SAGE Certificates of Signomial and Polynomial Nonnegativity

Riley Murray

California Institute of Technology

May 31, 2019

Joint work with Venkat Chandrasekaran and Adam Wierman (Caltech).

Signomials are functions of the form

$$oldsymbol{x}\mapsto \sum_{i=1}^m c_i \exp(oldsymbol{lpha}_i\cdotoldsymbol{x})$$

for real scalars c_i , and row vectors $\boldsymbol{\alpha}_i$ in \mathbb{R}^n .

Write $f = \operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})$ for an $m \times n$ matrix $\boldsymbol{\alpha}$, and \boldsymbol{c} in \mathbb{R}^m .

Signomials have no concept of degree. We measure a signomial's "complexity" by number of terms needed in the monomial basis

$$\{ oldsymbol{x} \mapsto \exp(oldsymbol{a} \cdot oldsymbol{x}) \, : \, oldsymbol{a} \in \mathbb{R}^n \}.$$

The signomial nonnegativity cone

Define the nonnegativity cone for signomials over exponents α :

 $C_{\text{NNS}}(\boldsymbol{\alpha}) \doteq \{ \boldsymbol{c} : \operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \ge 0 \text{ for all } \boldsymbol{x} \text{ in } \mathbb{R}^n \}.$

These nonnegativity cones exhibit affine-invariance:

$$C_{\text{NNS}}(\boldsymbol{\alpha}) = C_{\text{NNS}}(\boldsymbol{\alpha} \boldsymbol{V}) = C_{\text{NNS}}(\boldsymbol{\alpha} - \boldsymbol{1}\boldsymbol{u})$$

for all invertible V in $\mathbb{R}^{n \times n}$, and all row vectors u in \mathbb{R}^n .

The signomial nonnegativity cone

Define the nonnegativity cone for signomials over exponents α :

 $C_{\text{NNS}}(\boldsymbol{\alpha}) \doteq \{ \boldsymbol{c} : \operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \ge 0 \text{ for all } \boldsymbol{x} \text{ in } \mathbb{R}^n \}.$

These nonnegativity cones exhibit affine-invariance:

$$C_{\text{NNS}}(\boldsymbol{\alpha}) = C_{\text{NNS}}(\boldsymbol{\alpha} \boldsymbol{V}) = C_{\text{NNS}}(\boldsymbol{\alpha} - \boldsymbol{1}\boldsymbol{u})$$

for all invertible V in $\mathbb{R}^{n \times n}$, and all row vectors u in \mathbb{R}^n .

Checking membership in $C_{\rm NNS}({mlpha})$...

- is NP-Hard (for general α).
- has applications in engineering design problems.
- is useful for certifying global polynomial nonnegativity.

SAGE is sufficient for nonnegativity

Definition. A nonnegative signomial with at most one negative coefficient is an "AM/GM Exponential," or an "AGE function."

For each k, have cone of coefficients for AM/GM Exponentials

$$C_{\mathrm{AGE}}(\boldsymbol{lpha},k)\doteq\{\boldsymbol{c}\ :\ \boldsymbol{c}_{\setminus k}\geq \boldsymbol{0} \ \mathrm{and}\ \boldsymbol{c} \ \mathrm{in}\ C_{\mathrm{NNS}}(\boldsymbol{lpha})\}.$$

We take sums of AGE cones to obtain the **SAGE cone**

$$C_{\text{SAGE}}(\boldsymbol{\alpha}) = \sum_{k=1}^{m} C_{\text{AGE}}(\boldsymbol{\alpha}, k).$$

Crucial question: How to represent the AGE cones?

The convex duality behind AGE cones

Fix α in $\mathbb{R}^{m imes n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \geq \mathbf{0}$.

Does $m{c}$ belong to $C_{
m NNS}(m{lpha})$?

The convex duality behind AGE cones

Fix α in $\mathbb{R}^{m imes n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \ge \mathbf{0}$.

Does $m{c}$ belong to $C_{
m NNS}(m{lpha})$?

