\circ} = \{(u_1, u_2) \in \mathbb{R}^2 \mid \langle u, a \rangle \ge -1 \text{ for all } a \in S(A)\}$

of S(A). It is the convex hull of the points (u_1, u_2) for which $[1, u_1, u_2]$ lies on the **dual curve** of $V = \{p = 0\}$.

The dual curve V^* is the closure of the set of points $(1, u_1, u_2)$ for which the line

 $x_0 + u_1 x_1 + u_2 x_2 = 0$

is tangent to V (at some regular point).

Hyperbolic Curves

For any hermitian matrices A_1, A_2 , the polynomial $f = det(x_0I_d + x_1A_1 + x_2A_2)$ is hyperbolic with respect to e = (1, 0, 0), i.e. all roots of $f(t, a_1, a_2)$ are real for all $(a_1, a_2) \in \mathbb{R}^2$.

Hyperbolic curves

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 4 & 0 & 0 & 0 \end{pmatrix} \qquad \operatorname{Re}(A) = \begin{pmatrix} 0 & \frac{1}{2} & 0 & 2 \\ \frac{1}{2} & 0 & 1 & 0 \\ 0 & 1 & 0 & \frac{3}{2} \\ 2 & 0 & \frac{3}{2} & 0 \end{pmatrix} \qquad \operatorname{Im}(A) = \begin{pmatrix} 0 & -\frac{i}{2} & 0 & 2i \\ \frac{i}{2} & 0 & -i & 0 \\ 0 & i & 0 & -\frac{3i}{2} \\ -2i & 0 & \frac{3i}{2} & 0 \end{pmatrix}$$

$$p = \det(x_0 I_4 + x_1 \operatorname{Re}(A) + x_2 \operatorname{Im}(A))$$

= $\frac{1}{16} \left(25x_1^4 + 25x_2^4 + 434x_1^2x_2^2 - 120x_0^2x_1^2 - 120x_0^2x_2^2 + 16x_0^4 \right)$

Hyperbolic curves

$$p = \frac{1}{16} \left(25x_1^4 + 25x_2^4 + 434x_1^2x_2^2 - 120x_0^2x_1^2 - 120x_0^2x_2^2 + 16x_0^4 \right)$$

Dual curve is given by

 $\begin{aligned} & 250000u_1^{12} + 4380000u_1^{10}u_2^2 - 5475000u_0^2u_1^{10} + 1446000u_1^8u_2^4 - 68559000u_0^2u_1^8u_2^2 + 47610625u_0^4u_1^8 + 8787776u_1^6u_2^6 \\ & + 179739600u_0^2u_1^6u_2^4 + 429249700u_0^4u_1^6u_2^2 - 209547000u_0^6u_1^6 + 1446000u_1^4u_2^8 + 179739600u_0^2u_1^4u_2^6 - 1058169786u_0^4u_1^4u_2^4 \\ & - 1493997480u_0^6u_1^4u_2^2 + 476341350u_0^8u_1^4 + 4380000u_1^2u_2^{10} - 68559000u_0^2u_1^2u_2^8 + 429249700u_0^4u_1^2u_2^6 - 1493997480u_0^6u_1^2u_2^4 \\ & + 2442311100u_0^8u_1^2u_2^2 - 476982000u_0^{10}u_1^2 + 250000u_2^{12} - 5475000u_0^2u_2^{10} + 47610625u_0^4u_2^8 - 209547000u_0^6u_2^6 + 476341350u_0^8u_2^4 \\ & - 476982000u_0^{10}u_2^2 + 82355625u_0^{12} &= 0 \end{aligned}$

Duality for plane curves

Let $V = \{p = 0\}$ be a plane curve of degree d.

If V is smooth, the dual curve V^* is irreducible of degree d(d-1).

If V is generic (and smooth), then V^* has two types of singularities:

- The **bitangent lines** of V correspond to **nodes** of V^* .
- The inflection lines of V correspond to cusps of V^* .

Duality for hyperbolic curves

Theorem. (*Kippenhahn* for hyperbolic curves) Let $p \in \mathbb{R}[x_0, x_1, x_2]$ be hyperbolic with respect to e = (1, 0, 0). The convex dual of the hyperbolicity region $\Lambda_+(f, e) \cap \{x_0 = 1\}$ is the convex hull of the dual curve of $\{f = 0\}$ in the dual plane $\{u_0 = 1\}$.

