SAGE Certificates of Signomial and Polynomial Nonnegativity

Riley Murray

California Institute of Technology
May 31, 2019

Joint work with Venkat Chandrasekaran and Adam Wierman (Caltech).

Signomials are functions of the form

$$
\boldsymbol{x} \mapsto \sum_{i=1}^{m} c_{i} \exp \left(\boldsymbol{\alpha}_{i} \cdot \boldsymbol{x}\right)
$$

for real scalars c_{i}, and row vectors $\boldsymbol{\alpha}_{i}$ in \mathbb{R}^{n}.

Write $f=\operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})$ for an $m \times n$ matrix $\boldsymbol{\alpha}$, and \boldsymbol{c} in \mathbb{R}^{m}.

Signomials have no concept of degree. We measure a signomial's "complexity" by number of terms needed in the monomial basis

$$
\left\{\boldsymbol{x} \mapsto \exp (\boldsymbol{a} \cdot \boldsymbol{x}): \boldsymbol{a} \in \mathbb{R}^{n}\right\} .
$$

The signomial nonnegativity cone

Define the nonnegativity cone for signomials over exponents α :

$$
C_{\mathrm{NNS}}(\boldsymbol{\alpha}) \doteq\left\{\boldsymbol{c}: \operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \text { for all } \boldsymbol{x} \text { in } \mathbb{R}^{n}\right\}
$$

These nonnegativity cones exhibit affine-invariance:

$$
C_{\mathrm{NNS}}(\boldsymbol{\alpha})=C_{\mathrm{NNS}}(\boldsymbol{\alpha} \boldsymbol{V})=C_{\mathrm{NNS}}(\boldsymbol{\alpha}-\mathbf{1} \boldsymbol{u})
$$

for all invertible \boldsymbol{V} in $\mathbb{R}^{n \times n}$, and all row vectors \boldsymbol{u} in \mathbb{R}^{n}.

Define the nonnegativity cone for signomials over exponents α :

$$
C_{\mathrm{NNS}}(\boldsymbol{\alpha}) \doteq\left\{\boldsymbol{c}: \operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \text { for all } \boldsymbol{x} \text { in } \mathbb{R}^{n}\right\}
$$

These nonnegativity cones exhibit affine-invariance:

$$
C_{\mathrm{NNS}}(\boldsymbol{\alpha})=C_{\mathrm{NNS}}(\boldsymbol{\alpha} \boldsymbol{V})=C_{\mathrm{NNS}}(\boldsymbol{\alpha}-\mathbf{1} \boldsymbol{u})
$$

for all invertible \boldsymbol{V} in $\mathbb{R}^{n \times n}$, and all row vectors \boldsymbol{u} in \mathbb{R}^{n}.

Checking membership in $C_{\text {NNS }}(\boldsymbol{\alpha}) \ldots$
■ is NP-Hard (for general $\boldsymbol{\alpha}$).
■ has applications in engineering design problems.

- is useful for certifying global polynomial nonnegativity.

Definition. A nonnegative signomial with at most one negative coefficient is an "AM/GM Exponential," or an "AGE function."

For each k, have cone of coefficients for AM/GM Exponentials

$$
C_{\mathrm{AGE}}(\boldsymbol{\alpha}, k) \doteq\left\{\boldsymbol{c}: \boldsymbol{c}_{\backslash k} \geq \mathbf{0} \text { and } \boldsymbol{c} \text { in } C_{\mathrm{NNS}}(\boldsymbol{\alpha})\right\} .
$$

We take sums of AGE cones to obtain the SAGE cone

$$
C_{\mathrm{SAGE}}(\boldsymbol{\alpha})=\sum_{k=1}^{m} C_{\mathrm{AGE}}(\boldsymbol{\alpha}, k)
$$

Crucial question: How to represent the AGE cones?

Fix $\boldsymbol{\alpha}$ in $\mathbb{R}^{m \times n}$, and \boldsymbol{c} in \mathbb{R}^{m} satisfying $\boldsymbol{c}_{\backslash k} \geq \mathbf{0}$.
Does \boldsymbol{c} belong to $C_{\mathrm{NNS}}(\boldsymbol{\alpha})$?

