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Hydrodynamic Scaling Limits

▸ Dynamics with conserved quantities: energy, momentum,
density, ..., these move slowly.

▸ The other quantities move fast, fluctuating around average
values determined by the conserved quantities (by local
equilibriums).

▸ Conserved quantities determine families of stationary
probability measures, Gibbs states, typically parametrized by
temperature, pressure.

▸ Corresponding to different paramenters there are different
partial equilibriums:

▸ mechanical equilibrium: constant pressure or tension profiles,
▸ thermal equilibrium: constant temperature profiles.

▸ These partial equilibriums may be reached at different time
scales: typically mechanical equilibrium is reached faster than
thermal equilibrium.
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Mechanical and Thermal equilibrium

▸ Mechanical Equilibrium is reached in hyperbolic time scales
(same rescaling of space and time), and is driven by Euler
system of equations (for a compressible gas). It involves the
ballistic evolution of the long waves (mechanical modes).

▸ When thermal conductivity is finite, Thermal Equilibrium is
reached later, in the diffusive time scales (time2 = space), and
temperature (or thermal energy) profiles evolve following heat
equation.

▸ If thermal conductivity is infinite, Thermal Equilibrium is
reached in a super-diffusive time scales
(timeα = space, α < 2), and typically temperature (or thermal
energy) profiles evolve following a fractional heat equation.
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Boundary Conditions

External forces or heat bath acting microscopically at the boudary
on the system determine boundary conditions of the macroscopic
equations.

Most of non-equilibrium situation are obtained by

▸ changing boundary conditions in time

▸ applying boundary conditions corresponding to different
equilibrium states, obtaining dynamics that have
non-equilibrium stationary states (NESS).
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Chain of oscillators

ṙx(t) = px(t) − px−1(t), x = 1, . . . ,N

ṗx(t) = V ′
(rx+1(t)) −V ′

(rx(t)) x = 1, . . . ,N − 1

ṗN(t) = τ(t/N) −V ′
(rN(t))

p0(t) = 0.

EEEx =
p2x
2
+V (rx)

ĖEEx = pxV
′
(rx+1) − px−1V

′
(rx)

We are interested in the macroscopic evolution of
(rx(t),px(t),EEEx(t)).
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ṙx(t) = px(t) − px−1(t), x = 1, . . . ,N
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Gibbs measures and Thermodynamic Entropy

For τ(t) = τ constant in time, a class of stationary measures is
given by the Gibbs measures at temperature β−1, tension τ

dµβ,τ,p =
N

∏
x=1

e−β(EEEx−τ rx)−G(β,τ)dpxdrx

Thermodynamic entropy is

S(u, r) = inf
τ,β

{−βτ r + βu − G(β, τ)}

β(u, r) = ∂uS(u, r), τ(u, r) = −β−1∂rS(u, r).
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Hyperbolic Scaling, Euler equations

3 conserved quantities: we expect the weak convergence to the
hyperbolic system of PDE

1

N
∑
x

G(x/N)
⎛
⎜
⎝

rx(Nt)
px(Nt)
Ex(Nt)

⎞
⎟
⎠
Ð→
N→∞

∫

1

0
G(y)

⎛
⎜
⎝

r(y , t)
p(y , t)
e(y , t)

⎞
⎟
⎠
dy

∂tr(t, y) = ∂yp(t, y)

∂tp(t, y) = ∂yτ[u(t, y), r(t, y)]

∂te(t, y) = ∂y(τ[u(t, y), r(t, y)]p(t, y))

where u = e − p2/2 : internal energy.
and, for smooth solutions, the boundary conditions:

p(t,0) = 0, τ[u(t,1), r(t,1)] = τ(t)
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Results with conservative stochastic dynamics

▸ To prove some form of local equilibrium we need to add
stochastic terms to the dynamics (the deterministic non-linear
case is too difficult).

▸ Random exchanges of velocities between nearest neighbor
particles, conserve energy, momentum and volume, destroying
all other (possible) conservation laws. It provides the right
ergodicity property.

▸ With such noise in the dynamics, for smooth solutions the HL
is proven in:

▸ N. Even, S.O., ARMA (2014) (with boundary conditions),
▸ SO, SRS Varadhan, HT Yau, CMP (1993) (periodic bc).

S. Olla - CEREMADE hyperbolic limits



Results with conservative stochastic dynamics

▸ To prove some form of local equilibrium we need to add
stochastic terms to the dynamics (the deterministic non-linear
case is too difficult).