Appeal to affine invariance of $C_{\mathrm{NNS}}(oldsymbollpha)$, and rearrange terms:

$$\begin{split} \operatorname{Sig}(\boldsymbol{\alpha},\boldsymbol{c})(\boldsymbol{x}) &\geq 0 \; \Leftrightarrow \; \operatorname{Sig}(\boldsymbol{\alpha} - \mathbf{1}\boldsymbol{\alpha}_k,\,\boldsymbol{c})(\boldsymbol{x}) \geq 0\\ \operatorname{Sig}(\boldsymbol{\alpha}_{\backslash k} - \mathbf{1}\boldsymbol{\alpha}_k,\,\boldsymbol{c}_{\backslash k})(\boldsymbol{x}) \geq -c_k. \end{split}$$

The convex duality behind AGE cones

Fix α in $\mathbb{R}^{m \times n}$, and c in \mathbb{R}^m satisfying $c_{\setminus k} \ge \mathbf{0}$.

Does $m{c}$ belong to $C_{
m NNS}(m{lpha})$?

Appeal to affine invariance of $C_{\mathrm{NNS}}(oldsymbollpha)$, and rearrange terms:

$$\begin{split} \operatorname{Sig}(\boldsymbol{\alpha},\boldsymbol{c})(\boldsymbol{x}) &\geq 0 \; \Leftrightarrow \; \operatorname{Sig}(\boldsymbol{\alpha} - \mathbf{1}\boldsymbol{\alpha}_k,\,\boldsymbol{c})(\boldsymbol{x}) \geq 0\\ \operatorname{Sig}(\boldsymbol{\alpha}_{\backslash k} - \mathbf{1}\boldsymbol{\alpha}_k,\,\boldsymbol{c}_{\backslash k})(\boldsymbol{x}) \geq -c_k. \end{split}$$

Appeal to convex duality. The nonnegativity condition

$$\inf_{\boldsymbol{x}\in\mathbb{R}^n}\operatorname{Sig}(\boldsymbol{\alpha}_{\backslash k}-\boldsymbol{1}\boldsymbol{\alpha}_k,\,\boldsymbol{c}_{\backslash k})(\boldsymbol{x})\geq -c_k$$

holds if and only if there exists u in \mathbb{R}^{m-1} satisfying

$$D(\boldsymbol{\nu}, \boldsymbol{c}_{\backslash k}) - \boldsymbol{\nu}^{\mathsf{T}} \mathbf{1} \leq c_k \text{ and } [\boldsymbol{\alpha}_{\backslash k} - \mathbf{1} \boldsymbol{\alpha}_k] \boldsymbol{\nu} = \mathbf{0}.$$

- Discuss selected results for SAGE-signomial certificates.
 M., Chandrasekaran, and Wierman 2018.
- 2 Define and prove results for SAGE-polynomial certificates.
 - M., Chandrasekaran, and Wierman 2018.
- **3** A tiny preview of forthcoming work.

Results for the SAGE signomial cone.

Standard-form SAGE decompositions

Consider a coefficient vector $oldsymbol{c} \in \mathbb{R}^m$ satisfying

 $c_1,\ldots,c_\ell<0\leq c_{\ell+1},\ldots c_m,$

and suppose we want to test if c belongs to $C_{\mathrm{SAGE}}(oldsymbol{lpha}).$

Standard-form SAGE decompositions

Consider a coefficient vector $oldsymbol{c} \in \mathbb{R}^m$ satisfying

$$c_1,\ldots,c_\ell<0\leq c_{\ell+1},\ldots c_m,$$

and suppose we want to test if c belongs to $C_{\mathrm{SAGE}}(oldsymbol{lpha}).$

Can show that we only need consider $c^{(k)}$ in $C_{\text{AGE}}(\boldsymbol{\alpha},k)$.

Standard-form SAGE decompositions

Consider a coefficient vector $oldsymbol{c} \in \mathbb{R}^m$ satisfying

$$c_1,\ldots,c_\ell<0\leq c_{\ell+1},\ldots c_m,$$

and suppose we want to test if c belongs to $C_{\mathrm{SAGE}}(oldsymbol{lpha}).$

Can show that we only need consider $c^{(k)}$ in $C_{\mathrm{AGE}}(oldsymbol{lpha},k).$

Furthermore, the $\ell imes m$ matrix $oldsymbol{C}$ with rows " $oldsymbol{c}^{(k)}$ " looks like

$$oldsymbol{C} = \left[\mathsf{diag}(c_1, \dots, c_\ell) \, | \, ilde{oldsymbol{C}}
ight]$$

for some dense, nonnegative $\ell \times (m - \ell)$ matrix \tilde{C} .

Think Newton polytopes

If Newt(α) is simplicial, and $c_i \leq 0$ for all nonextremal α_i , then $c \in C_{NNS}(\alpha)$ if and only if $c \in C_{SAGE}(\alpha)$.

