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Results Random Tilings

Lozenge Tilings

Triangular lattice T

x

y
T

Consider tilings of subdomains of T using three types of lozenges.
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Results Random Tilings

Lozenge Tiling of a Hexagon

Tiling of a hexagon

How does a uniformly random tiling “look” when the domain is large?
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Results Random Tilings

Tiling of a Small Hexagon

Figure 2 of “Lectures on Dimers,” by R. Kenyon.
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Results Random Tilings

Tiling of a Large Hexagon

Figure 4 of “Lectures on Dimers,” by R. Kenyon.
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Results Random Tilings

Tiling of a Larger Hexagon

Figure from https://www.math.colostate.edu/~kenmcl/RMT.html.
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Results Random Tilings

Tilings of Other Shapes

Figure 1 of “Limit shapes and the complex Burgers equation,” by R. Kenyon and A. Okounkov.
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Results Random Tilings

Tilings of Other Shapes

Figure 15 of “Random Tilings with the GPU,” by D. Keating and A. Sridhar.
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Results Local Statistics

Local Statistics of Lozenge Tilings

Consider a uniformly random tiling of a domain R ⊂ T.
Fix a vertex v ∈ R and consider an O(1)-neighborhood of v.

How does the tiling look in this neighborhood? Equivalently, what are
the correlation functions for nearly neighboring tiles?
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Results Local Statistics

Boundary Conditions

Kasteleyn (1961): How do the local statistics around v depend on R?

Theorem (A., 2019; Informal Version)
Let R be a large tileable domain. Then the local statistics of a uniformly
random tiling of R around a vertex v ∈ R are asympotically determined by the
local densities of the three types of tiles around v.
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Results Local Statistics

Different Behaviors for Similar Domains

Figures due to L. Petrov.
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Results Global Law

Height Functions

A height function H : R→ Z is one that satisfies f (v)− f (u) ∈ {0, 1}
whenever u = (x, y) and v ∈

{
(x + 1, y), (x, y + 1), (x + 1, y + 1)

}
.

If R is simply-connected, then associated with any tiling of R is a height
function (unique up to shifts).
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Results Global Law

Boundary Height Functions

Up to global shifts, the restriction of this height function to ∂R is
independent of the tiling.

Any height function with this restriction to ∂R gives rise to a tiling on R.

Any height function on R gives rise to a free tiling on R, whose tiles are
permitted to extend past ∂R and include a face of T \ R.
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Results Global Law

Admissible Functions

Define T =
{
(s, t) ∈ R2

>0 : s + t < 1
}

.
Fix a bounded, open, nonempty set R ⊂ R with boundary ∂R.
Let Adm(R) denote the set of Lipschitz functions F : R→ R such that
∇F(z) ∈ T for almost every z ∈ R.

(0, 0) (1, 0)

(0, 1)

T
F

R

f

For any f : ∂R→ R, set Adm(R; f ) =
{

F ∈ Adm(R) : F|∂R = f
}

.
If Adm(R; f ) is not empty, then f admits an admissible extension to R.
We view Adm(R) as possible scaling limits for a height function.
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Results Global Law

Entropy Functional and Maximizers

Define the Lobachevsky function L : R>0 → R by setting

L(x) = −
∫ x

0
log |2 sin z|dz.

Define the surface tension σ : T → R by, for any (s, t) ∈ T , setting

σ(s, t) =
1
π

(
L(πs) + L(πt) + L

(
π(1− s− t)

))
.

For any F ∈ Adm(R), define the (weakly concave) entropy functional

E(F) =
∫
R
σ
(
∇F(z)

)
dz.

If h : ∂R→ R admits an admissible extension to R, then
H ∈ Adm(R; h) is a maximizer of E on R with boundary data h if
E(H) ≥ E(G) for any G ∈ Adm(R; h).
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Results Global Law

Variational Principle

Let R ⊂ R2 denote a simply-connected, bounded domain with piecewise smooth, simply
boundary.