▸ Random exchanges of velocities between nearest neighbor
particles, conserve energy, momentum and volume, destroying
all other (possible) conservation laws. It provides the right
ergodicity property.

▸ With such noise in the dynamics, for smooth solutions the HL
is proven in:

▸ N. Even, S.O., ARMA (2014) (with boundary conditions),
▸ SO, SRS Varadhan, HT Yau, CMP (1993) (periodic bc).

S. Olla - CEREMADE hyperbolic limits



Results with conservative stochastic dynamics

▸ To prove some form of local equilibrium we need to add
stochastic terms to the dynamics (the deterministic non-linear
case is too difficult).

▸ Random exchanges of velocities between nearest neighbor
particles, conserve energy, momentum and volume, destroying
all other (possible) conservation laws. It provides the right
ergodicity property.

▸ With such noise in the dynamics, for smooth solutions the HL
is proven in:

▸ N. Even, S.O., ARMA (2014) (with boundary conditions),
▸ SO, SRS Varadhan, HT Yau, CMP (1993) (periodic bc).

S. Olla - CEREMADE hyperbolic limits



Harmonic Oscillators Chain

This is an example of a non-ergodic dynamics:

V (r) = r2/2

in fact it is a completely integrable dynamics:

q̇x = px , ṗx = ∆qx = qx+1 + qx−1 − qx ,

Take here x = 1, . . . ,N,

f̂ (k) =∑
x

fxe
i2πkx k ∈ {0,1/N, . . . , (N − 1)/N}

ω(k) = 2∣ sin(πk)∣ dispersion relation:

H =∑
x

EEEx =
1

2N
∑
k

[ω(k)2∣q̂(k)∣2 + ∣p̂(k)∣2]

ψ̂(t, k) ∶= ω(k)q̂ (t, k) + i p̂ (t, k) .

d

dt
ψ̂(t, k) = −iω(k)ψ̂(t, k) ψ̂(t, k) = e−iω(k)tψ̂(0, k)
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Harmonic Oscillators Chain: Quantum Dynamics

px = −i∂qx = −i (∂rx+1 − ∂rx )

EEEx =
1

2
(p2x + r2x )

ak =
1

ω(k)
ψ̂(k), a∗k =

1

ω(k)
ψ̂(k)∗

H =∑
x

EEEx =
1

2N
∑
k

[ω(k)2∣q̂(k)∣2 + ∣p̂(k)∣2]

=
1

2N
∑
k

ω(k)a∗kak

Heisenber evolution d
dtA(t) = i[H,A(t)]

ak(t) = e−iω(k)tak , a∗k(t) = e−iω(k)ta∗k .
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Harmonic Chain: Thermal Equilibrium (Classic case)

Consider the chain in thermal equilibrium: initial distribution with
covariances

⟨⟨⟨ rx(0); rx ′(0) ⟩⟩⟩ = ⟨⟨⟨ px(0);px ′(0) ⟩⟩⟩ = β−1δx ,x ′ , ⟨⟨⟨ qx ;px ′ ⟩⟩⟩ = 0,

for some inverse temperature β, while in mechanical local
equilibrium:

⟨⟨⟨ r[Ny](0) ⟩⟩⟩Ð→ r(0, y), ⟨⟨⟨ p[Ny](0) ⟩⟩⟩Ð→ p(0, y).
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Harmonic Chain: Thermal Equilibrium (classic case)

thermal equilibrium is conserved by the dynamics: for any t ≥ 0

⟨⟨⟨ rx(t); rx ′(t) ⟩⟩⟩ = ⟨⟨⟨ px(t);px ′(t) ⟩⟩⟩ = β−1δx ,x ′ , ⟨⟨⟨ qx(t);px ′(t) ⟩⟩⟩ = 0,

Proof.
Thermal equilibrium is Fourier space is:

⟨⟨⟨ ψ̂(k,0)∗; ψ̂(k ′,0) ⟩⟩⟩ = 2β−1δ(k − k ′), ⟨⟨⟨ ψ̂(k ,0); ψ̂(k ′,0) ⟩⟩⟩ = 0.