Duality for hyperbolic curves

Theorem. (*Kippenhahn* for hyperbolic curves) Let $p \in \mathbb{R}[x_0, x_1, x_2]$ be hyperbolic with respect to e = (1, 0, 0). The convex dual of the hyperbolicity region $\Lambda_+(f, e) \cap \{x_0 = 1\}$ is the convex hull of the dual curve of $\{f = 0\}$ in the dual plane $\{u_0 = 1\}$.

Problem: What about isolated real points (nodes) of the dual curve?

Duality for hyperbolic curves

 $x_1^4 + x_2^4 + \frac{7}{4}x_1^2x_2^2 - 4x_0^2x_1^2 - 4x_0^2x_2^2 + 3x_0^4 = 0$

$$\begin{split} &12288u_1^{12} + 89088u_1^{10}u_2^2 - 4096u_1^{10}u_0^2 + 248064u_1^8u_2^4 - 150784u_1^8u_2^2u_0^2 - 14976u_1^8u_0^4 + 340800u_1^6u_2^6 - 410560u_1^6u_2^4u_0^2 \\ &+ 137328u_1^6u_2^2u_0^4 + 4800u_1^6u_0^6 + 248064u_1^4u_2^8 - 410560u_1^4u_2^6u_0^2 + 283881u_1^4u_2^4u_0^4 - 85260u_1^4u_2^2u_0^6 + 3619u_1^4u_0^8 \\ &+ 89088u_1^2u_2^{10} - 150784u_1^2u_2^8u_0^2 + 137328u_1^2u_2^6u_0^4 - 85260u_1^2u_2^4u_0^6 + 23152u_1^2u_2^2u_0^8 - 1860u_1^2u_0^{10} + 12288u_2^{12} \\ &- 4096u_2^{10}u_0^2 - 14976u_2^8u_0^4 + 4800u_2^6u_0^6 + 3619u_2^4u_0^8 - 1860u_2^2u_0^{10} + 225u_0^{12} &= 0 \end{split}$$

$$\begin{split} &12288u_1^{12} + 89088u_1^{10}u_2^2 - 4096u_1^{10}u_0^2 + 248064u_1^8u_2^4 - 150784u_1^8u_2^2u_0^2 - 14976u_1^8u_0^4 + 340800u_1^6u_2^6 - 410560u_1^6u_2^4u_0^2 \\ &+ 137328u_1^6u_2^2u_0^4 + 4800u_1^6u_0^6 + 248064u_1^4u_2^8 - 410560u_1^4u_2^6u_0^2 + 283881u_1^4u_2^4u_0^4 - 85260u_1^4u_2^2u_0^6 + 3619u_1^4u_0^8 \\ &+ 89088u_1^2u_2^{10} - 150784u_1^2u_2^8u_0^2 + 137328u_1^2u_2^6u_0^4 - 85260u_1^2u_2^4u_0^6 + 23152u_1^2u_2^2u_0^8 - 1860u_1^2u_0^{10} + 12288u_2^{12} \\ &- 4096u_2^{10}u_0^2 - 14976u_2^8u_0^4 + 4800u_2^6u_0^6 + 3619u_2^4u_0^8 - 1860u_2^2u_0^{10} + 225u_0^{12} &= 0 \end{split}$$

Let A_1, \ldots, A_n be Hermitian $d \times d$ -matrices. The **joint numerical range** of A_1, \ldots, A_n is the set

$$W(A_1,\ldots,A_n) = \left\{ \left(\overline{x}^T A_1 x, \ldots, \overline{x}^T A_n x \right) \mid x \in \mathbb{C}^n \text{ with } \|x\| = 1 \right\} \subset \mathbb{R}^n$$

Let A_1, \ldots, A_n be Hermitian $d \times d$ -matrices. The **joint numerical range** of A_1, \ldots, A_n is the set

$$W(A_1,\ldots,A_n) = \left\{ \left(\overline{x}^T A_1 x, \ldots, \overline{x}^T A_n x \right) \mid x \in \mathbb{C}^n \text{ with } \|x\| = 1 \right\} \subset \mathbb{R}^n$$

The joint numerical range is **not convex** in general (studied by Li&Poon 2000).