Theorem (1)

If Newt(α) is simplicial, and $c_i \leq 0$ for all nonextremal α_i , then $c \in C_{NNS}(\alpha)$ if and only if $c \in C_{SAGE}(\alpha)$.

.

$$f(\boldsymbol{x}) = (e^{x_1} - e^{x_2} - e^{x_3})^2$$

is clearly nonnegative, but

 $f - \gamma$ is not SAGE $\forall \gamma \in \mathbb{R}$.

Partitioning a Newton polytope

We say that α can be **partitioned into** ℓ faces if we can permute its rows so that $\alpha = [\alpha^{(1)}; \ldots; \alpha^{(\ell)}]$ where $\{\text{Newt } \alpha^{(i)}\}_{i=1}^{\ell}$ are mutually disjoint faces of $\text{Newt}(\alpha)$.

Partitioning a Newton polytope

Theorem (2)

If $\{\alpha^{(i)}\}_{i=1}^{\ell}$ are matrices partitioning $\alpha = [\alpha^{(1)}; \ldots; \alpha^{(\ell)}]$, then $C_{\rm NNS}(\alpha) = \oplus_{i=1}^{\ell} C_{\rm NNS}(\alpha^{(i)})$

-and the same is true of $C_{\mathrm{SAGE}}(oldsymbol{lpha}).$

Sanity checks :

All matrices α admit a trivial partition with $\ell = 1$. If all α_i are extremal, then $C_{\text{NNS}}(\alpha) = \mathbb{R}^m_+$.

A natural regularity condition: α 's only partition is trivial.

A Theorem for $C_{\mathrm{SAGE}}(oldsymbol{lpha}) = C_{\mathrm{NNS}}(oldsymbol{lpha})$

Theorem (3)

Suppose α can be partitioned into faces where

- **1** each simplicial face has ≤ 2 nonextremal exponents, and
- 2 all other faces contain at most one nonextremal exponent.
- Then $C_{\text{SAGE}}(\boldsymbol{\alpha}) = C_{\text{NNS}}(\boldsymbol{\alpha}).$

A Theorem for $C_{\mathrm{SAGE}}(oldsymbol{lpha}) = C_{\mathrm{NNS}}(oldsymbol{lpha})$

Theorem (3)

Suppose α can be partitioned into faces where

1 each simplicial face has ≤ 2 nonextremal exponents, and

2 all other faces contain at most one nonextremal exponent. Then $C_{\text{SAGE}}(\alpha) = C_{\text{NNS}}(\alpha)$.

Is the second (nonsimplicial) case too restrictive?

A Theorem for $C_{\mathrm{SAGE}}(oldsymbol{lpha}) = C_{\mathrm{NNS}}(oldsymbol{lpha})$

Theorem (3)

Suppose α can be partitioned into faces where

- **1** each simplicial face has ≤ 2 nonextremal exponents, and
- 2 all other faces contain at most one nonextremal exponent. Then $C_{\text{SAGE}}(\alpha) = C_{\text{NNS}}(\alpha)$.

Is the second (nonsimplicial) case too restrictive? Consider

$$\boldsymbol{\alpha}^{\mathsf{T}} = \begin{bmatrix} 0 & 1 & 2 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 2 & 2 \end{bmatrix}$$

The term $\alpha_6 = [2,2]$ prevents us from applying Theorem 3.

A Theorem for $C_{\mathrm{SAGE}}(oldsymbol{lpha}) = C_{\mathrm{NNS}}(oldsymbol{lpha})$

Theorem (3)

Suppose α can be partitioned into faces where

- **1** each simplicial face has ≤ 2 nonextremal exponents, and
- 2 all other faces contain at most one nonextremal exponent. Then $C_{SAGE}(\alpha) = C_{NNS}(\alpha)$.

Is the second (nonsimplicial) case too restrictive? Consider

$$\boldsymbol{\alpha}^{\mathsf{T}} = \begin{bmatrix} 0 & 1 & 2 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 2 & 2 \end{bmatrix}$$

The term $\alpha_6 = [2,2]$ prevents us from applying Theorem 3.

Can show $[1.8, -4, 3, -2, 2, 1] \in C_{NNS}(\alpha) \setminus C_{SAGE}(\alpha)$.

A *circuit* is a minimal affinely-dependent pointset of \mathbb{R}^n .