Consequently

⟨⟨⟨ ψ̂(k , t)∗; ψ̂(k ′, t) ⟩⟩⟩ = e i(ω(k)−ω(k
′))t

⟨⟨⟨ ψ̂(k ,0)∗; ψ̂(k ′,0) ⟩⟩⟩ = 2β−1δ(k − k ′),

⟨⟨⟨ ψ̂(k , t); ψ̂(k ′, t) ⟩⟩⟩ = e−i(ω(k)+ω(k
′))t

⟨⟨⟨ ψ̂(k ,0); ψ̂(k ′,0) ⟩⟩⟩ = 0.
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Harmonic Chain: Thermal Equilibrium implies Euler
Equation limit

r[Ny](Nt) and p[Ny](Nt) converge weakly to the solution of the
linear wave equation

∂tr (y , t) = ∂yp (y , t), ∂tp (y , t) = ∂y r (y , t).

This is the Euler equation for this system since here τ(u, r) = r .

For the energy, because of the thermal equilibrium, for any t ≥ 0 :

⟨⟨⟨ EEEx(t) ⟩⟩⟩ = β−1 +
1

2
(⟨⟨⟨ px(t) ⟩⟩⟩

2
+ ⟨⟨⟨ rx(t) ⟩⟩⟩

2)

⟨⟨⟨ EEE[Ny](Nt) ⟩⟩⟩Ð→ e (y , t) = β−1 +
1

2
(p2

(y , t) + r2(y , t)) ,

∂te (y , t) = ∂y (p (y , t) r (y , t)) .
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Quantum Harmonic Chain: Thermal Equilibrium

Initial density matrix ρβ, define

⟨⟨⟨ A ⟩⟩⟩ = tr (Aρβ)), ⟨⟨⟨ A;B ⟩⟩⟩ = ⟨⟨⟨ AB ⟩⟩⟩ − ⟨⟨⟨ A ⟩⟩⟩⟨⟨⟨ B ⟩⟩⟩

such that

⟨⟨⟨ rx(0); rx ′(0) ⟩⟩⟩ = ⟨⟨⟨ px(0);px ′(0) ⟩⟩⟩ = Cβ(x−x
′
), ⟨⟨⟨ qx ;px ′ ⟩⟩⟩ =

i

2
δ(x−x ′)

Cβ(x) =
1

N
[β−1 +∑

k≠0

e2πikx(
ωk

eβωk − 1
+
ωk

2
)] (1)

⟨⟨⟨ r[Ny](0) ⟩⟩⟩Ð→ r(0, y), ⟨⟨⟨ p[Ny](0) ⟩⟩⟩Ð→ p(0, y).

⟨⟨⟨ EEE[Ny] ⟩⟩⟩Ð→ e (y) = C̄(β) +
1

2
(p2

(y) + r2(y)) ,

C̄(β) = ∫
1

0
ω(k) (

1

eβω(k) − 1
+

1

2
)dk ∼

β→0
β−1
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Quantum Harmonic Chain: Thermal Equilibrium implies
Euler Equation limit

r[Ny](Nt) and p[Ny](Nt) converge weakly to the solution of the
linear wave equation

∂tr (y , t) = ∂yp (y , t), ∂tp (y , t) = ∂y r (y , t).

⟨⟨⟨ EEE[Ny](Nt) ⟩⟩⟩Ð→ e (y , t) = C̄(β) +
1

2
(p2

(y , t) + r2(y , t)) ,

C̄(β) = ∫
1

0
ω(k) (

1

eβω(k) − 1
+

1

2
)dk ∼

β→0
β−1

∂te (y , t) = ∂y (p (y , t) r (y , t)) .
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Harmonic Chain: Local Thermal Equilibrium is not
conserved

The argument fails dramatically if the system is not in thermal
equilibrium, even local thermal Gibbs

⟨⟨⟨ rx(0); rx ′(0) ⟩⟩⟩ = ⟨⟨⟨ px(0);px ′(0) ⟩⟩⟩ = β−1 (
x

N
) δx ,x ′ , ⟨⟨⟨ qx(0);px ′(0) ⟩⟩⟩ = 0

(2)
is not conserved, and correlations between px(t) and rx(t) build
up in time.
No autonomous macroscopic equation for the energy!
There are infinite many conservation laws.
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Harmonic Chain with Random Masses

The problem with the harmonic chain is that thermal waves of
wavenumber k move with speed ω′(k), if they are not uniformed
distributed (i.e. the system is not in thermal equilibrium), the
temperature profile will not remain constant, as it should be
following the Euler equations.

