When is the conic hull of a curve a hyperbolicity cone?

Mario Kummer
Technische Universität Berlin

joint work with Rainer Sinn

Hyperbolic Polynomials

A homogeneous polynomial $f \in \mathbb{R}[x_1, \dots, x_n]_d$ is hyperbolic with respect to a point $e \in \mathbb{R}^n$ if $f(e) \neq 0$ and for every $v \in \mathbb{R}^n$, all roots of $f(te - v) \in \mathbb{R}[t]$ are real.

Hyperbolic Polynomials

A homogeneous polynomial $f \in \mathbb{R}[x_1, \dots, x_n]_d$ is hyperbolic with respect to a point $e \in \mathbb{R}^n$ if $f(e) \neq 0$ and for every $v \in \mathbb{R}^n$, all roots of $f(te - v) \in \mathbb{R}[t]$ are real.

hyperbolic with respect to e = (1, 0, 0)

Hyperbolic Polynomials

A homogeneous polynomial $f \in \mathbb{R}[x_1, \dots, x_n]_d$ is hyperbolic with respect to a point $e \in \mathbb{R}^n$ if $f(e) \neq 0$ and for every $v \in \mathbb{R}^n$, all roots of $f(te - v) \in \mathbb{R}[t]$ are real.

$$x_1^2 - x_2^2 - x_3^2$$

hyperbolic with respect to e = (1, 0, 0)

$$x_1^4 - x_2^4 - x_3^4$$

not hyperbolic

Hyperbolicity Cones

Its hyperbolicity cone, denoted C(f,e), is the set of all $v \in \mathbb{R}^n$ where $f(te-v) \in \mathbb{R}[t]$ has only nonnegative roots.

Hyperbolicity Cones

Its hyperbolicity cone, denoted C(f, e), is the set of all $v \in \mathbb{R}^n$ where $f(te - v) \in \mathbb{R}[t]$ has only nonnegative roots.

Gårding showed that

- ightharpoonup C(f,e) is convex.
- ► C(f, e) is the closure of the connected component of e in $\{x \in \mathbb{R}^n : f(x) \neq 0\}$.
- ▶ f is hyperbolic with respect to any point $a \in \text{int } C(f, e)$.

Hyperbolicity Cones

Its hyperbolicity cone, denoted C(f, e), is the set of all $v \in \mathbb{R}^n$ where $f(te - v) \in \mathbb{R}[t]$ has only nonnegative roots.

Gårding showed that

- ightharpoonup C(f,e) is convex.
- ► C(f, e) is the closure of the connected component of e in $\{x \in \mathbb{R}^n : f(x) \neq 0\}$.
- ▶ f is hyperbolic with respect to any point $a \in \text{int } C(f, e)$.

One can use interior point methods to optimize a linear function over an affine section of a hyperbolicity cone (Güler, Renegar). This solves a *hyperbolic program*.

The determinant det : $\operatorname{Sym}_n \to \mathbb{R}$ of symmetric matrices is hyperbolic with respect to the identity matrix I_n :

- ▶ $det(tl_n X)$ has only real zeros for every symmetric matrix $X \in Sym_n$.
- ▶ The hyperbolicity cone is the set Sym_n^+ of positive semidefinite matrices.

Question. Let $X \subset \mathbb{R}^n$ be a nice set. When is the convex hull of X the affine slice of a hyperbolicity cone?

 Optimize linear functionals over X using hyperbolic programming

- Optimize linear functionals over X using hyperbolic programming
- ► More examples of hyperbolic polynomials whose properties can be studied via the geometry of *X*

- Optimize linear functionals over X using hyperbolic programming
- ► More examples of hyperbolic polynomials whose properties can be studied via the geometry of *X*
- Potential counter-examples to certain conjectures

- Optimize linear functionals over X using hyperbolic programming
- ► More examples of hyperbolic polynomials whose properties can be studied via the geometry of *X*
- Potential counter-examples to certain conjectures
- Long chains of faces

Let $f \in \mathbb{R}[x_1, \dots, x_n]_d$ be strictly hyperbolic with respect to a point $e \in \mathbb{R}^n$, i.e., for every $v \in \mathbb{R}^n$, all roots of $f(te - v) \in \mathbb{R}[t]$ are real and distinct.