We consider circuits "X" that are simplicial: $|X \setminus \text{ext conv } X| = 1$.

A *circuit* is a minimal affinely-dependent pointset of \mathbb{R}^n .

We consider circuits "X" that are simplicial: $|X \setminus \text{ext conv } X| = 1$.

Theorem (4)

If c generates a nontrivial extreme ray of $C_{\text{SAGE}}(\alpha)$, then $\{\alpha_i : c_i \neq 0\}$ is a circuit.

The # of circuits induced by $\alpha \in \mathbb{R}^{m \times n}$ can be **exponential in** m. Possible that **every circuit** supports extreme rays in $C_{\text{SAGE}}(\alpha)$. Yet, we can represent $C_{\text{SAGE}}(\alpha)$ with an REP of size $O(m^2)$!

Global Polynomial Nonnnegativity.

Nonnegativity via Relative Entropy and Convex Duality

Introduction	SAGE signomials	SAGE Polynomials	Polynomial Optimization	Concluding Remarks
Basic definitions			Caltech	

Fix $\boldsymbol{\alpha}$ in $\mathbb{N}^{m \times n}$. Write $p = \operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})$ to mean

$$p(\boldsymbol{x}) = \sum_{i=1}^{m} c_i \boldsymbol{x}^{\boldsymbol{lpha}_i}, \quad ext{where} \quad \boldsymbol{x}^{\boldsymbol{lpha}_i} \doteq \prod_{j=1}^{n} x_j^{\alpha_{ij}}.$$

Introduction	SAGE signomials	SAGE Polynomials	Polynomial Optimization	Concluding Remarks
Basic definitions			Ca	altech

Fix $\boldsymbol{\alpha}$ in $\mathbb{N}^{m imes n}$. Write $p = \operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})$ to mean

$$p(\boldsymbol{x}) = \sum_{i=1}^m c_i \boldsymbol{x}^{\boldsymbol{lpha}_i}, \quad \text{where} \quad \boldsymbol{x}^{\boldsymbol{lpha}_i} \doteq \prod_{j=1}^n x_j^{\alpha_{ij}}.$$

The matrix lpha induces a nonnegativity cone

 $C_{\mathrm{NNP}}(\boldsymbol{\alpha}) \doteq \{ \, \boldsymbol{c} \, : \, \mathrm{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \text{ for all } \boldsymbol{x} \text{ in } \mathbb{R}^n \}.$

Introduction	SAGE signomials	SAGE Polynomials	Polynomial Optimization	Concluding Remarks
Basic d	efinitions		Ca	altech

Fix
$$\boldsymbol{\alpha}$$
 in $\mathbb{N}^{m \times n}$. Write $p = \operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})$ to mean

$$p(\boldsymbol{x}) = \sum_{i=1}^{m} c_i \boldsymbol{x}^{\boldsymbol{lpha}_i}, \quad \text{where} \quad \boldsymbol{x}^{\boldsymbol{lpha}_i} \doteq \prod_{j=1}^{n} x_j^{\alpha_{ij}}.$$

The matrix lpha induces a nonnegativity cone

$$C_{\mathrm{NNP}}(\boldsymbol{\alpha}) \doteq \{ \, \boldsymbol{c} \, : \, \mathrm{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \text{ for all } \boldsymbol{x} \text{ in } \mathbb{R}^n \}.$$

Observe: $\operatorname{Sig}(\alpha, c)$ is PSD on \mathbb{R}^n iff $\operatorname{Poly}(\alpha, c)$ is PSD on \mathbb{R}^n_+ .

Thus results for signomials directly extend to even polynomials.

One construction of SAGE polynomials

Call $c_i x^{\alpha_i}$ a "monomial square" if α_i is even and $c_i \ge 0$.

p is an "AGE polynomial" – in the monomial basis specified by $\pmb{\alpha}$ – if $p(\pmb{x})$ contains at most one $c_i \pmb{x}^{\pmb{\alpha}_i}$ which is not a monomial square.