If the masses are random, the thermal modes remains localized
(frozen), by Anderson localization. This allows to close the energy
equation, without local equilibrium.
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Harmonic Chain with Random Masses

(F. Huveneers, C. Bernardin, S.Olla, CMP 2019)

{mx} i.i.d. with absolutely continuous distribution,
0 < m− ≤ mx ≤ m+,
m = E(mx).

mx q̇x(t) = px(t), ṗx(t) = ∆qx(t), x = 1, . . . ,N

with q0 = q1 and qN+1 = qN as boundary conditions.
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Harmonic Chain with Random Masses: hydrodynamic limit

Almost surely with respect to {mx}:

< r[Ny](Nt) >,< p[Ny](Nt) >,< EEE[Ny](Nt) >⇀ (r(y , t),p(y , t), e(y , t))

∂tr(t, y) =
1

m
∂yp(t, y)

∂tp(t, y) = ∂y r(t, y)

∂te(t, y) =
1

m
∂y (r(t, y)p(t, y))

with initial conditions:

r(y ,0) = r(y), p(y ,0) = p(y), e(y ,0) =
1

β(y)
+
p2(y)

2m
+
r2(y)

2
.
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Random Masses: Localization of Thermal Modes

Equation of motion can be written as

r̈x = −(∇
∗M−1

∇r)x (1 ≤ x ≤ N−1), p̈x = (∆M−1p)
x

(1 ≤ x ≤ N),

where Mx ,x ′ = δx ,x ′mx .

M−1/2
(−∆)M1/2ϕk

= ω2
k ϕ

k , k = 0, . . . ,N − 1.

ψk
=M−1/2ϕk , M−1∆ψk

= ω2
kψk

r(t) =
N−1

∑
k=1

(
⟨∇ψk , r(0)⟩

ωk
cosωkt + ⟨ψk ,p(0)⟩ sinωkt)

∇ψk

ωk
,

p(t) =
N−1

∑
k=0

(⟨ψk ,p(0)⟩ cosωkt −
⟨∇ψk , r(0)⟩

ωk
sinωkt)Mψk .
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Localization of Thermal Modes

Localization length ξk diverges with N:

ξ−1k ∼ ω2
k ∼ (

k

N
)

2

,

only the modes k >
√
N are localized.

More precisely: for 0 < α < 1
2

E
⎛

⎝

N−1

∑
k=N1−α

∣ψk
xψ

k
x ′ ∣

⎞

⎠
≤ Ce−cN

−2α∣x−x ′∣.

This estimate is enough to prove that thermal modes remains
localized and do not move macroscopically.
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Random masses: Larger time scales

Assume for simplicity that we are in a mechanical equilibrium:

⟨⟨⟨ rx(0) ⟩⟩⟩ = 0, ⟨⟨⟨ px(0) ⟩⟩⟩ = 0,

(only thermal energy present)
but not in thermal equilibrium, then, for any α ≥ 1

< EEE[Ny](N
αt) > Ð→

N to∞
e (0, y) = C̄(β(y))

NO evolution for the temperature profile at any scale!

In particular, for α = 2 (diffusive scaling), thermal diffusivity is null.
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Anharmonic disordered chain: heat transport

Wojciech De Roeck, Francois Huveneers, S.O., 2019

H(q,p) =
L

∑
x=1

(
p2x
2
+ ω2

x
q2x
2
+ gτx

q4x
4
+ g0

(qx+1 − qx)
2

2
)

ωx i.i.d., ω2
x ≥ ω2

− > 0
τx ∈ {0,1}, i.i.d., p = P(τx = 1)

jx = −g0px(qx+1 − qx) energy current,

κ = β2 lim
t→∞

C(t)

t
C(t) = lim sup

L→∞
⟨(∫

t

0
ds

1
√
L

L−1

∑
x=1

jx(s))

2

⟩
β
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Anharmonic disordered chain: heat transport

Wojciech De Roeck, Francois Huveneers, S.O., 2019

H(q,p) =
L

∑
x=1

(
p2x
2
+ ω2

x
q2x
2
+ gτx

q4x
4
+ g0

(qx+1 − qx)
2

2
)

Kunz-Souillard bound:

E(
L

∑
k=1

∣ψk(x)ψk(y)∣) ≤ Ce−∣x−y ∣/ξ ξ localization length.