Fix $\boldsymbol{\alpha}$ in $\mathbb{R}^{m \times n}$, and \boldsymbol{c} in \mathbb{R}^{m} satisfying $\boldsymbol{c}_{\backslash k} \geq \mathbf{0}$.
Does \boldsymbol{c} belong to $C_{\mathrm{NNS}}(\boldsymbol{\alpha})$?
Appeal to affine invariance of $C_{\mathrm{NNS}}(\boldsymbol{\alpha})$, and rearrange terms:

$$
\begin{aligned}
\operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \Leftrightarrow & \operatorname{Sig}\left(\boldsymbol{\alpha}-\mathbf{1} \boldsymbol{\alpha}_{k}, \boldsymbol{c}\right)(\boldsymbol{x}) \geq 0 \\
& \operatorname{Sig}\left(\boldsymbol{\alpha}_{\backslash k}-\mathbf{1} \boldsymbol{\alpha}_{k}, \boldsymbol{c}_{\backslash k}\right)(\boldsymbol{x}) \geq-c_{k} .
\end{aligned}
$$

Fix $\boldsymbol{\alpha}$ in $\mathbb{R}^{m \times n}$, and \boldsymbol{c} in \mathbb{R}^{m} satisfying $\boldsymbol{c}_{\backslash k} \geq \mathbf{0}$.
Does \boldsymbol{c} belong to $C_{\mathrm{NNS}}(\boldsymbol{\alpha})$?
Appeal to affine invariance of $C_{\mathrm{NNS}}(\boldsymbol{\alpha})$, and rearrange terms:

$$
\begin{aligned}
\operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \Leftrightarrow & \operatorname{Sig}\left(\boldsymbol{\alpha}-\mathbf{1} \boldsymbol{\alpha}_{k}, \boldsymbol{c}\right)(\boldsymbol{x}) \geq 0 \\
& \operatorname{Sig}\left(\boldsymbol{\alpha}_{\backslash k}-\mathbf{1} \boldsymbol{\alpha}_{k}, \boldsymbol{c}_{\backslash k}\right)(\boldsymbol{x}) \geq-c_{k} .
\end{aligned}
$$

Appeal to convex duality. The nonnegativity condition

$$
\inf _{\boldsymbol{x} \in \mathbb{R}^{n}} \operatorname{Sig}\left(\boldsymbol{\alpha}_{\backslash k}-\mathbf{1} \boldsymbol{\alpha}_{k}, \boldsymbol{c}_{\backslash k}\right)(\boldsymbol{x}) \geq-c_{k}
$$

holds if and only if there exists $\boldsymbol{\nu}$ in \mathbb{R}^{m-1} satisfying

$$
D\left(\boldsymbol{\nu}, \boldsymbol{c}_{\backslash k}\right)-\boldsymbol{\nu}^{\top} \mathbf{1} \leq c_{k} \text { and }\left[\boldsymbol{\alpha}_{\backslash k}-\mathbf{1} \boldsymbol{\alpha}_{k}\right] \boldsymbol{\nu}=\mathbf{0} .
$$

1 Discuss selected results for SAGE-signomial certificates. M., Chandrasekaran, and Wierman - 2018.

2 Define and prove results for SAGE-polynomial certificates.
M., Chandrasekaran, and Wierman - 2018.

3 A tiny preview of forthcoming work.

Results for the SAGE signomial cone.

Consider a coefficient vector $\boldsymbol{c} \in \mathbb{R}^{m}$ satisfying

$$
c_{1}, \ldots, c_{\ell}<0 \leq c_{\ell+1}, \ldots c_{m}
$$

and suppose we want to test if \boldsymbol{c} belongs to $C_{\mathrm{SAGE}}(\boldsymbol{\alpha})$.

Consider a coefficient vector $\boldsymbol{c} \in \mathbb{R}^{m}$ satisfying

$$
c_{1}, \ldots, c_{\ell}<0 \leq c_{\ell+1}, \ldots c_{m}
$$

and suppose we want to test if \boldsymbol{c} belongs to $C_{\mathrm{SAGE}}(\boldsymbol{\alpha})$.
Can show that we only need consider $\boldsymbol{c}^{(k)}$ in $C_{\mathrm{AGE}}(\boldsymbol{\alpha}, k)$.

Consider a coefficient vector $\boldsymbol{c} \in \mathbb{R}^{m}$ satisfying

$$
c_{1}, \ldots, c_{\ell}<0 \leq c_{\ell+1}, \ldots c_{m}
$$

and suppose we want to test if \boldsymbol{c} belongs to $C_{\mathrm{SAGE}}(\boldsymbol{\alpha})$.
Can show that we only need consider $\boldsymbol{c}^{(k)}$ in $C_{\mathrm{AGE}}(\boldsymbol{\alpha}, k)$.
Furthermore, the $\ell \times m$ matrix \boldsymbol{C} with rows " $\boldsymbol{c}^{(k)}$ " looks like

$$
\boldsymbol{C}=\left[\operatorname{diag}\left(c_{1}, \ldots, c_{\ell}\right) \mid \tilde{\boldsymbol{C}}\right]
$$

for some dense, nonnegative $\ell \times(m-\ell)$ matrix $\tilde{\boldsymbol{C}}$.

Think Newton polytopes

Simplicial sign patterns

Theorem (1)
If $\operatorname{Newt}(\boldsymbol{\alpha})$ is simplicial, and $c_{i} \leq 0$ for all nonextremal $\boldsymbol{\alpha}_{i}$, then $\boldsymbol{c} \in C_{\mathrm{NNS}}(\boldsymbol{\alpha})$ if and only if $\boldsymbol{c} \in C_{\mathrm{SAGE}}(\boldsymbol{\alpha})$.

