# Rate-Induced Tipping: Beyond Classical Bifurcations in Ecology

Sebastian Wieczorek University College Cork, Ireland

New Mathematical Methods for Complex Systems in Ecology BIRS, Canada, Jul 29 - Aug 2, 2019 The Setting: Tipping Points in Dynamical Systems

**Open System Subject to External Disturbances** 



 $\dot{x} = f(x, \Lambda(t))$ 

x(t) - state of an open system at time t $\Lambda(t)$  - time-varying external input (external forcing)

#### **Tipping Point or Critical Transition:**

A sudden and large change in the state of the system x(t), trigerred by a slow and small change in the external input  $\Lambda(t)$ 

### **Outline:**

- 1. R-tipping in Ecology: Failure to Adapt (Paul O'Keeffe)
- 2. R-tipping Definition: Thresholds and Edge States (Peter Ashwin, Chun Xie, Chris K.R.T. Jones)
- 3. Compactification (Chun Xie, Chris K.R.T. Jones)
- 4. Rigorous Testable Criteria for R-tipping (Peter Ashwin, Chun Xie, Chris K.R.T. Jones)

# Plants (P) and Herbivores (H)

$$\begin{aligned} \frac{dP}{dt} &= \mathbf{r} \, P - \mathbf{C} P^2 - H \, g(P, b_c, \mathbf{a}) \\ \frac{dH}{dt} &= H \, g(P, b_c, \mathbf{a}) \, \mathbf{E} \, e^{-bP} - \mathbf{m} \, H \end{aligned}$$

r - maximum plant growth rate m - mortality rate of herbivores





The Key nonlinearity is in the functional response

$$g(P, b_c, a) = \frac{P^2}{P^2 + a^2} e^{-b_c P}$$

[M. Scheffer, E. van Nes, M. Holmgren, T. Hughes, Ecosystems 11 (2008) 222]

### **Equilibrium Solutions**

- Trivial zero population:  $e_1 = (0, 0)$
- Plant-dominated (potentially stable):  $e_2 = \left(\frac{r}{C}, 0\right)$
- Herbivores I (potentially stable):

$$e_3 = \left(\sqrt{\frac{a^2m}{Ec_m - m}} + \mathcal{O}(b + b_c), \ \frac{(r - CP)(P^2 + a^2)}{c_m P} \ e^{b_c P}\right)$$

• Herbivores II (unstable):

$$e_4 = \left(\frac{1}{b+b_c} \ln\left(\frac{c_m E}{m}\right) + \mathcal{O}(b+b_c), \ \frac{(r-CP)(P^2+a^2)}{c_m P} \ e^{b_c P}\right)$$

### **2D** Bifurcation Diagrams & Parameter Paths



4. *r* 

0.

2.

1.

3.

Region 1: plant-dominated equilibrium
Regions 2 and 8: plant-dominated + herbivores I equilibria
Regions 3-7: plant-dominated + herbivores I + herbivores II equilibria

0.

0.5

1.

1.5

r

### **Parameter Shifts along Parameter Paths**

$$\frac{dP}{dt} = \mathbf{r}(\varepsilon t) P - CP^2 - H g(P, b_c, \mathbf{a})$$
$$\frac{dH}{dt} = H g(P, b_c, \mathbf{a}) \mathbf{E} e^{-bP} - \mathbf{m}(\varepsilon t) H$$



#### To make progress consider:

Normal Bi-asymptotic Constant Parameters Shifts. Smooth  $\Lambda(t) \to \lambda^{\pm}$  and  $\dot{\Lambda}(t) \to 0$  as  $t \to \pm \infty$ . Rate  $\varepsilon$ .



# **B-tipping**

### Paths Across Dangerous Bifurcations: Critical Levels



**Tipping Point Paradigm** 

### **R-tipping**

Paths Do Not Cross Any Bifurcations: Critical Rates



Failure to Adapt: Genuine nonautonomous instability Question: How can we analyse this?

[P. O'Keeffe and S. Wieczorek arXiv:1902.01796]

# Basin Instability (BI)

#### **Ingredients**:

Parameter path in the  $\lambda$ -parameter space:  $P_{\lambda}$ Stable equilibrium along the path:  $e(\lambda)$ Basin of attraction of e along the path:  $B(e, \lambda)$ 

#### **Definition:**

The stable equilibrium is basin unstable on a parameter path  $P_{\lambda}$  if there are two points on the path,  $p_1$  and  $p_2$ , such that  $e(p_1)$  is outside the basin of attraction of  $e(p_2)$ .

#### **Basin Instability Region** in the 2D bifurcation diagram

$$BI(e, p_1) = \{p_2 : e(p_1) \notin B(e, p_2)\}$$

[S.Wieczorek, P. Ashwin, C. Xie, C.K.R.T. Jones, in preparation]

### **Basin Instability in Region** (3)



# Beyond Classical Bifurcation Diagrams

**R-tipping:** Maximal Canard, Pullback Attractor

 $\approx \varepsilon_c$ 

 $e_3(t)$ 

 $e_1(t)$ 

 $\Delta_r$ 

1.





 $\varepsilon_c^+$ 

25

Tips

0.8

**R-tipping Diagram** 

 $e_2(t)$ 

50

BI

0.2

Tracks

0.4

0.6

25

 $\overline{P}$ 

 $\varepsilon$ 

10<sup>0</sup>

10<sup>-1</sup>

0.

[P. O'Keeffe and S. Wieczorek arXiv:1902.01796]

## **Points of No Return**

Suppose a monotone parameter shift gives tipping.

Question: Can tipping be avoided by reversing the trend in the parameter shift?