If

γ ∶=
4

1 + (3ξ log( 1
1−p ))

−1
< 1,

holds, then

C(t) = O((log t)5tγ), i.e. κ = 0
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entropy evolution

∂tr = ∂xp ∂tp = ∂xτ ∂te = ∂x(τp)

p(t,0) = 0, τ(r(1, t),u(1, t)) = τ(t)

U = e − p2/2, β = ∂S
∂U , τ = − 1

β
∂S
∂r

For smooth solutions:

d

dt
S(u(y , t), r(y , t)) = β (∂te − p∂tp) − βτ∂tr

= β (∂x(τp) − p∂xτ − τ∂xp) = 0

The evolution is isoentropic in the smooth regime.
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Shocks, contact discontinuities, weak solutions, entropy
solutions

Even starting with initial smooth profiles, hyperbolic non-linear
systems develops discontinuities:

▸ shocks: discontinuities in the tension profile,

▸ contact discontinuities: discontinuities in the entropy profile.

When this happens we have to consider weak solution, that
typically are not unique.
In order to select the right physical solutions, various properties
(maybe equivalent) have been introduced:

▸ entropy solutions

▸ viscosity solutions
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Hydrodynamic limits with shocks

▸ No results for the full Euler equation (3 conserved quantities).

▸ Some results for the system in contact with a heath bath
(isothermal evolution), non-linear-wave equation with 2
conserved quantities: J. Fritz (2002 ARMA, stochastic
compensated compactness, along Tartar-Di Perna line),
Marchesani-O. (2019) with boundary tension.

▸ Well understood for scalar equation (ASEP to Burger, 1992
Rezhakhanlou, ...)
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MIcroscopic isothermal dynamics

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr1 = Np1dt + dJ r ,N1 (t)

dri = N(pi − pi−1)dt + dJ r ,Ni (t) − dJ r ,Ni−1 (t)

drN = N(pN − pN−1)dt + dJ r ,NN (t) − dJ r ,NN−1(t)

dp1 = N(V ′(r2) −V ′(r1))dt + dJp,N0 (t) − dJp,N1 (t)

dpi = N(V ′(ri+1) −V ′(ri))dt + dJp,Ni (t) − dJp,Ni−1 (t)

dpN = N(τ̄(t) −V ′(rN))dt − dJp,NN−1(t),

,

dJ r ,Ni (t) = NσN (V ′
(ri+1) −V ′

(ri))dt −
√

2β−1NσNdw̃i(t)

dJ r ,NN (t) = NσN (τ̄(t) −V ′
(rN))dt −

√
2β−1NσNdw̃N(t)

dJp,Ni (t) = NσN (pi+1 − pi)dt −
√

2β−1NσNdwi(t)

dJp,N0 (t) = NσNp1dt −
√

2β−1NσNdw0(t)

lim
N→+∞

σN
N

= lim
N→∞

N

σN2
= 0.
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Hyperbolic Scaling, Euler equations

we expect the weak convergence:

1

N
∑
x

G(x/N)(
rx(Nt)
px(Nt)

) Ð→
N→∞

∫

1

0
G(y)(

r(y , t)
p(y , t)

) dy

rt = py , y ∈ [0,1]

pt = τ(r)y p(t,0) = 0, τ[r(t,1)] = τ̄(t)

In the smooth regime of the equations results are obtained even
with conservation of energy (Euler equation) with some random
exchange of velocities:

▸ N. Even, S.O., ARMA (2014) (with boundary conditions),

▸ S.O., SRS Varadhan, HT Yau, CMP (1993) (periodic bc).

But when shocks appear, we have to consider weak solutions, and
from microscopic dynamics we cannot prove any better than L2

bounds.
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Weak solution for the p-system: viscous approximations

τ(r) = F ′(r) and τ ′(r) = F ′′(r) > 0.

rt = py , pt = τ(r)y

Viscous approximations

r δt = pδy + δr
δ
yy ,

pδt = τ(r
δ
)y + δp

δ
yy

First question is about the existence of the limit δ → 0. The main
tool is the compensated-compactness (Tartar, Murat, Ball, late
70’).