Let A_1, \ldots, A_n be Hermitian $d \times d$ -matrices. The **joint numerical range** of A_1, \ldots, A_n is the set

$$W(A_1,\ldots,A_n) = \left\{ \left(\overline{x}^T A_1 x, \ldots, \overline{x}^T A_n x \right) \mid x \in \mathbb{C}^n \text{ with } \|x\| = 1 \right\} \subset \mathbb{R}^n$$

The joint numerical range is **not convex** in general (studied by Li&Poon 2000).

The convex hull can be described as

$$\operatorname{conv} W(A_1,\ldots,A_n) = \left\{ \left(\langle A_1, X \rangle, \ldots, \langle A_n, X \rangle \right) \mid X \ge 0, \operatorname{trace}(X) = 1 \right\}$$

where $\langle A, B \rangle = \text{trace}(A\overline{B^T})$ and $X \ge 0$ means that X is Hermitian and positive semidefinite.

Let A_1, \ldots, A_n be Hermitian $d \times d$ -matrices. The **joint numerical range** of A_1, \ldots, A_n is the set

$$W(A_1,\ldots,A_n) = \left\{ \left(\overline{x}^T A_1 x, \ldots, \overline{x}^T A_n x \right) \mid x \in \mathbb{C}^n \text{ with } \|x\| = 1 \right\} \subset \mathbb{R}^n$$

The joint numerical range is **not convex** in general (studied by Li&Poon 2000).

The convex hull can be described as

conv
$$W(A_1,\ldots,A_n) = \left\{ \left(\langle A_1, X \rangle, \ldots, \langle A_n, X \rangle \right) \mid X \ge 0, \operatorname{trace}(X) = 1 \right\}$$

where $\langle A, B \rangle = \text{trace}(A\overline{B^T})$ and $X \ge 0$ means that X is Hermitian and positive semidefinite.

The set $convW(A_1, \ldots, A_n)$ is again the convex dual of the spectrahedron

$$\left\{ x \in \mathbb{R}^n \mid I_d + x_1 A_1 + \dots + x_n A_n \ge 0 \right\}$$

Let $V \subset \mathbb{P}^n$ be a projective variety. The **dual variety** of V (over \mathbb{C}) is

$$V^* = \left\{ u \in (\mathbb{P}^n)^* \mid \exists p \in V_{\text{reg}} : T_p(V) \subset \left\{ \sum u_i x_i = 0 \right\} \right\}.$$

In words: V* parametrizes all hyperplanes tangent to V at regular points.

Let $V \subset \mathbb{P}^n$ be a projective variety. The **dual variety** of V (over \mathbb{C}) is

$$V^* = \left\{ u \in (\mathbb{P}^n)^* \mid \exists p \in V_{\text{reg}} : T_p(V) \subset \left\{ \sum u_i x_i = 0 \right\} \right\}.$$

In words: V* parametrizes all hyperplanes tangent to V at regular points.

Facts:

- (1) If V is irreducible, then **biduality** holds: $(V^*)^* = V$.
- (2) If $V = \{f = 0\}$ is a **generic** hypersurface of degree d, then V^* is a hypersurface of degree $d(d-1)^{n-1}$.

Let $V \subset \mathbb{P}^n$ be a projective variety. The **dual variety** of V (over \mathbb{C}) is

$$V^* = \left\{ u \in (\mathbb{P}^n)^* \mid \exists p \in V_{\text{reg}} : T_p(V) \subset \left\{ \sum u_i x_i = 0 \right\} \right\}.$$

In words: V* parametrizes all hyperplanes tangent to V at regular points.

Facts:

- (1) If V is irreducible, then **biduality** holds: $(V^*)^* = V$.
- (2) If $V = \{f = 0\}$ is a **generic** hypersurface of degree d, then V^* is a hypersurface of degree $d(d-1)^{n-1}$.
- (3) Determinantal hypersurfaces are **not generic** in this sense, for $n \ge 3$: The variety V^* is usually **not** a hypersurface.

Let $V \subset \mathbb{P}^n$ be a projective variety. The **dual variety** of V (over \mathbb{C}) is

$$V^* = \left\{ u \in (\mathbb{P}^n)^* \mid \exists p \in V_{\text{reg}} : T_p(V) \subset \left\{ \sum u_i x_i = 0 \right\} \right\}.$$

In words: V* parametrizes all hyperplanes tangent to V at regular points.