Let $f \in \mathbb{R}[x_1, \dots, x_n]_d$ be strictly hyperbolic with respect to a point $e \in \mathbb{R}^n$, i.e., for every $v \in \mathbb{R}^n$, all roots of $f(te - v) \in \mathbb{R}[t]$ are real and distinct. Then:

- ▶ $f \cdot g$ has a definite determinantal representation for some polynomial g (K.)
- ightharpoonup C(f,e) is a spectrahedral shadow (Netzer–Sanyal)

Let $f \in \mathbb{R}[x_1, \dots, x_n]_d$ be strictly hyperbolic with respect to a point $e \in \mathbb{R}^n$, i.e., for every $v \in \mathbb{R}^n$, all roots of $f(te - v) \in \mathbb{R}[t]$ are real and distinct. Then:

- ▶ $f \cdot g$ has a definite determinantal representation for some polynomial g (K.)
- ightharpoonup C(f,e) is a spectrahedral shadow (Netzer–Sanyal)

If C(f, e) is the covex hull of some low-dimensional set, then f is usually far from being strictly hyperbolic.

Affine space, projective space and convex cones

▶ Affine space \mathbb{R}^n : Here we can take convex hulls.

Affine space, projective space and convex cones

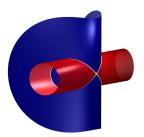
- Affine space \mathbb{R}^n : Here we can take convex hulls.
- ▶ \mathbb{R}^n is contained in the real part $\mathbb{RP}^n = \mathbb{P}^n(\mathbb{R})$ of complex projective space \mathbb{P}^n as the open subset consisting of all real points $(x_0 : \cdots : x_n)$ with $x_0 \neq 0$: In \mathbb{P}^n we do algebraic geometry.

Affine space, projective space and convex cones

- ▶ Affine space \mathbb{R}^n : Here we can take convex hulls.
- ▶ \mathbb{R}^n is contained in the real part $\mathbb{RP}^n = \mathbb{P}^n(\mathbb{R})$ of complex projective space \mathbb{P}^n as the open subset consisting of all real points $(x_0 : \cdots : x_n)$ with $x_0 \neq 0$: In \mathbb{P}^n we do algebraic geometry.
- \mathbb{R}^n is also contained in \mathbb{R}^{n+1} as the closed subet of all points $(1, x_1, \dots, x_n)$: Hyperbolicity cones live in \mathbb{R}^{n+1} .

Curves in space

Theorem. (K., Sinn) Let $X \subset \mathbb{R}^3$ be a one-dimensional semialgebraic set. Assume that the closed convex hull $\overline{\operatorname{conv}(X)}$ of X is (the affine slice $x_0 = 1$ of) the hyperbolicity cone of some $f \in \mathbb{R}[x_0, x_1, x_2, x_3]$. Then for every irreducible factor f_0 of f there exists an invertible linear change of coordinates T such that $f_0(Tx) \in \mathbb{R}[x_0, x_1, x_2]$.



Convex hull of a rational quartic. From: "On the convex hull of a space curve" by Ranestad, Sturmfels.

Secant Varieties

Let $X \subset \mathbb{P}^n$ be a projective variety. The kth secant variety $\sigma_k(X)$ is the Zariski closure of the union of all linear spaces spanned k+1 points on X.

Secant Varieties

Example. Let $C \subset \mathbb{P}^{2n}$ be the rational normal curve of degree 2n. Then $\sigma_k(C)$ is cut out by the $(k+2) \times (k+2)$ -minors of the Hankel matrix

$$H(x) = \begin{pmatrix} x_0 & x_1 & x_2 & \cdots & x_n \\ x_1 & x_2 & & & & \\ x_2 & & \ddots & & \vdots \\ \vdots & & & \ddots & \\ x_n & & \cdots & & x_{2n} \end{pmatrix}$$

Secant Varieties

Example. Let $C \subset \mathbb{P}^{2n}$ be the rational normal curve of degree 2n. Then $\sigma_k(C)$ is cut out by the $(k+2) \times (k+2)$ -minors of the Hankel matrix

$$H(x) = \begin{pmatrix} x_0 & x_1 & x_2 & \cdots & x_n \\ x_1 & x_2 & & & \\ x_2 & & \ddots & & \vdots \\ \vdots & & & \ddots & \\ x_n & & \cdots & & x_{2n} \end{pmatrix}$$

Thus $\sigma_{n-1}(C)$ is the hypersurface cut out by the hyperbolic polynomial det H(x). Its hyperbolicity cone is the convex hull of C.