In conic form, write

$$C_{AGE}^{POLY}(\boldsymbol{lpha}, k) = \{ \boldsymbol{c} : \boldsymbol{c} \in C_{NNP}(\boldsymbol{lpha}), \ \boldsymbol{c}_{\setminus k} \ge \boldsymbol{0}, \text{ and} \ c_i = 0 \text{ for all } i \neq k \text{ with } \boldsymbol{lpha}_i \notin 2\mathbb{N}^n \}$$

and define

$$C_{\text{SAGE}}^{\text{POLY}}(\boldsymbol{\alpha}) = \sum_{k=1}^{m} C_{\text{AGE}}^{\text{POLY}}(\boldsymbol{\alpha}, k).$$

Define the set of signomial representative coefficient vectors

$$\begin{split} \mathrm{SR}(\pmb{\alpha},\pmb{c}) &= \{ \pmb{\hat{c}}: \, \hat{c}_i = c_i \text{ whenever } \pmb{\alpha}_i \text{ is in } 2\mathbb{N}^n, \text{ and} \\ \hat{c}_i &\leq -|c_i| \text{ whenever } \pmb{\alpha}_i \text{ is not in } 2\mathbb{N}^n \}. \end{split}$$

If $\hat{m{c}}$ belongs to $\mathrm{SR}(m{lpha},m{c})$, then (by a trivial termwise argument)

 $\operatorname{Sig}(oldsymbol{lpha}, \hat{oldsymbol{c}})$ nonnegative \Rightarrow $\operatorname{Poly}(oldsymbol{lpha}, oldsymbol{c})$ nonnegative.

 $C_{\text{SAGE}}^{\text{POLY}}(\boldsymbol{\alpha}) = \{ \boldsymbol{c} : \text{ SR}(\boldsymbol{\alpha}, \boldsymbol{c}) \cap C_{\text{SAGE}}(\boldsymbol{\alpha}) \text{ is nonempty } \}$

Theorem 5 can be leveraged to produce many corollaries.

Nonnegativity via Relative Entropy and Convex Duality

Introduction	SAGE signomials	SAGE Polynomials	Polynomial Optimization	Concluding Remarks
Select corollaries				altech

I If p is a SAGE polynomial with ℓ terms that are not monomial squares, then it admits a decomposition of ℓ nonnegative polynomials, all of which are supported by exponents α .

- I If p is a SAGE polynomial with ℓ terms that are not monomial squares, then it admits a decomposition of ℓ nonnegative polynomials, all of which are supported by exponents α .
- 2 If Newt α is simplicial and nonextremal α_i are linearly independent mod 2, then p is nonnegative iff p is SAGE.

- I If p is a SAGE polynomial with ℓ terms that are not monomial squares, then it admits a decomposition of ℓ nonnegative polynomials, all of which are supported by exponents α .
- 2 If Newt α is simplicial and nonextremal α_i are linearly independent mod 2, then p is nonnegative iff p is SAGE.
- **3** If p has ≤ 1 extremal term, p is nonnegative iff it is SAGE.

- I If p is a SAGE polynomial with ℓ terms that are not monomial squares, then it admits a decomposition of ℓ nonnegative polynomials, all of which are supported by exponents α .
- 2 If Newt α is simplicial and nonextremal α_i are linearly independent mod 2, then p is nonnegative iff p is SAGE.
- **3** If p has ≤ 1 extremal term, p is nonnegative iff it is SAGE.
- 4 The nontrivial extreme rays of $C_{\text{SAGE}}^{\text{POLY}}(\alpha)$ are generated by vectors c where $\{\alpha_i : c_i \neq 0\}$ are simplicial circuits.

Corollaries 3 and 4 in the previous slide imply a given polynomial admits a SAGE certificate iff it admits a SONC certificate.

Does this mean SAGE and SONC are the same thing?

Corollaries 3 and 4 in the previous slide imply a given polynomial admits a SAGE certificate iff it admits a SONC certificate.

Does this mean SAGE and SONC are the same thing?

NO.

Corollaries 3 and 4 in the previous slide imply a given polynomial admits a SAGE certificate iff it admits a SONC certificate.

Does this mean SAGE and SONC are the same thing?

NO.

Which is more efficient: SAGE-polynomials, or SONC?

Corollaries 3 and 4 in the previous slide imply a given polynomial admits a SAGE certificate iff it admits a SONC certificate.

Does this mean SAGE and SONC are the same thing?

NO.

Which is more efficient: SAGE-polynomials, or SONC?

SAGE polynomials.

Corollaries 3 and 4 in the previous slide imply a given polynomial admits a SAGE certificate iff it admits a SONC certificate.

Does this mean SAGE and SONC are the same thing?

NO.

Which is more efficient: SAGE-polynomials, or SONC?

SAGE polynomials.

Can SONC-type analysis still be useful for theoretical purposes?