Simplicial sign patterns

Theorem (1)

If $\operatorname{Newt}(\boldsymbol{\alpha})$ is simplicial, and $c_{i} \leq 0$ for all nonextremal $\boldsymbol{\alpha}_{i}$, then $\boldsymbol{c} \in C_{\mathrm{NNS}}(\boldsymbol{\alpha})$ if and only if $\boldsymbol{c} \in C_{\mathrm{SAGE}}(\boldsymbol{\alpha})$.

$$
f(\boldsymbol{x})=\left(e^{x_{1}}-e^{x_{2}}-e^{x_{3}}\right)^{2}
$$

is clearly nonnegative, but
$f-\gamma$ is not SAGE $\forall \gamma \in \mathbb{R}$.

We say that $\boldsymbol{\alpha}$ can be partitioned into ℓ faces if we can permute its rows so that $\boldsymbol{\alpha}=\left[\boldsymbol{\alpha}^{(1)} ; \ldots ; \boldsymbol{\alpha}^{(\ell)}\right]$ where $\left\{\text { Newt } \boldsymbol{\alpha}^{(i)}\right\}_{i=1}^{\ell}$ are mutually disjoint faces of $\operatorname{Newt}(\boldsymbol{\alpha})$.

Theorem (2)

If $\left\{\boldsymbol{\alpha}^{(i)}\right\}_{i=1}^{\ell}$ are matrices partitioning $\boldsymbol{\alpha}=\left[\boldsymbol{\alpha}^{(1)} ; \ldots ; \boldsymbol{\alpha}^{(\ell)}\right]$, then

$$
C_{\mathrm{NNS}}(\boldsymbol{\alpha})=\oplus_{i=1}^{\ell} C_{\mathrm{NNS}}\left(\boldsymbol{\alpha}^{(i)}\right)
$$

-and the same is true of $C_{\text {SAGE }}(\boldsymbol{\alpha})$.
Sanity checks :
All matrices $\boldsymbol{\alpha}$ admit a trivial partition with $\ell=1$.
If all $\boldsymbol{\alpha}_{i}$ are extremal, then $C_{\mathrm{NNS}}(\boldsymbol{\alpha})=\mathbb{R}_{+}^{m}$.
A natural regularity condition: $\boldsymbol{\alpha}$'s only partition is trivial.

Theorem (3)

Suppose $\boldsymbol{\alpha}$ can be partitioned into faces where
1 each simplicial face has ≤ 2 nonextremal exponents, and
2 all other faces contain at most one nonextremal exponent.
Then $C_{\mathrm{SAGE}}(\boldsymbol{\alpha})=C_{\mathrm{NNS}}(\boldsymbol{\alpha})$.

Theorem (3)

Suppose $\boldsymbol{\alpha}$ can be partitioned into faces where
1 each simplicial face has ≤ 2 nonextremal exponents, and
2 all other faces contain at most one nonextremal exponent.
Then $C_{\mathrm{SAGE}}(\boldsymbol{\alpha})=C_{\mathrm{NNS}}(\boldsymbol{\alpha})$.
Is the second (nonsimplicial) case too restrictive?

Theorem (3)

Suppose $\boldsymbol{\alpha}$ can be partitioned into faces where
1 each simplicial face has ≤ 2 nonextremal exponents, and
2 all other faces contain at most one nonextremal exponent.
Then $C_{\mathrm{SAGE}}(\boldsymbol{\alpha})=C_{\mathrm{NNS}}(\boldsymbol{\alpha})$.
Is the second (nonsimplicial) case too restrictive? Consider

$$
\boldsymbol{\alpha}^{\boldsymbol{\top}}=\left[\begin{array}{llllll}
0 & 1 & 2 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 & 2 & 2
\end{array}\right]
$$

The term $\boldsymbol{\alpha}_{6}=[2,2]$ prevents us from applying Theorem 3.

Theorem (3)

Suppose $\boldsymbol{\alpha}$ can be partitioned into faces where
1 each simplicial face has ≤ 2 nonextremal exponents, and
2 all other faces contain at most one nonextremal exponent.
Then $C_{\mathrm{SAGE}}(\boldsymbol{\alpha})=C_{\mathrm{NNS}}(\boldsymbol{\alpha})$.
Is the second (nonsimplicial) case too restrictive? Consider

$$
\boldsymbol{\alpha}^{\boldsymbol{\top}}=\left[\begin{array}{llllll}
0 & 1 & 2 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 & 2 & 2
\end{array}\right] .
$$

The term $\boldsymbol{\alpha}_{6}=[2,2]$ prevents us from applying Theorem 3.
Can show $[1.8,-4,3,-2,2,1] \in C_{\mathrm{NNS}}(\boldsymbol{\alpha}) \backslash C_{\mathrm{SAGE}}(\boldsymbol{\alpha})$.