Hyperbolic Varieties

A projective variety $X \subset \mathbb{P}^n$ is hyperbolic with respect to a linear subspace $E \subset \mathbb{P}^n$ of dimension $n-\dim X-1$ if $X\cap E=\emptyset$ and for every linear subspace $E\subset H$ with $\dim H=\dim E+1$, all points in $X\cap H$ are real.

Hyperbolic Varieties

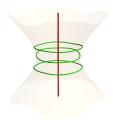
A projective variety $X \subset \mathbb{P}^n$ is hyperbolic with respect to a linear subspace $E \subset \mathbb{P}^n$ of dimension $n-\dim X-1$ if $X\cap E=\emptyset$ and for every linear subspace $E\subset H$ with $\dim H=\dim E+1$, all points in $X\cap H$ are real.

The twisted cubic

Hyperbolic Varieties

A projective variety $X \subset \mathbb{P}^n$ is hyperbolic with respect to a linear subspace $E \subset \mathbb{P}^n$ of dimension $n-\dim X-1$ if $X\cap E=\emptyset$ and for every linear subspace $E\subset H$ with $\dim H=\dim E+1$, all points in $X\cap H$ are real.

The twisted cubic

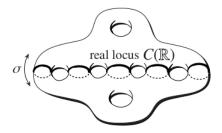


A space sextic

Hyperbolic Curves

Theorem. (K., Shamovich) Let C be a smooth, geometrically irreducible, projective, real curve. Then the following are equivalent:

- ightharpoonup C can be embedded to \mathbb{P}^n as a hyperbolic curve for some n.
- ▶ There is a morphism $f: C \to \mathbb{P}^1$ with $f^{-1}(\mathbb{P}^1(\mathbb{R})) = C(\mathbb{R})$.
- $ightharpoonup C(\mathbb{C}) \setminus C(\mathbb{R})$ is not connected.



Riemann surface of dividing type. From: "Ahlfors circle maps and total reality: from Riemann to Rohlin", Gabard.

Hyperbolic Secant Varieties

Lemma. (K., Sinn) Let $C \subset \mathbb{P}^n$ be an irreducible nondegenerate real curve with $C(\mathbb{R})$ Zariski dense in C. Suppose that $\sigma_k(C) \neq \mathbb{P}^n$ and let $E \subset \mathbb{P}^n$ be a real linear subspace of codimension 2k + 2 with $E \cap \sigma_k(C) = \emptyset$. The following are equivalent:

- $ightharpoonup \sigma_k(C)$ is hyperbolic with respect to E.
- ▶ Every hyperplane $H \subset \mathbb{P}^n$ with $E \subset H$ intersects C in at most 2k non-real points.

In that case $C(\mathbb{C}) \setminus C(\mathbb{R})$ is not connected.

Hyperbolic Secant Varieties

Lemma. (K., Sinn) Let $C \subset \mathbb{P}^n$ be an irreducible nondegenerate real curve with $C(\mathbb{R})$ Zariski dense in C. Suppose that $\sigma_k(C) \neq \mathbb{P}^n$ and let $E \subset \mathbb{P}^n$ be a real linear subspace of codimension 2k+2 with $E \cap \sigma_k(C) = \emptyset$. The following are equivalent:

- $ightharpoonup \sigma_k(C)$ is hyperbolic with respect to E.
- ▶ Every hyperplane $H \subset \mathbb{P}^n$ with $E \subset H$ intersects C in at most 2k non-real points.

In that case $C(\mathbb{C}) \setminus C(\mathbb{R})$ is not connected.

Note that the latter corresponds to a linear subspace $V \subset \Gamma(C, \mathcal{O}_C(1))$ of dimension 2k+2 such that every section $s \in V$ has at most 2k non-real zeros on C.



Let $C \subset \mathbb{P}^{2n}$ be the rational normal curve of degree 2n. Finding a linear space with respect to which $\sigma_k(C)$ is hyperbolic amounts finding a vector space $V \subset \mathbb{R}[t]_{\leq 2n}$ of dimension 2k+2 such that every $f \in V$ has at most 2k non-real zeros.