#### **Points of No Return: Non-trivial Tipping Diagram**



The Key Message from the Ecosystem Example

Classical bifurcations do not capture all tipping phenomena. Need an alternative mathematical framework for R-tipping.

#### Main Idea

Use the autonomous dynamics and compact invariant sets of

$$\dot{x} = f(x, \lambda) \tag{1}$$

to explain nonautonomous instabilities such as R-tipping in

$$\dot{x} = f(x, \Lambda(t)) \tag{2}$$

# Generalise: Basin Instability $\rightarrow$ Threshold Instability Thresholds and Edge States of the Frozen System



#### Definition

For the autonomous system (1), a regular threshold is an orientable codimension-1 forward-invariant embedded manifold  $\theta(\lambda)$  in  $\mathbb{R}^n$  that is normally hyperbolic and repelling.

We say  $\gamma(\lambda)$  is a regular edge state if it is a compact normally hyperbolic invariant set whose stable manifold is a regular threshold.

[S.Wieczorek, P. Ashwin, C. Xie, C.K.R.T. Jones, in preparation]

# **Compactification: Bi-asymptotic Autonomous Systems**

Usual Approach:

 $\dot{x} = f(x, \Lambda(u))$  $\dot{u} = 1$ 

is defined on  $\mathbb{R}^n \times \mathbb{R}$  and has unbounded additional dimension  $u \in \mathbb{R}$ .

#### Compactification

A process that uses a different dependent variable, s instead of u, to make the additional dimension compact (bounded and closed).

[S.Wieczorek, C. Xie, C.K.R.T. Jones, in preparation]

### **Autonomous Compactified System:**

Step 1. Nonlinear Coordinate Transformation Augment the vector field with s = g(t):

$$\dot{x} = f(x, \Lambda(s))$$
  
 $\dot{s} = \gamma(s)$ 



Step 2. Extend the augmented vector field to  $t = \pm \infty$ Bring in  $s = \pm 1$  into the phase space:  $\Lambda(s) = \lambda^{\pm}$  for  $s = \pm 1$ . The system is now defined on  $\mathbb{R}^n \times [-1, 1]$ .

#### Step 3. Theorem (Compactification Conditions)

The augmented and extended vector field is  $C^1$ -smooth at  $s = \pm 1$  if

$$\lim_{t o\pm\infty}rac{\Lambda(t)}{\dot{g}(t)} \qquad ext{and} \qquad \lim_{t o\pm\infty}rac{\ddot{g}(t)}{\dot{g}(t)} \qquad ext{exist.}$$

[S.Wieczorek, C. Xie, C.K.R.T. Jones, in preparation]

### **Autonomous Compactified System:**

Step 1. Nonlinear Coordinate Transformation Augment the vector field with s = g(t):

$$\dot{x} = f(x, \Lambda(s))$$
  
 $\dot{s} = \gamma(s) = \alpha (1 - s^2)$ 



Step 2. Extend the augmented vector field to  $t = \pm \infty$ Bring in  $s = \pm 1$  into the phase space:  $\Lambda(s) = \lambda^{\pm}$  for  $s = \pm 1$ . The system is now defined on  $\mathbb{R}^n \times [-1, 1]$ .

#### Step 3. Theorem (Compactification Conditions)

The augmented and extended vector field is  $C^1$ -smooth at  $s = \pm 1$  if

$$\lim_{t o\pm\infty}rac{\Lambda(t)}{\dot{g}(t)} \qquad ext{and} \qquad \lim_{t o\pm\infty}rac{\ddot{g}(t)}{\dot{g}(t)} \qquad ext{exist.}$$

[S.Wieczorek, C. Xie, C.K.R.T. Jones, in preparation]

#### **Compactification:** The Ecosystem Model



#### Autonomous Compactified System on $\mathbb{R}^2 \times [-1, 1]$





No compact invariant sets. Nonautonomous Input  $\Lambda(t)$ 

Two attractors:  $e_2$ + and  $e_3^+$ , Edge state:  $e_4$ + 2D R-tipping Threshold encodes  $\Lambda(t)$ :  $W^S(e_4^+)$ 

#### **Compactification:** The Ecosystem Model



#### Autonomous Compactified System on $\mathbb{R}^2 \times [-1, 1]$





**R-tipping** 

=

Heteroclinic Orbit

# **R-tipping: Rigorous and Easily Testable Criteria**

#### Proposition (R-tipping Criteria)

Consider a nonautonomous system with a stable equilibrium  $e(\lambda)$  on a path  $P_{\lambda}$ . Suppose  $e(\lambda)$  is threshold unstable on  $P_{\lambda}$ . Then, there exists a bi-asymptotically constant input  $\Lambda(t)$  that traces out  $P_{\lambda}$  and gives R-tipping from  $e(\lambda)$ .

#### **Proof Idea**

- R-tipping is defined for the nonautonomous system: Edge Tails.
- Autonomous assumption: threshold instability of  $e(\lambda)$  along  $P_{\lambda}$ .
- Compactify.
- Construct an input  $\Lambda(s)$  that gives a heteroclinic connection from  $e^-$  to  $\gamma^+$  in the compactified system.
- Show a generic heteroclinic connection in the compactified system with  $\Lambda(s)$  implies R-tipping in the nonautonomous system with  $\Lambda(t)$ .

[S.Wieczorek, P. Ashwin, C. Xie, C.K.R.T. Jones, in preparation]

### Summary

- **1.** Classical Bifurcation Theory does not capture all tipping phenomena.
- 2. Importance of R-tipping in ecology? An instability that describes failure to adapt.
- **3**. Compactify to transforms R-tipping problems into connecting heteroclinic orbits problems.

Thank you!