Extreme rays of $C_{\mathrm{SAGE}}(\boldsymbol{\alpha})$

A circuit is a minimal affinely-dependent pointset of \mathbb{R}^{n}.
We consider circuits " X " that are simplicial: $\mid X \backslash \operatorname{ext}$ conv $X \mid=1$.

A circuit is a minimal affinely-dependent pointset of \mathbb{R}^{n}.
We consider circuits " X " that are simplicial: $\mid X \backslash \operatorname{ext}$ conv $X \mid=1$.

Theorem (4)

If \boldsymbol{c} generates a nontrivial extreme ray of $C_{\mathrm{SAGE}}(\boldsymbol{\alpha})$, then $\left\{\boldsymbol{\alpha}_{i}: c_{i} \neq 0\right\}$ is a circuit.

The \# of circuits induced by $\boldsymbol{\alpha} \in \mathbb{R}^{m \times n}$ can be exponential in m.
Possible that every circuit supports extreme rays in $C_{\text {SAGE }}(\boldsymbol{\alpha})$.
Yet, we can represent $C_{\text {SAGE }}(\boldsymbol{\alpha})$ with an REP of size $O\left(m^{2}\right)$!

Global Polynomial Nonnnegativity.

Basic definitions

Fix $\boldsymbol{\alpha}$ in $\mathbb{N}^{m \times n}$. Write $p=\operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})$ to mean

$$
p(\boldsymbol{x})=\sum_{i=1}^{m} c_{i} \boldsymbol{x}^{\boldsymbol{\alpha}_{i}}, \quad \text { where } \quad \boldsymbol{x}^{\boldsymbol{\alpha}_{i}} \doteq \prod_{j=1}^{n} x_{j}^{\alpha_{i j}}
$$

Basic definitions

Fix $\boldsymbol{\alpha}$ in $\mathbb{N}^{m \times n}$. Write $p=\operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})$ to mean

$$
p(\boldsymbol{x})=\sum_{i=1}^{m} c_{i} \boldsymbol{x}^{\boldsymbol{\alpha}_{i}}, \quad \text { where } \quad \boldsymbol{x}^{\boldsymbol{\alpha}_{i}} \doteq \prod_{j=1}^{n} x_{j}^{\alpha_{i j}}
$$

The matrix $\boldsymbol{\alpha}$ induces a nonnegativity cone

$$
C_{\mathrm{NNP}}(\boldsymbol{\alpha}) \doteq\left\{\boldsymbol{c}: \operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \text { for all } \boldsymbol{x} \text { in } \mathbb{R}^{n}\right\} .
$$

Basic definitions

Fix $\boldsymbol{\alpha}$ in $\mathbb{N}^{m \times n}$. Write $p=\operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})$ to mean

$$
p(\boldsymbol{x})=\sum_{i=1}^{m} c_{i} \boldsymbol{x}^{\boldsymbol{\alpha}_{i}}, \quad \text { where } \quad \boldsymbol{x}^{\boldsymbol{\alpha}_{i}} \doteq \prod_{j=1}^{n} x_{j}^{\alpha_{i j}}
$$

The matrix $\boldsymbol{\alpha}$ induces a nonnegativity cone

$$
C_{\mathrm{NNP}}(\boldsymbol{\alpha}) \doteq\left\{\boldsymbol{c}: \operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})(\boldsymbol{x}) \geq 0 \text { for all } \boldsymbol{x} \text { in } \mathbb{R}^{n}\right\} .
$$

Observe: $\operatorname{Sig}(\boldsymbol{\alpha}, \boldsymbol{c})$ is PSD on \mathbb{R}^{n} iff $\operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})$ is PSD on \mathbb{R}_{+}^{n}.

Thus results for signomials directly extend to even polynomials.

One construction of SAGE polynomials

Call $c_{i} \boldsymbol{x}^{\boldsymbol{\alpha}_{i}}$ a "monomial square" if $\boldsymbol{\alpha}_{i}$ is even and $c_{i} \geq 0$.
p is an "AGE polynomial" - in the monomial basis specified by $\boldsymbol{\alpha}$ if $p(\boldsymbol{x})$ contains at most one $c_{i} \boldsymbol{x}^{\boldsymbol{\alpha}_{i}}$ which is not a monomial square.