Let $C \subset \mathbb{P}^{2n}$ be the rational normal curve of degree 2n. Finding a linear space with respect to which $\sigma_k(C)$ is hyperbolic amounts finding a vector space $V \subset \mathbb{R}[t]_{\leq 2n}$ of dimension 2k+2 such that every $f \in V$ has at most 2k non-real zeros.

▶ For k = n - 1 we are looking for a hyperplane $H \subset \mathbb{R}[t]_{\leq 2n}$ such that every $f \in H$ has at least one real zero, i.e., f is not strictly positive or strictly negative on \mathbb{R} .

Let $C \subset \mathbb{P}^{2n}$ be the rational normal curve of degree 2n. Finding a linear space with respect to which $\sigma_k(C)$ is hyperbolic amounts finding a vector space $V \subset \mathbb{R}[t]_{\leq 2n}$ of dimension 2k+2 such that every $f \in V$ has at most 2k non-real zeros.

- ▶ For k = n 1 we are looking for a hyperplane $H \subset \mathbb{R}[t]_{\leq 2n}$ such that every $f \in H$ has at least one real zero, i.e., f is not strictly positive or strictly negative on \mathbb{R} .
- ▶ Thus H is defined by a linear form $L: \mathbb{R}[t]_{\leq 2n} \to \mathbb{R}$ that is nonnegative on the cone of nonnegative polynomials.

Let $C \subset \mathbb{P}^{2n}$ be the rational normal curve of degree 2n. Finding a linear space with respect to which $\sigma_k(C)$ is hyperbolic amounts finding a vector space $V \subset \mathbb{R}[t]_{\leq 2n}$ of dimension 2k+2 such that every $f \in V$ has at most 2k non-real zeros.

- ▶ For k = n 1 we are looking for a hyperplane $H \subset \mathbb{R}[t]_{\leq 2n}$ such that every $f \in H$ has at least one real zero, i.e., f is not strictly positive or strictly negative on \mathbb{R} .
- ▶ Thus H is defined by a linear form $L: \mathbb{R}[t]_{\leq 2n} \to \mathbb{R}$ that is nonnegative on the cone of nonnegative polynomials.
- This means the bilinear form on $\mathbb{R}[t]_{\leq d}$ defined by $(f,g)\mapsto L(f\cdot g)$ is positive semidefinite. Its representing matrix is the Hankel matrix H(x) that we have already seen.

A more general construction

Theorem. (K., Sinn) Let $C \subset \mathbb{P}^n$ be a smooth, irreducible, projectively normal, real curve of genus g. Assume that C is an M-curve, i.e., $C(\mathbb{R})$ has g+1 connected components. Assume furthermore that at most one component C_0 of $C(\mathbb{R})$ realizes the trivial homology class in $H_1(\mathbb{RP}^n; \mathbb{Z}/2\mathbb{Z})$. Then every secant variety $\sigma_k(C)$ is hyperbolic.

A more general construction

Theorem. (K., Sinn) Let $C \subset \mathbb{P}^n$ be a smooth, irreducible, projectively normal, real curve of genus g. Assume that C is an M-curve, i.e., $C(\mathbb{R})$ has g+1 connected components. Assume furthermore that at most one component C_0 of $C(\mathbb{R})$ realizes the trivial homology class in $H_1(\mathbb{RP}^n; \mathbb{Z}/2\mathbb{Z})$. Then every secant variety $\sigma_k(C)$ is hyperbolic.

The assumptions are satisfied, e.g., if C is a rational normal curve or if n is even and C is an elliptic normal curve such that $C(\mathbb{R})$ has two connected components.

A more general construction

Theorem. (K., Sinn) Let $C \subset \mathbb{P}^n$ be a smooth, irreducible, projectively normal, real curve of genus g. Assume that C is an M-curve, i.e., $C(\mathbb{R})$ has g+1 connected components. Assume furthermore that at most one component C_0 of $C(\mathbb{R})$ realizes the trivial homology class in $H_1(\mathbb{RP}^n; \mathbb{Z}/2\mathbb{Z})$. Then every secant variety $\sigma_k(C)$ is hyperbolic.

