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Hyperbolic Polynomials

A homogeneous polynomial f ∈ R[x1, . . . , xn]d is hyperbolic
with respect to a point e ∈ Rn if f (e) 6= 0 and for every v ∈ Rn,
all roots of f (te − v) ∈ R[t] are real.

x21 − x22 − x23

x41 − x42 − x43

hyperbolic with

not hyperbolic

respect to e = (1, 0, 0)
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Its hyperbolicity cone, denoted C (f , e),
is the set of all v ∈ Rn where f (te − v) ∈ R[t]
has only nonnegative roots.

Gårding showed that
I C (f , e) is convex.
I C (f , e) is the closure of the connected component of e in
{x ∈ Rn : f (x) 6= 0}.

I f is hyperbolic with respect to any point a ∈ intC (f , e).

One can use interior point methods to optimize a linear function
over an affine section of a hyperbolicity cone (Güler, Renegar).
This solves a hyperbolic program.

Mario Kummer When is the conic hull of a curve a hyperbolicity cone?



Hyperbolicity Cones In[121]:= f = ContourPlot3D@2 x^4 + y^4 + z^4 - 3 y^2 x^2 - 3 z^2 x^2 + y^2 z^2 ã 0 ,
8x, -2, 2<, 8z, -4, 4<, 8y, -4, 4<, Mesh Ø None,
ContourStyle Ø 8 Blue, Opacity@.5D<, Boxed Ø False, Axes Ø None, PlotPoints Ø 100D

Out[121]=

In[137]:= p1 = ContourPlot3D@x ã 1.6, 8x, -2, 2<, 8z, -4, 4<, 8y, -4, 4<,
Mesh Ø None, ContourStyle Ø 8Magenta<, Boxed Ø False, Axes Ø NoneD;

p2 = ContourPlot3D@z ã 1.5, 8x, -2, 2<, 8z, -4, 4<, 8y, -4, 4<,
Mesh Ø None, ContourStyle Ø 8Green<, Boxed Ø False, Axes Ø NoneD;

Show@8f, p1<D
Show@8f, p2<D
Show@8f, p1, p2<D

Its hyperbolicity cone, denoted C (f , e),
is the set of all v ∈ Rn where f (te − v) ∈ R[t]
has only nonnegative roots.

Gårding showed that
I C (f , e) is convex.
I C (f , e) is the closure of the connected component of e in
{x ∈ Rn : f (x) 6= 0}.

I f is hyperbolic with respect to any point a ∈ intC (f , e).

One can use interior point methods to optimize a linear function
over an affine section of a hyperbolicity cone (Güler, Renegar).
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Example

The determinant det : Symn → R of symmetric matrices is
hyperbolic with respect to the identity matrix In:

I det(tIn − X ) has only real zeros for every symmetric matrix
X ∈ Symn.

I The hyperbolicity cone is the set Sym+
n of positive

semidefinite matrices.
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Why convex hulls?

Question. Let X ⊂ Rn be a nice set. When is the convex hull of X
the affine slice of a hyperbolicity cone?

I Optimize linear functionals over X using hyperbolic
programming

I More examples of hyperbolic polynomials whose properties
can be studied via the geometry of X

I Potential counter-examples to certain conjectures

I Long chains of faces
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Why convex hulls?

Let f ∈ R[x1, . . . , xn]d be strictly hyperbolic with respect to a
point e ∈ Rn, i.e., for every v ∈ Rn, all roots of f (te − v) ∈ R[t]
are real and distinct.

Then:

I f · g has a definite determinantal representation for some
polynomial g (K.)

I C (f , e) is a spectrahedral shadow (Netzer–Sanyal)

If C (f , e) is the covex hull of some low-dimensional set, then f is
usually far from being strictly hyperbolic.
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Affine space, projective space and convex cones

I Affine space Rn: Here we can take convex hulls.

I Rn is contained in the real part RPn = Pn(R) of complex
projective space Pn as the open subset consisting of all real
points (x0 : · · · : xn) with x0 6= 0: In Pn we do algebraic
geometry.