Facts:

- (1) If V is irreducible, then **biduality** holds: $(V^*)^* = V$.
- (2) If $V = \{f = 0\}$ is a **generic** hypersurface of degree d, then V^* is a hypersurface of degree $d(d-1)^{n-1}$.
- (3) Determinantal hypersurfaces are **not generic** in this sense, for $n \ge 3$: The variety V^* is usually **not** a hypersurface.

Examples. For the general determinantal hypersurface $\{\det(X) = 0\}$ in the space $\mathbb{P}^{\binom{d+1}{2}}$ of all symmetric $d \times d$ -matrices, the dual variety is the set of all symmetric matrices of rank 1 (the **Veronese variety**).

Famous example

Cayley's cubic $2x_1x_2x_3 - x_0x_1^2 - x_0x_2^2 - x_0x_3^2 + x_0^3$ $= det \begin{pmatrix} x_0 & x_1 & x_2 \\ x_1 & x_0 & x_3 \\ x_2 & x_3 & x_0 \end{pmatrix} = 0$

Cayley's cubic Steiner's quartic $2x_1x_2x_3 - x_0x_1^2 - x_0x_2^2 - x_0x_3^2 + x_0^3$ $u_1^2u_2^2 - u_1^2u_3^2 - u_2^2u_3^2 - 2u_0u_1u_2u_3 = 0$

Example

$$A_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad A_{2} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \qquad A_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(Chien and Nakazato 2010)

$$p(u_0, u_1, u_2, u_3) = \det(u_0 \operatorname{id} + u_1 A_1 + u_2 A_2 + u_3 A_3)$$

= $u_0^3 + u_0^2 u_3 - 2u_0 u_1^2 - u_0 u_2^2 - u_1^3 - u_1^2 u_3 + u_1 u_2^2$

The projective dual is a surface defined by

$$q(x_0, x_1, x_2, x_3) = 4x_0^2 x_3^2 + 8x_0 x_1 x_3^2 - 4x_0 x_2^2 x_3 - 24x_0 x_3^3 + 4x_1^2 x_3^2 - 4x_1 x_2^2 x_3 - 8x_1 x_3^3 + x_2^4 + 8x_2^2 x_3^2 + 20x_3^4.$$

Its singular locus is $\{(x_0, x_1, x_2, x_3) \in \mathbb{P}^3 : x_2 = x_3 = 0\}$

Example

The projective dual is a surface defined by

$$q(x_0, x_1, x_2, x_3) = 4x_0^2 x_3^2 + 8x_0 x_1 x_3^2 - 4x_0 x_2^2 x_3 - 24x_0 x_3^3 + 4x_1^2 x_3^2 - 4x_1 x_2^2 x_3 - 8x_1 x_3^3 + x_2^4 + 8x_2^2 x_3^2 + 20x_3^4.$$

Its singular locus is $\{(x_0, x_1, x_2, x_3) \in \mathbb{P}^3 : x_2 = x_3 = 0\}$

How to fix it

Theorem. (Sinn 2015/P-Sinn-Weis 2019)

Let $p \in \mathbb{R}[x_0, ..., x_n]$ be irreducible and hyperbolic with respect to e = (1, 0, ..., 0). Let $V = \{p = 0\} \subset \mathbb{P}^n$ and let V^* be the dual projective variety. The convex dual of the hyperbolicity region $C(p, e) \cap \{x_0 = 1\}$ is the closure of the convex hull of $V_{\text{reg}}^*(\mathbb{R}) \cap \{u_0 = 1\}$, where $V_{\text{reg}}(\mathbb{R})$ is the set of regular real points of V^* .

How to fix it

Theorem. (Sinn 2015/P-Sinn-Weis 2019)

Let $p \in \mathbb{R}[x_0, ..., x_n]$ be irreducible and hyperbolic with respect to e = (1, 0, ..., 0). Let $V = \{p = 0\} \subset \mathbb{P}^n$ and let V^* be the dual projective variety. The convex dual of the hyperbolicity region $C(p, e) \cap \{x_0 = 1\}$ is the closure of the convex hull of $V_{\text{reg}}^*(\mathbb{R}) \cap \{u_0 = 1\}$, where $V_{\text{reg}}(\mathbb{R})$ is the set of regular real points of V^* .

Corollary. (PSW 2019) The convex hull of the joint numerical range of Hermitian $d \times d$ matrices A_1, \ldots, A_n is the closure of the convex hull of the real non-singular part of the dual variety of the hyperbolic hypersurface det $(x_0I_d + x_1A_1 + \cdots + x_nA_n)$.