- ▶ The assumptions are satisfied, e.g., if C is a rational normal curve or if n is even and C is an elliptic normal curve such that $C(\mathbb{R})$ has two connected components.
- ightharpoonup Curves satisfying the assumptions exist for any g and n.

A more general construction

Theorem. (K., Sinn) Let $C \subset \mathbb{P}^n$ be a smooth, irreducible, projectively normal, real curve of genus g. Assume that C is an M-curve, i.e., $C(\mathbb{R})$ has g+1 connected components. Assume furthermore that at most one component C_0 of $C(\mathbb{R})$ realizes the trivial homology class in $H_1(\mathbb{RP}^n; \mathbb{Z}/2\mathbb{Z})$. Then every secant variety $\sigma_k(C)$ is hyperbolic.

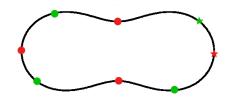
- ▶ The assumptions are satisfied, e.g., if C is a rational normal curve or if n is even and C is an elliptic normal curve such that $C(\mathbb{R})$ has two connected components.
- ightharpoonup Curves satisfying the assumptions exist for any g and n.
- ▶ If $\sigma_k(C)$ is a hypersurface, then its hyperbolicity cone is the convex hull of C_0 . Moreover, it is a simplicial cone.

▶ The degree of C is d = g + 4 by Riemann–Roch.

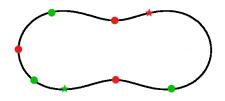
- ▶ The degree of C is d = g + 4 by Riemann–Roch.
- We need to find four sections s_0 , s_1 , s_2 , s_3 such that all $\lambda_0 s_0 + \ldots + \lambda_4 s_4$ have at least g + 2 real zeros on C.

- ▶ The degree of C is d = g + 4 by Riemann–Roch.
- We need to find four sections s_0, s_1, s_2, s_3 such that all $\lambda_0 s_0 + \ldots + \lambda_4 s_4$ have at least g + 2 real zeros on C.
- ▶ Since g components of $C(\mathbb{R})$ realize the non-trivial homology class in $H_1(\mathbb{RP}^n; \mathbb{Z}/2\mathbb{Z})$, we have on each of those at least one real zero.

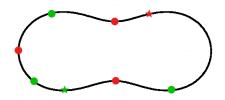
- ▶ The degree of C is d = g + 4 by Riemann–Roch.
- We need to find four sections s_0, s_1, s_2, s_3 such that all $\lambda_0 s_0 + \ldots + \lambda_4 s_4$ have at least g + 2 real zeros on C.
- ▶ Since g components of $C(\mathbb{R})$ realize the non-trivial homology class in $H_1(\mathbb{RP}^n; \mathbb{Z}/2\mathbb{Z})$, we have on each of those at least one real zero.
- Thus we want to choose s_0, s_1, s_2, s_3 such that all $\lambda_0 s_0 + \ldots + \lambda_4 s_4$ have at least 2 zeros on the component C_0 .



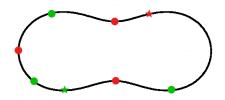
- ► *s*₀=red dots, red star
- ► *s*₁=red dots, green star
- ▶ s₂=green dots, red star
- ▶ s₃=green dots, green star



- $ightharpoonup a = \lambda_0 s_0 + \lambda_1 s_1$: red dots, red star
- ▶ $b = \lambda_2 s_2 + \lambda_3 s_3$: green dots, green star



- $ightharpoonup a = \lambda_0 s_0 + \lambda_1 s_1$: red dots, red star
- $b = \lambda_2 s_2 + \lambda_3 s_3$: green dots, green star
- ▶ The parity of the number of zeros of $a + \mu b$ between two zeros of b is the same for all $\mu \in \mathbb{R}$



- $ightharpoonup a = \lambda_0 s_0 + \lambda_1 s_1$: red dots, red star
- ▶ $b = \lambda_2 s_2 + \lambda_3 s_3$: green dots, green star
- ▶ The parity of the number of zeros of $a + \mu b$ between two zeros of b is the same for all $\mu \in \mathbb{R}$
- ▶ Thus a + b has at least two real zeros on C_0

The Polymatroid

Let $C \subset \mathbb{P}^4$ be a curve of genus g that satisfied the assumptions of the theorem.