In conic form, write

$$
\begin{aligned}
& C_{\mathrm{AGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha}, k)=\{\boldsymbol{c}: \\
& \qquad c_{i} \in C_{\mathrm{NNP}}(\boldsymbol{\alpha}), \boldsymbol{c}_{\backslash k} \geq \mathbf{0}, \text { and } \\
& \\
& \left.c_{i}=0 \text { for all } i \neq k \text { with } \boldsymbol{\alpha}_{i} \notin 2 \mathbb{N}^{n}\right\}
\end{aligned}
$$

and define

$$
C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha})=\sum_{k=1}^{m} C_{\mathrm{AGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha}, k)
$$

Another construction, with representation! Callech

Define the set of signomial representative coefficient vectors

$$
\begin{aligned}
& \operatorname{SR}(\boldsymbol{\alpha}, \boldsymbol{c})=\left\{\hat{\boldsymbol{c}}: \hat{c}_{i}=c_{i} \text { whenever } \boldsymbol{\alpha}_{i} \text { is in } 2 \mathbb{N}^{n}\right. \text {, and } \\
& \left.\hat{c}_{i} \leq-\left|c_{i}\right| \text { whenever } \boldsymbol{\alpha}_{i} \text { is not in } 2 \mathbb{N}^{n}\right\} .
\end{aligned}
$$

If $\hat{\boldsymbol{c}}$ belongs to $\operatorname{SR}(\boldsymbol{\alpha}, \boldsymbol{c})$, then (by a trivial termwise argument)

$$
\operatorname{Sig}(\boldsymbol{\alpha}, \hat{\boldsymbol{c}}) \text { nonnegative } \Rightarrow \operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c}) \text { nonnegative. }
$$

Another construction, with representation! Callech

Define the set of signomial representative coefficient vectors

$$
\begin{aligned}
& \operatorname{SR}(\boldsymbol{\alpha}, \boldsymbol{c})=\left\{\hat{\boldsymbol{c}}: \hat{c}_{i}=c_{i} \text { whenever } \boldsymbol{\alpha}_{i} \text { is in } 2 \mathbb{N}^{n}\right. \text {, and } \\
& \left.\hat{c}_{i} \leq-\left|c_{i}\right| \text { whenever } \boldsymbol{\alpha}_{i} \text { is not in } 2 \mathbb{N}^{n}\right\} .
\end{aligned}
$$

If $\hat{\boldsymbol{c}}$ belongs to $\mathrm{SR}(\boldsymbol{\alpha}, \boldsymbol{c})$, then (by a trivial termwise argument)

$$
\operatorname{Sig}(\boldsymbol{\alpha}, \hat{\boldsymbol{c}}) \text { nonnegative } \Rightarrow \operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c}) \text { nonnegative. }
$$

Theorem (5)

$$
C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha})=\left\{\boldsymbol{c}: \operatorname{SR}(\boldsymbol{\alpha}, \boldsymbol{c}) \cap C_{\mathrm{SAGE}}(\boldsymbol{\alpha}) \text { is nonempty }\right\}
$$

Theorem 5 can be leveraged to produce many corollaries.

Let p be a polynomial in the monomial basis specified by $\boldsymbol{\alpha}$.

Select corollaries

Let p be a polynomial in the monomial basis specified by $\boldsymbol{\alpha}$.

1 If p is a SAGE polynomial with ℓ terms that are not monomial squares, then it admits a decomposition of ℓ nonnegative polynomials, all of which are supported by exponents $\boldsymbol{\alpha}$.

Let p be a polynomial in the monomial basis specified by $\boldsymbol{\alpha}$.

1 If p is a SAGE polynomial with ℓ terms that are not monomial squares, then it admits a decomposition of ℓ nonnegative polynomials, all of which are supported by exponents $\boldsymbol{\alpha}$.

2 If Newt $\boldsymbol{\alpha}$ is simplicial and nonextremal $\boldsymbol{\alpha}_{i}$ are linearly independent $\bmod 2$, then p is nonnegative iff p is SAGE.

Let p be a polynomial in the monomial basis specified by $\boldsymbol{\alpha}$.
1 If p is a SAGE polynomial with ℓ terms that are not monomial squares, then it admits a decomposition of ℓ nonnegative polynomials, all of which are supported by exponents $\boldsymbol{\alpha}$.

2 If Newt $\boldsymbol{\alpha}$ is simplicial and nonextremal $\boldsymbol{\alpha}_{i}$ are linearly independent $\bmod 2$, then p is nonnegative iff p is SAGE.

3 If p has ≤ 1 extremal term, p is nonnegative iff it is SAGE.

Let p be a polynomial in the monomial basis specified by $\boldsymbol{\alpha}$.
1 If p is a SAGE polynomial with ℓ terms that are not monomial squares, then it admits a decomposition of ℓ nonnegative polynomials, all of which are supported by exponents $\boldsymbol{\alpha}$.

2 If Newt $\boldsymbol{\alpha}$ is simplicial and nonextremal $\boldsymbol{\alpha}_{i}$ are linearly independent $\bmod 2$, then p is nonnegative iff p is SAGE.