Corollaries 3 and 4 in the previous slide imply a given polynomial admits a SAGE certificate iff it admits a SONC certificate.

Does this mean SAGE and SONC are the same thing?

NO.

Which is more efficient: SAGE-polynomials, or SONC?

SAGE polynomials.

Can SONC-type analysis still be useful for theoretical purposes?

Of course!

Polynomial Optimization.

Nonnegativity via Relative Entropy and Convex Duality

Primal and dual formulations

Fix $p = \operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})$, where exponents $\boldsymbol{\alpha} \in \mathbb{N}^{m \times n}$ have $\boldsymbol{\alpha}_1 = \boldsymbol{0}$.

The primal SAGE relaxation for $p^{\star} = \inf_{\boldsymbol{x} \in \mathbb{R}^n} p(\boldsymbol{x})$ is

$$p_{\text{SAGE}} = \sup\{\gamma : \boldsymbol{c} - \gamma \boldsymbol{e}_1 \text{ in } C_{\text{SAGE}}^{\text{POLY}}(\boldsymbol{\alpha})\} \leq p^{\star}$$

Primal and dual formulations

Fix $p = \operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})$, where exponents $\boldsymbol{\alpha} \in \mathbb{N}^{m \times n}$ have $\boldsymbol{\alpha}_1 = \boldsymbol{0}$.

The primal SAGE relaxation for $p^{\star} = \inf_{\boldsymbol{x} \in \mathbb{R}^n} p(\boldsymbol{x})$ is

$$p_{\text{SAGE}} = \sup\{\gamma : \boldsymbol{c} - \gamma \boldsymbol{e}_1 \text{ in } C_{\text{SAGE}}^{\text{POLY}}(\boldsymbol{\alpha})\} \leq p^{\star}$$

Applying conic duality, the dual SAGE relaxation is

$$p_{\text{SAGE}} = \inf \{ \boldsymbol{c}^{\mathsf{T}} \boldsymbol{v} : \boldsymbol{e}_1^{\mathsf{T}} \boldsymbol{v} = 1, \ \boldsymbol{v} \in C_{\text{SAGE}}^{\text{POLY}}(\boldsymbol{\alpha})^{\dagger} \}.$$

Primal and dual formulations

Fix $p = \operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})$, where exponents $\boldsymbol{\alpha} \in \mathbb{N}^{m \times n}$ have $\boldsymbol{\alpha}_1 = \boldsymbol{0}$.

The primal SAGE relaxation for $p^{\star} = \inf_{\boldsymbol{x} \in \mathbb{R}^n} p(\boldsymbol{x})$ is

$$p_{\text{SAGE}} = \sup\{\gamma : \boldsymbol{c} - \gamma \boldsymbol{e}_1 \text{ in } C_{\text{SAGE}}^{\text{POLY}}(\boldsymbol{\alpha})\} \leq p^{\star}$$

Applying conic duality, the dual SAGE relaxation is

$$p_{\text{SAGE}} = \inf \{ \boldsymbol{c}^{\mathsf{T}} \boldsymbol{v} : \boldsymbol{e}_1^{\mathsf{T}} \boldsymbol{v} = 1, \ \boldsymbol{v} \in C_{\text{SAGE}}^{\text{POLY}}(\boldsymbol{\alpha})^{\dagger} \}.$$

If $p_{\mathrm{SAGE}} = p^\star$, how can we recover a minimizer $oldsymbol{x}^\star \in \mathbb{R}^n$?

In terms of standard primitives (LP and REP), can express

$$C_{ ext{SAGE}}^{ ext{POLY}}(oldsymbol{lpha})^{\dagger} = \{ oldsymbol{v} : ext{there exists } \hat{oldsymbol{v}} ext{ in } C_{ ext{SAGE}}(oldsymbol{lpha})^{\dagger} ext{ with } |oldsymbol{v}| \leq \hat{oldsymbol{v}}, ext{ and } v_i = \hat{v}_i ext{ when } oldsymbol{lpha}_i \in 2\mathbb{N}^n \}, ext{ and }$$

$$\begin{split} C_{\text{SAGE}}(\boldsymbol{\alpha})^{\dagger} &= \{ \hat{\boldsymbol{v}} : \text{there exist } \boldsymbol{z}_1, \dots, \boldsymbol{z}_m \text{ in } \mathbb{R}^n \text{ satisfying} \\ \hat{v}_j \log(\hat{\boldsymbol{v}}/\hat{v}_j) \geq [\boldsymbol{\alpha} - \mathbf{1}\boldsymbol{\alpha}_j] \boldsymbol{z}_j \text{ for all } j \text{ in } [m] \}. \end{split}$$