I Rn is also contained in Rn+1 as the closed subet of all points
(1, x1, . . . , xn): Hyperbolicity cones live in Rn+1.
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Curves in space

Theorem. (K., Sinn) Let X ⊂ R3 be a one-dimensional semi-
algebraic set. Assume that the closed convex hull conv(X ) of X is
(the affine slice x0 = 1 of) the hyperbolicity cone of some
f ∈ R[x0, x1, x2, x3]. Then for every irreducible factor f0 of f there
exists an invertible linear change of coordinates T such that
f0(Tx) ∈ R[x0, x1, x2].

Convex hull of a rational quartic. From: “On the convex hull of a space curve” by Ranestad, Sturmfels.
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Secant Varieties

Let X ⊂ Pn be a projective variety. The kth secant variety σk(X )
is the Zariski closure of the union of all linear spaces spanned k + 1
points on X .
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Secant Varieties

Example. Let C ⊂ P2n be the rational normal curve of degree 2n.
Then σk(C ) is cut out by the (k + 2)× (k + 2)-minors of the
Hankel matrix

H(x) =


x0 x1 x2 · · · xn
x1 x2

x2
. . .

...
...

. . .

xn · · · x2n



Thus σn−1(C ) is the hypersurface cut out by the hyperbolic
polynomial detH(x). Its hyperbolicity cone is the convex hull of C .
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Hyperbolic Varieties

A projective variety X ⊂ Pn is hyperbolic with respect to
a linear subspace E ⊂ Pn of dimension n− dimX − 1 if X ∩ E = ∅
and for every linear subspace E ⊂ H with dimH = dimE + 1, all
points in X ∩ H are real.

The twisted cubic

A space sextic
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Hyperbolic Curves

Theorem. (K., Shamovich) Let C be a smooth, geometrically
irreducible, projective, real curve. Then the following are
equivalent:

I C can be embedded to Pn as a hyperbolic curve for some n.

I There is a morphism f : C → P1 with f −1(P1(R)) = C (R).

I C (C) r C (R) is not connected.

Riemann surface of dividing type. From: “Ahlfors circle maps and total reality: from Riemann to Rohlin”, Gabard.
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Hyperbolic Secant Varieties

Lemma. (K., Sinn) Let C ⊂ Pn be an irreducible nondegenerate
real curve with C (R) Zariski dense in C . Suppose that σk(C ) 6= Pn

and let E ⊂ Pn be a real linear subspace of codimension 2k + 2
with E ∩ σk(C ) = ∅. The following are equivalent:

I σk(C ) is hyperbolic with respect to E .

I Every hyperplane H ⊂ Pn with E ⊂ H intersects C in at most
2k non-real points.

In that case C (C) r C (R) is not connected.

Note that the latter corresponds to a linear subspace
V ⊂ Γ(C ,OC (1)) of dimension 2k + 2 such that every section
s ∈ V has at most 2k non-real zeros on C .
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Example

Let C ⊂ P2n be the rational normal curve of degree 2n. Finding a
linear space with respect to which σk(C ) is hyperbolic amounts
finding a vector space V ⊂ R[t]≤2n of dimension 2k + 2 such that
every f ∈ V has at most 2k non-real zeros.

I For k = n − 1 we are looking for a hyperplane H ⊂ R[t]≤2n
such that every f ∈ H has at least one real zero, i.e., f is not
strictly positive or strictly negative on R.

I Thus H is defined by a linear form L : R[t]≤2n → R that is
nonnegative on the cone of nonnegative polynomials.

I This means the bilinear form on R[t]≤d defined by
(f , g) 7→ L(f · g) is positive semidefinite. Its representing
matrix is the Hankel matrix H(x) that we have already seen.
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A more general construction

Theorem. (K., Sinn) Let C ⊂ Pn be a smooth, irreducible,
projectively normal, real curve of genus g . Assume that C is an
M-curve, i.e., C (R) has g + 1 connected components. Assume
furthermore that at most one component C0 of C (R) realizes the
trivial homology class in H1(RPn;Z/2Z). Then every secant
variety σk(C ) is hyperbolic.

I The assumptions are satisfied, e.g., if C is a rational normal
curve or if n is even and C is an elliptic normal curve such
that C (R) has two connected components.

I Curves satisfying the assumptions exist for any g and n.