3 If p has ≤ 1 extremal term, p is nonnegative iff it is SAGE.

4 The nontrivial extreme rays of $C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha})$ are generated by vectors \boldsymbol{c} where $\left\{\boldsymbol{\alpha}_{i}: c_{i} \neq 0\right\}$ are simplicial circuits.

Corollaries 3 and 4 in the previous slide imply a given polynomial admits a SAGE certificate iff it admits a SONC certificate.

Does this mean SAGE and SONC are the same thing?

Corollaries 3 and 4 in the previous slide imply a given polynomial admits a SAGE certificate iff it admits a SONC certificate.

Does this mean SAGE and SONC are the same thing? NO.

Corollaries 3 and 4 in the previous slide imply a given polynomial admits a SAGE certificate iff it admits a SONC certificate.

Does this mean SAGE and SONC are the same thing?

NO.

Which is more efficient: SAGE-polynomials, or SONC?

Corollaries 3 and 4 in the previous slide imply a given polynomial admits a SAGE certificate iff it admits a SONC certificate.

Does this mean SAGE and SONC are the same thing?

NO.

Which is more efficient: SAGE-polynomials, or SONC?

SAGE polynomials.

Corollaries 3 and 4 in the previous slide imply a given polynomial admits a SAGE certificate iff it admits a SONC certificate.

Does this mean SAGE and SONC are the same thing?

NO.

Which is more efficient: SAGE-polynomials, or SONC?

SAGE polynomials.

Can SONC-type analysis still be useful for theoretical purposes?

Corollaries 3 and 4 in the previous slide imply a given polynomial admits a SAGE certificate iff it admits a SONC certificate.

Does this mean SAGE and SONC are the same thing?

NO.

Which is more efficient: SAGE-polynomials, or SONC?

SAGE polynomials.

Can SONC-type analysis still be useful for theoretical purposes?

Of course!

Polynomial Optimization.

Fix $p=\operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})$, where exponents $\boldsymbol{\alpha} \in \mathbb{N}^{m \times n}$ have $\boldsymbol{\alpha}_{1}=\mathbf{0}$.

The primal SAGE relaxation for $p^{\star}=\inf _{\boldsymbol{x} \in \mathbb{R}^{n}} p(\boldsymbol{x})$ is

$$
p_{\mathrm{SAGE}}=\sup \left\{\gamma: \boldsymbol{c}-\gamma \boldsymbol{e}_{1} \text { in } C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha})\right\} \leq p^{\star}
$$

Fix $p=\operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})$, where exponents $\boldsymbol{\alpha} \in \mathbb{N}^{m \times n}$ have $\boldsymbol{\alpha}_{1}=\mathbf{0}$.

The primal SAGE relaxation for $p^{\star}=\inf _{\boldsymbol{x} \in \mathbb{R}^{n}} p(\boldsymbol{x})$ is

$$
p_{\mathrm{SAGE}}=\sup \left\{\gamma: \boldsymbol{c}-\gamma \boldsymbol{e}_{1} \text { in } C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha})\right\} \leq p^{\star}
$$

Applying conic duality, the dual SAGE relaxation is

$$
p_{\mathrm{SAGE}}=\inf \left\{\boldsymbol{c}^{\top} \boldsymbol{v}: \boldsymbol{e}_{1}^{\top} \boldsymbol{v}=1, \boldsymbol{v} \in C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha})^{\dagger}\right\} .
$$

Fix $p=\operatorname{Poly}(\boldsymbol{\alpha}, \boldsymbol{c})$, where exponents $\boldsymbol{\alpha} \in \mathbb{N}^{m \times n}$ have $\boldsymbol{\alpha}_{1}=\mathbf{0}$.

The primal SAGE relaxation for $p^{\star}=\inf _{\boldsymbol{x} \in \mathbb{R}^{n}} p(\boldsymbol{x})$ is

$$
p_{\mathrm{SAGE}}=\sup \left\{\gamma: \boldsymbol{c}-\gamma \boldsymbol{e}_{1} \text { in } C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha})\right\} \leq p^{\star}
$$

Applying conic duality, the dual SAGE relaxation is

$$
p_{\mathrm{SAGE}}=\inf \left\{\boldsymbol{c}^{\top} \boldsymbol{v}: \boldsymbol{e}_{1}^{\top} \boldsymbol{v}=1, \boldsymbol{v} \in C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha})^{\dagger}\right\} .
$$

If $p_{\mathrm{SAGE}}=p^{\star}$, how can we recover a minimizer $\boldsymbol{x}^{\star} \in \mathbb{R}^{n}$?