In terms of standard primitives (LP and REP), can express

$$C_{ ext{SAGE}}^{ ext{POLY}}(oldsymbol{lpha})^{\dagger} = \{ oldsymbol{v} : ext{there exists } \hat{oldsymbol{v}} ext{ in } C_{ ext{SAGE}}(oldsymbol{lpha})^{\dagger} ext{ with } |oldsymbol{v}| \leq \hat{oldsymbol{v}}, ext{ and } v_i = \hat{v}_i ext{ when } oldsymbol{lpha}_i \in 2\mathbb{N}^n \}, ext{ and }$$

$$\begin{split} C_{\text{SAGE}}(\boldsymbol{\alpha})^{\dagger} &= \{ \hat{\boldsymbol{v}} : \text{there exist } \boldsymbol{z}_1, \dots, \boldsymbol{z}_m \text{ in } \mathbb{R}^n \text{ satisfying} \\ \hat{v}_j \log(\hat{\boldsymbol{v}}/\hat{v}_j) \geq [\boldsymbol{\alpha} - \mathbf{1}\boldsymbol{\alpha}_j] \boldsymbol{z}_j \text{ for all } j \text{ in } [m] \}. \end{split}$$

Our solution recovery algorithm is simple.

In terms of standard primitives (LP and REP), can express

$$C_{ ext{SAGE}}^{ ext{POLY}}(oldsymbol{lpha})^{\dagger} = \{ oldsymbol{v} : ext{there exists } \hat{oldsymbol{v}} ext{ in } C_{ ext{SAGE}}(oldsymbol{lpha})^{\dagger} ext{ with } |oldsymbol{v}| \leq \hat{oldsymbol{v}}, ext{ and } v_i = \hat{v}_i ext{ when } oldsymbol{lpha}_i \in 2\mathbb{N}^n \}, ext{ and }$$

$$C_{ ext{SAGE}}(oldsymbol{lpha})^{\dagger} = \{ \hat{oldsymbol{v}} : ext{there exist } oldsymbol{z}_1, \dots, oldsymbol{z}_m ext{ in } \mathbb{R}^n ext{ satisfying} \ \hat{v}_j \log(oldsymbol{\hat{v}}/\hat{v}_j) \ge [oldsymbol{lpha} - \mathbf{1}oldsymbol{lpha}_j] oldsymbol{z}_j ext{ for all } j ext{ in } [m] \}.$$

Our solution recovery algorithm is simple.

1 Recover magnitudes $|\boldsymbol{x}| \leftarrow \exp(\boldsymbol{z}_j/\hat{v}_j)$,

Caltech

In terms of standard primitives (LP and REP), can express

$$C_{ ext{SAGE}}^{ ext{POLY}}(oldsymbol{lpha})^{\dagger} = \{ oldsymbol{v} : ext{there exists } \hat{oldsymbol{v}} ext{ in } C_{ ext{SAGE}}(oldsymbol{lpha})^{\dagger} ext{ with } |oldsymbol{v}| \leq \hat{oldsymbol{v}}, ext{ and } v_i = \hat{v}_i ext{ when } oldsymbol{lpha}_i \in 2\mathbb{N}^n \}, ext{ and }$$

$$\begin{split} C_{\text{SAGE}}(\boldsymbol{\alpha})^{\dagger} &= \{ \hat{\boldsymbol{v}} : \text{there exist } \boldsymbol{z}_1, \dots, \boldsymbol{z}_m \text{ in } \mathbb{R}^n \text{ satisfying} \\ \hat{v}_j \log(\hat{\boldsymbol{v}}/\hat{v}_j) \geq [\boldsymbol{\alpha} - \mathbf{1}\boldsymbol{\alpha}_j] \boldsymbol{z}_j \text{ for all } j \text{ in } [m] \}. \end{split}$$

Our solution recovery algorithm is simple.