Then $\sigma_1(C)$ is a hypersurface cut out by a polynomial h that is hyperbolic with respect to some $e \in \text{conv}(C_0)$. Let $S \subset C_0$ be a finite subset:

$$\deg(h(e+t\sum_{x\in S}x)) = \begin{cases} 0, & \text{if } |S| = 0, \\ \frac{1}{2}(g^2+g+2), & \text{if } |S| = 1, \\ \frac{1}{2}(g^2+3g+4), & \text{if } |S| = 2, \\ \frac{1}{2}(g^2+3g+6), & \text{if } |S| \ge 3. \end{cases}$$

Theorem. (Scheiderer) The closed convex hull of any one-dimensional semialgebraic subset of \mathbb{R}^n is a spectrahedral shadow.

Theorem. (Scheiderer) The closed convex hull of any one-dimensional semialgebraic subset of \mathbb{R}^n is a spectrahedral shadow.

"The techniques (...) unfortunately do not seem to give any explicit degree bounds."

Theorem. (Scheiderer) The closed convex hull of any one-dimensional semialgebraic subset of \mathbb{R}^n is a spectrahedral shadow.

"The techniques (...) unfortunately do not seem to give any explicit degree bounds."

Theorem. (K., Sinn) Let $S \subset \mathbb{R}^n$ be a connected component of an M-curve of degree d and genus g. Then $\mathrm{conv}(S)$ is (up to closure) the projection of an affine slice in \mathbb{R}^m with $m \leq d+1$ of a hyperbolicity cone of degree at most $\sum_{j=0}^{\lfloor \frac{m}{2} \rfloor} (j+1) {g \choose \lfloor \frac{m}{2} \rfloor - j}$.

Theorem. (K., Sinn) Let $S \subset \mathbb{R}^n$ be a connected component of an M-curve of degree d and genus g. Then $\mathrm{conv}(S)$ is (up to closure) the projection of an affine slice in \mathbb{R}^m with $m \leq d+1$ of a hyperbolicity cone of degree at most $\sum_{j=0}^{\lfloor \frac{m}{2} \rfloor} (j+1) {g \choose \lfloor \frac{m}{2} \rfloor -j}$.

Every elliptic curve C has an unramified 2:1 cover $\tilde{C}\to C$ where \tilde{C} is an elliptic M-curve. Therefore:

Corollary. Let $S \subset \mathbb{R}^n$ be a connected component of an elliptic curve of degree d. Then $\mathrm{conv}(S)$ is (up to closure) the projection of an affine slice in \mathbb{R}^{2d} of a hyperbolicity cone of degree 2d+1.

Example

Let $C \subset \mathbb{P}^2$ be the smooth cubic curve defined by the equation $x_0^3 - x_0 x_2^2 - x_1^2 x_2$. $C(\mathbb{R})$ has two connected components C_0 , C_1 . We embed C to \mathbb{P}^4 by the map

$$C \to \mathbb{P}^4$$
, $(x_0 : x_1 : x_2) \mapsto (x_0^2 : x_0x_1 : x_0x_2 : x_1x_2 : x_2^2)$.

The convex hull of C_0 under this embedding is a hyperbolicity cone. It is the spectrahedron defined by:

$$\begin{pmatrix} -z_2 & z_0 & -z_1 & -z_1 & -z_3 \\ z_0 & -z_2 & 0 & z_3 & 0 \\ -z_1 & 0 & z_0 & 0 & z_2 \\ -z_1 & z_3 & 0 & -z_0 + z_4 & 0 \\ -z_3 & 0 & z_2 & 0 & z_4 \end{pmatrix} \succeq 0$$

Questions

Question. Can the secant variety of non-*M*-curves be hyperbolic as well?

Questions

Question. Can the secant variety of non-*M*-curves be hyperbolic as well?

Question. Is there a nice characterization of linear subspaces $V \subset \mathbb{R}[t]$ of dimension 2k + 2 such that every $0 \neq f \in V$ has at most 2k non-real zeros?

Questions

Question. Can the secant variety of non-*M*-curves be hyperbolic as well?

Question. Is there a nice characterization of linear subspaces $V \subset \mathbb{R}[t]$ of dimension 2k+2 such that every $0 \neq f \in V$ has at most 2k non-real zeros?

Question. Do these hyperbolic secant varieties all have a determinantal representation?