I If σk(C ) is a hypersurface, then its hyperbolicity cone is the
convex hull of C0. Moreover, it is a simplicial cone.
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Proof Idea for σ1(C ) in P4

I The degree of C is d = g + 4 by Riemann–Roch.

I We need to find four sections s0, s1, s2, s3 such that all
λ0s0 + . . .+ λ4s4 have at least g + 2 real zeros on C .

I Since g components of C (R) realize the non-trivial homology
class in H1(RPn;Z/2Z), we have on each of those at least one
real zero.

I Thus we want to choose s0, s1, s2, s3 such that all
λ0s0 + . . .+ λ4s4 have at least 2 zeros on the component C0.
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I Thus we want to choose s0, s1, s2, s3 such that all
λ0s0 + . . .+ λ4s4 have at least 2 zeros on the component C0.
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Proof Idea for σ1(C ) in P4

I s0=red dots, red star

I s1=red dots, green star

I s2=green dots, red star

I s3=green dots, green star

Mario Kummer When is the conic hull of a curve a hyperbolicity cone?



Proof Idea for σ1(C ) in P4

I a = λ0s0 + λ1s1: red dots, red star

I b = λ2s2 + λ3s3: green dots, green star

I The parity of the number of zeros of a + µb between two
zeros of b is the same for all µ ∈ R

I Thus a + b has at least two real zeros on C0
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The Polymatroid

Let C ⊂ P4 be a curve of genus g that satisfied the assumptions of
the theorem.

Then σ1(C ) is a hypersurface cut out by a polynomial h that is
hyperbolic with respect to some e ∈ conv(C0). Let S ⊂ C0 be a
finite subset:

deg(h(e + t
∑
x∈S

x)) =


0, if |S | = 0,
1
2(g2 + g + 2), if |S | = 1,
1
2(g2 + 3g + 4), if |S | = 2,
1
2(g2 + 3g + 6), if |S | ≥ 3.
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Hyperbolic Shadows

Theorem. (Scheiderer) The closed convex hull of any
one-dimensional semialgebraic subset of Rn is a spectrahedral
shadow.

“The techniques (...) unfortunately do not seem to give any
explicit degree bounds.”

Theorem. (K., Sinn) Let S ⊂ Rn be a connected component of an
M-curve of degree d and genus g . Then conv(S) is (up to closure)
the projection of an affine slice in Rm with m ≤ d + 1 of a

hyperbolicity cone of degree at most
∑bm

2
c

j=0 (j + 1)
( g
bm
2
c−j
)
.
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Hyperbolic Shadows

Theorem. (K., Sinn) Let S ⊂ Rn be a connected component of an
M-curve of degree d and genus g . Then conv(S) is (up to closure)
the projection of an affine slice in Rm with m ≤ d + 1 of a

hyperbolicity cone of degree at most
∑bm

2
c

j=0 (j + 1)
( g
bm
2
c−j
)
.

Every elliptic curve C has an unramified 2 : 1 cover C̃ → C where
C̃ is an elliptic M-curve. Therefore:

Corollary. Let S ⊂ Rn be a connected component of an elliptic
curve of degree d . Then conv(S) is (up to closure) the projection
of an affine slice in R2d of a hyperbolicity cone of degree 2d + 1.
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Example

Let C ⊂ P2 be the smooth cubic curve defined by the equation
x30 − x0x

2
2 − x21x2. C (R) has two connected components C0,C1.

We embed C to P4 by the map

C → P4, (x0 : x1 : x2) 7→ (x20 : x0x1 : x0x2 : x1x2 : x22 ).

The convex hull of C0 under this embedding is a hyperbolicity
cone. It is the spectrahedron defined by:

−z2 z0 −z1 −z1 −z3
z0 −z2 0 z3 0
−z1 0 z0 0 z2
−z1 z3 0 −z0 + z4 0
−z3 0 z2 0 z4

 � 0
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Questions

Question. Can the secant variety of non-M-curves be hyperbolic as
well?

Question. Is there a nice characterization of linear subspaces
V ⊂ R[t] of dimension 2k + 2 such that every 0 6= f ∈ V has at
most 2k non-real zeros?

Question. Do these hyperbolic secant varieties all have a
determinantal representation?
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