- **1** Recover magnitudes $|\boldsymbol{x}| \leftarrow \exp(\boldsymbol{z}_j/\hat{v}_j)$,
- **2** recover signs "s" from sgn v, by linear algebra over $\mathbb{GF}(2)$,

Caltech

In terms of standard primitives (LP and REP), can express

$$C_{ ext{SAGE}}^{ ext{POLY}}(oldsymbol{lpha})^{\dagger} = \{ oldsymbol{v} : ext{there exists } \hat{oldsymbol{v}} ext{ in } C_{ ext{SAGE}}(oldsymbol{lpha})^{\dagger} ext{ with } |oldsymbol{v}| \leq \hat{oldsymbol{v}}, ext{ and } v_i = \hat{v}_i ext{ when } oldsymbol{lpha}_i \in 2\mathbb{N}^n \}, ext{ and }$$

$$C_{ ext{SAGE}}(oldsymbol{lpha})^{\dagger} = \{ \hat{oldsymbol{v}} : ext{there exist } oldsymbol{z}_1, \dots, oldsymbol{z}_m ext{ in } \mathbb{R}^n ext{ satisfying} \ \hat{v}_j \log(oldsymbol{\hat{v}}/\hat{v}_j) \ge [oldsymbol{lpha} - \mathbf{1}oldsymbol{lpha}_j] oldsymbol{z}_j ext{ for all } j ext{ in } [m] \}.$$

Our solution recovery algorithm is simple.

- **1** Recover magnitudes $|\boldsymbol{x}| \leftarrow \exp(\boldsymbol{z}_j/\hat{v}_j)$,
- **2** recover signs "s" from sgn v, by linear algebra over $\mathbb{GF}(2)$,
- 3 and stitch them together: $x \leftarrow |x| \odot s$.

Caltech

In terms of standard primitives (LP and REP), can express

$$C_{ ext{SAGE}}^{ ext{POLY}}(oldsymbol{lpha})^{\dagger} = \{ oldsymbol{v} : ext{there exists } \hat{oldsymbol{v}} ext{ in } C_{ ext{SAGE}}(oldsymbol{lpha})^{\dagger} ext{ with } |oldsymbol{v}| \leq \hat{oldsymbol{v}}, ext{ and } v_i = \hat{v}_i ext{ when } oldsymbol{lpha}_i \in 2\mathbb{N}^n \}, ext{ and }$$

$$C_{\text{SAGE}}(\boldsymbol{\alpha})^{\dagger} = \{ \hat{\boldsymbol{v}} : \text{there exist } \boldsymbol{z}_1, \dots, \boldsymbol{z}_m \text{ in } \mathbb{R}^n \text{ satisfying} \\ \hat{v}_j \log(\hat{\boldsymbol{v}}/\hat{v}_j) \ge [\boldsymbol{\alpha} - \mathbf{1}\boldsymbol{\alpha}_j] \boldsymbol{z}_j \text{ for all } j \text{ in } [m] \}.$$

Our solution recovery algorithm is simple.

- **1** Recover magnitudes $|\boldsymbol{x}| \leftarrow \exp(\boldsymbol{z}_j/\hat{v}_j)$,
- **2** recover signs "s" from sgn v, by linear algebra over $\mathbb{GF}(2)$,
- 3 and stitch them together: $x \leftarrow |x| \odot s$.

This procedure comes with guarantees under natural conditions.

Introduction

SAGE signomials

SAGE Polynomials

Polynomial Optimization

Concluding Remarks

Caltech

Concluding remarks

Review!

defined signomial and polynomial SAGE certificates,

- defined signomial and polynomial SAGE certificates,
- discussed recent results concerning these certificates,

Introduction	SAGE signomials	SAGE Polynomials	Polynomial Optimization	Concluding Remarks	
Concluding remarks			Caltech		

- defined signomial and polynomial SAGE certificates,
- discussed recent results concerning these certificates,
- clarified the relationship between SAGE and SONC, and

Introduction	SAGE signomials	SAGE Polynomials	Polynomial Optimization	Concluding Remarks
Concluding remarks			Caltech	

- defined signomial and polynomial SAGE certificates,
- discussed recent results concerning these certificates,
- clarified the relationship between SAGE and SONC, and
- outlined solution recovery from moment-SAGE relaxations.

Introduction	SAGE signomials	SAGE Polynomials	Polynomial Optimization	Concluding Remarks
Concluc	ling remarks		Ca	ltech

- defined signomial and polynomial SAGE certificates,
- discussed recent results concerning these certificates,
- clarified the relationship between SAGE and SONC, and
- outlined solution recovery from moment-SAGE relaxations.

Keep an eye on arXiv for

Signomial and Polynomial Optimization via Relative Entropy and Partial Dualization

by Murray, Chandrasekaran, and Wierman.