▸ R Di Perna, ARMA 1983: L∞ solutions, (no boundaries)

▸ J W Shearer, CommPDE 1994 Lp solutions, (no boundaries)

▸ S Marchesani, S. Olla, 2018 L2 solutions with boundaries.
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Viscous approximations

r δt = pδy + δr
δ
yy ,

pδt = τ(r
δ
)y + δp

δ
yy

First question is about the existence of the limit δ → 0. The main
tool is the compensated-compactness (Tartar, Murat, Ball, late
70’).
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weak solutions of the Cauchy problem with boundary
conditions

rt = py , pt = τ(r)y , y ∈ [0,1],

p(t,0) = 0, τ[r(t,1)] = τ̄(t) (??)

p(0, y) = p0(y), r(0, y) = r0(y).

v(t, y) = (r(t, y),p(t, y)) is a L2-solution of the Cauchy initial
data problem if t ∈ [0,T ]→ v(t, ⋅) is continuous in L2(0,1), and

∫

∞

0
∫

1

0
(ϕtr − ϕxp)dxdt = 0

∫

∞

0
∫

1

0
(ψtp − ψxτ(r))dxdt + ∫

∞

0
ψ(t,1)τ̄(t)dt = 0

where ϕ(⋅, x) and ψ(⋅, x) are compactly supported in
(0,∞) × [0,1]; and ϕ(t,1) = ψ(t,0) = 0 for all t ≥ 0.
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Viscosity approximation of the Cauchy Problem with
boundaries

r δt = pδy + δr
δ
yy , y ∈ [0,1],

pδt = τ(r
δ
)y + δp

δ
yy

We have two add two boundary conditions, and we choose them to
be on Neumann type:

pδ(t,0) = 0, τ(r δ(t,1)) = τ̄(t)

pδy(t,1) = 0, r δy (t,0) = 0

These Neumann bc disappear in the limit, and there is not the
problem to compute the boundary layer (that are not even defined
for silution in L2).
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Viscosity approximation of the Cauchy Problem with
boundaries

Assume some technical conditions on τ(r):

▸ c1 ≤ τ
′(r) ≤ c2 for some c1, c2 > 0 and all r ∈ R;

▸ τ ′′(r) ≠ 0 for all r ∈ R;

▸ τ ′′(r)(τ ′(r))−5/4, τ ′′′(r)(τ ′(r))−7/4 ∈ L2(R),

▸ τ ′′(r)(τ ′(r))−3/4, τ ′′′(r)(τ ′(r))−2 ∈ L∞(R).

Furthermore τ̄ ∶ R+ → R is smooth and τ̄(t) = τ1 for all t ≥ T⋆.

r δt = pδy + δr
δ
yy , y ∈ [0,1],

pδt = τ(r
δ
)y + δp

δ
yy

pδ(t,0) = 0, τ(r δ(t,1)) = τ̄(t)

pδy(t,1) = 0, r δy (t,0) = 0
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Viscosity approximation of the Cauchy Problem with
boundaries

Under the above technical conditions on τ(r), the solution of

r δt = pδy + δr
δ
yy , pδt = τ(r

δ
)y + δp

δ
yy

pδ(t,0) = 0, τ(r δ(t,1)) = τ̄(t), pδy(t,1) = 0, r δy (t,0) = 0

converges in Lp([0,T ] × [0,1]), p < 2, to the L2 weak solution of
Cauchy problem that satisfy the Clausius inequality:

F(v(t)) −F(v(0)) ≤W (t), ∀t ≥ 0

F(r ,p) = ∫
1

0
(
p(y)2

2
+ F (r(y))) dy free energy

W (t) = −∫
t

0
∫

1

0
τ̄ ′(s)r(s, x)dxds + ∫

1

0
(τ̄(t)r(t, x) − τ̄(0)r0(x))dx

= ∫

t

0
∫

1

0
τ̄(s)∂sr(s, x)dxds work done by τ̄ .
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Clausius inequality (entropy condition)

This is uniformly satisfied by the viscous solution (thanks to the
boundary conditions chosen): ∀t ≥ 0

W δ
(t) = ∫

t

0
τ̄(s)dLδ(s), L(s) ∶= ∫

1

0
r δ(s, x)dx

F(v δ(t)) = ∫
1

0
(
pδ(t, y)2

2
+ F (r δ(t, y))) dy

F(v δ(t)) −F(v(0)) ≤W δ
(t) − δ∫

t

0
∫

1

0
(τ ′(r δ)(r δx )

2
+ (pδx)

2)dxds

≤W δ
(t) − δ(C ∧ 1)∫

t

0
∫

1

0
((r δx )

2
+ (pδx)

2)dxds

since F ′′(r) = τ ′(r) ≥ C > 0.

In this sense any limit point is an entropy solution.
Of course it is a very challenging problem to prove uniqueness of
these solutions.
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