In terms of standard primitives (LP and REP), can express

$$
\begin{aligned}
& C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha})^{\dagger}=\left\{\boldsymbol{v}: \text { there exists } \hat{\boldsymbol{v}} \text { in } C_{\mathrm{SAGE}}(\boldsymbol{\alpha})^{\dagger}\right. \text { with } \\
& \left.|\boldsymbol{v}| \leq \hat{\boldsymbol{v}}, \text { and } v_{i}=\hat{v}_{i} \text { when } \boldsymbol{\alpha}_{i} \in 2 \mathbb{N}^{n}\right\} \text {, and } \\
& C_{\text {SAGE }}(\boldsymbol{\alpha})^{\dagger}=\left\{\hat{\boldsymbol{v}} \text { : there exist } \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{m} \text { in } \mathbb{R}^{n}\right. \text { satisfying } \\
& \left.\hat{v}_{j} \log \left(\hat{\boldsymbol{v}} / \hat{v}_{j}\right) \geq\left[\boldsymbol{\alpha}-\mathbf{1} \boldsymbol{\alpha}_{j}\right] \boldsymbol{z}_{j} \text { for all } j \text { in }[m]\right\} .
\end{aligned}
$$

In terms of standard primitives (LP and REP), can express

$$
\begin{aligned}
& C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha})^{\dagger}=\left\{\boldsymbol{v}: \text { there exists } \hat{\boldsymbol{v}} \text { in } C_{\mathrm{SAGE}}(\boldsymbol{\alpha})^{\dagger}\right. \text { with } \\
& \left.|\boldsymbol{v}| \leq \hat{\boldsymbol{v}}, \text { and } v_{i}=\hat{v}_{i} \text { when } \boldsymbol{\alpha}_{i} \in 2 \mathbb{N}^{n}\right\} \text {, and } \\
& C_{\text {SAGE }}(\boldsymbol{\alpha})^{\dagger}=\left\{\hat{\boldsymbol{v}} \text { : there exist } \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{m} \text { in } \mathbb{R}^{n}\right. \text { satisfying } \\
& \left.\hat{v}_{j} \log \left(\hat{\boldsymbol{v}} / \hat{v}_{j}\right) \geq\left[\boldsymbol{\alpha}-\mathbf{1} \boldsymbol{\alpha}_{j}\right] \boldsymbol{z}_{j} \text { for all } j \text { in }[m]\right\} .
\end{aligned}
$$

Our solution recovery algorithm is simple.

In terms of standard primitives (LP and REP), can express

$$
\begin{aligned}
& C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha})^{\dagger}=\left\{\boldsymbol{v} \text { : there exists } \hat{\boldsymbol{v}} \text { in } C_{\mathrm{SAGE}}(\boldsymbol{\alpha})^{\dagger}\right. \text { with } \\
& \left.|\boldsymbol{v}| \leq \hat{\boldsymbol{v}}, \text { and } v_{i}=\hat{v}_{i} \text { when } \boldsymbol{\alpha}_{i} \in 2 \mathbb{N}^{n}\right\} \text {, and } \\
& C_{\mathrm{SAGE}}(\boldsymbol{\alpha})^{\dagger}=\left\{\hat{\boldsymbol{v}} \text { : there exist } \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{m} \text { in } \mathbb{R}^{n}\right. \text { satisfying } \\
& \left.\hat{v}_{j} \log \left(\hat{\boldsymbol{v}} / \hat{v}_{j}\right) \geq\left[\boldsymbol{\alpha}-\mathbf{1} \boldsymbol{\alpha}_{j}\right] \boldsymbol{z}_{j} \text { for all } j \text { in }[m]\right\} .
\end{aligned}
$$

Our solution recovery algorithm is simple.
1 Recover magnitudes $|\boldsymbol{x}| \leftarrow \exp \left(\boldsymbol{z}_{j} / \hat{v}_{j}\right)$,

In terms of standard primitives (LP and REP), can express

$$
\begin{aligned}
& C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha})^{\dagger}=\left\{\boldsymbol{v} \text { : there exists } \hat{\boldsymbol{v}} \text { in } C_{\mathrm{SAGE}}(\boldsymbol{\alpha})^{\dagger}\right. \text { with } \\
& \left.|\boldsymbol{v}| \leq \hat{\boldsymbol{v}}, \text { and } v_{i}=\hat{v}_{i} \text { when } \boldsymbol{\alpha}_{i} \in 2 \mathbb{N}^{n}\right\} \text {, and } \\
& C_{\mathrm{SAGE}}(\boldsymbol{\alpha})^{\dagger}=\left\{\hat{\boldsymbol{v}} \text { : there exist } \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{m} \text { in } \mathbb{R}^{n}\right. \text { satisfying } \\
& \left.\hat{v}_{j} \log \left(\hat{\boldsymbol{v}} / \hat{v}_{j}\right) \geq\left[\boldsymbol{\alpha}-\mathbf{1} \boldsymbol{\alpha}_{j}\right] \boldsymbol{z}_{j} \text { for all } j \text { in }[m]\right\} .
\end{aligned}
$$

Our solution recovery algorithm is simple.
1 Recover magnitudes $|\boldsymbol{x}| \leftarrow \exp \left(\boldsymbol{z}_{j} / \hat{v}_{j}\right)$,
2 recover signs " \boldsymbol{s} " from sgn \boldsymbol{v}, by linear algebra over $\mathbb{G F}(2)$,

In terms of standard primitives (LP and REP), can express

$$
\begin{aligned}
& C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha})^{\dagger}=\left\{\boldsymbol{v} \text { : there exists } \hat{\boldsymbol{v}} \text { in } C_{\mathrm{SAGE}}(\boldsymbol{\alpha})^{\dagger}\right. \text { with } \\
& \left.|\boldsymbol{v}| \leq \hat{\boldsymbol{v}}, \text { and } v_{i}=\hat{v}_{i} \text { when } \boldsymbol{\alpha}_{i} \in 2 \mathbb{N}^{n}\right\} \text {, and } \\
& C_{\mathrm{SAGE}}(\boldsymbol{\alpha})^{\dagger}=\left\{\hat{\boldsymbol{v}} \text { : there exist } \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{m} \text { in } \mathbb{R}^{n}\right. \text { satisfying } \\
& \left.\hat{v}_{j} \log \left(\hat{\boldsymbol{v}} / \hat{v}_{j}\right) \geq\left[\boldsymbol{\alpha}-\mathbf{1} \boldsymbol{\alpha}_{j}\right] \boldsymbol{z}_{j} \text { for all } j \text { in }[m]\right\} .
\end{aligned}
$$

Our solution recovery algorithm is simple.
1 Recover magnitudes $|\boldsymbol{x}| \leftarrow \exp \left(\boldsymbol{z}_{j} / \hat{v}_{j}\right)$,
2 recover signs " \boldsymbol{s} " from sgn \boldsymbol{v}, by linear algebra over $\mathbb{G F}(2)$,
3 and stitch them together: $\boldsymbol{x} \leftarrow|\boldsymbol{x}| \odot s$.

In terms of standard primitives (LP and REP), can express

$$
\begin{aligned}
& C_{\mathrm{SAGE}}^{\mathrm{POLY}}(\boldsymbol{\alpha})^{\dagger}=\left\{\boldsymbol{v} \text { : there exists } \hat{\boldsymbol{v}} \text { in } C_{\mathrm{SAGE}}(\boldsymbol{\alpha})^{\dagger}\right. \text { with } \\
& \left.|\boldsymbol{v}| \leq \hat{\boldsymbol{v}}, \text { and } v_{i}=\hat{v}_{i} \text { when } \boldsymbol{\alpha}_{i} \in 2 \mathbb{N}^{n}\right\} \text {, and } \\
& C_{\mathrm{SAGE}}(\boldsymbol{\alpha})^{\dagger}=\left\{\hat{\boldsymbol{v}} \text { : there exist } \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{m} \text { in } \mathbb{R}^{n}\right. \text { satisfying } \\
& \left.\hat{v}_{j} \log \left(\hat{\boldsymbol{v}} / \hat{v}_{j}\right) \geq\left[\boldsymbol{\alpha}-\mathbf{1} \boldsymbol{\alpha}_{j}\right] \boldsymbol{z}_{j} \text { for all } j \text { in }[m]\right\} .
\end{aligned}
$$

Our solution recovery algorithm is simple.
1 Recover magnitudes $|\boldsymbol{x}| \leftarrow \exp \left(\boldsymbol{z}_{j} / \hat{v}_{j}\right)$,
2 recover signs " \boldsymbol{s} " from sgn \boldsymbol{v}, by linear algebra over $\mathbb{G F}(2)$,
3 and stitch them together: $\boldsymbol{x} \leftarrow|\boldsymbol{x}| \odot \boldsymbol{s}$.
This procedure comes with guarantees under natural conditions.

Concluding remarks

Review!

Concluding remarks

Review! We ...
 ■ defined signomial and polynomial SAGE certificates,

Concluding remarks

Review! We ...
■ defined signomial and polynomial SAGE certificates,

- discussed recent results concerning these certificates,

Concluding remarks

Review! We ...
■ defined signomial and polynomial SAGE certificates,

- discussed recent results concerning these certificates,

■ clarified the relationship between SAGE and SONC, and

Concluding remarks

Review! We ...
■ defined signomial and polynomial SAGE certificates,

- discussed recent results concerning these certificates,

■ clarified the relationship between SAGE and SONC, and

- outlined solution recovery from moment-SAGE relaxations.

Concluding remarks

Review! We ...
■ defined signomial and polynomial SAGE certificates,

- discussed recent results concerning these certificates,

■ clarified the relationship between SAGE and SONC, and

- outlined solution recovery from moment-SAGE relaxations.

Keep an eye on arXiv for
Signomial and Polynomial Optimization via Relative Entropy and Partial Dualization
by Murray, Chandrasekaran, and Wierman.