Let h : ∂R→ R admit an admissible extension to R.

LetH ∈ Adm(R; h) be the maximizer of E on R with boundary data h.

Let R1,R2, . . . ⊂ T denote simply-connected, tileable domains with boundary height
functions h1, h2, . . ., respectively.

Suppose that limN→∞ N−1RN = R.

Define hN : ∂(N−1RN)→ R by setting hN(N−1u) = N−1hN(u) for each u ∈ ∂RN .

Suppose that limN→∞ hN = h.

Cohn–Kenyon–Propp (2001): Let HN denote the height function associated
with a uniformly random lozenge tiling of RN , with boundary height function
hN . Then, for any δ > 0,

lim
N→∞

P
[
max
v∈RN

∣∣N−1HN(v)−H(N−1v)
∣∣ > δ

]
= 0.
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Results Global Law

The Set X

If M is a tiling, then let X = X(M) denote the set of all (x, y) ∈ Z2 such
that

(
x + 1

2 , y
)

is the center of some vertical lozenge in M.
The set X(M) determines M.

For any ξ ∈ H and x1, x2, y1, y2 ∈ Z, the extended discrete sine kernel is

Kξ(x1, y1; x2, y2) =
1

2πi

∫ ξ

ξ
(1− z)y1−y2zx2−x1−1dz.
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Results Local Statistics Results

Infinite Volume Measures

Okounkov–Reshetikhin (2003): For any ξ ∈ H, there exists a probability
measure µξ on the set of tilings of T such that

P

[
m⋂

k=1

{
(xk, yk) ∈ X(M)

}]
= det

[
Kξ(xi, yi; xj, yj)

]
1≤i,j≤m,

where M ∈ E(T) is sampled under µξ.

If (s, t) ∈ T and ξ = eπis sin(πt)
sin(π−πs−πt) , then the proportion of the tiles

below are s, t, and 1− s− t.

s t 1− s− t

The measure µs,t is an translation-invariant, extremal Gibbs measure.
Its height function satisfies E

[
H(1, 0)− H(0, 0)

]
= s and

E
[
H(0, 1)− H(0, 0)

]
= t, and so its slope is (s, t).
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Results Local Statistics Results

Local Statistics Results

Adopt the notation and assumptions in the variational principle.

Let MN denote a uniformly random lozenge tiling of RN .

Fix v ∈ R such that∇H(v) ∈ T .

Let vN ∈ RN be such that limN→∞ N−1vN = v.

Set (s, t) = ∇H(v).

Theorem (A., 2019)
The local statistics of MN around vN are given by µs,t.

Predicted by Cohn–Kenyon–Propp in 2001

Universality in the domain, in that the limiting local statistics around vN

only depend on ∇H(v)
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Results Local Statistics Results

Previous Results

Domains
Baik–Kreicherbauer–McLaughlin–Miller (2007), Gorin (2008): Hexagons
Petrov (2014): Trapezoids
Gorin (2017): Domains “covered” by trapezoids
Laslier (2017): Bounded perturbations of the above

Many of these results are based on analysis of an Kasteleyn matrix
K = KR, which satisfies

P

[
m⋂

k=1

{
vk ∈ X(M)

}]
= det

[
K−1(vi, vj)

]
1≤i,j≤m.

Issue: Inverse Kasteleyn matrix entries unstable under perturbations of R
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Proof Methods Random Path Ensembles

Non-Intersecting Paths

A path is a integer sequence q =
(
q(0), q(1), . . . , q(t)

)
such that

q(i + 1)− q(i) ∈ {0, 1} for each i.

An ensemble Q = (q1,q2, . . . ,qn)of paths is non-inersecting if
q1(s) < q2(s) < · · · < qn(s) for each s.

q1(0) q2(0) q3(0) q4(0) q5(0) q6(0)

q1(5) q2(5) q3(5) q4(5) q5(5)q6(5)

q2 q3 q4 q5q1 q6

Bijection between non-intersecting path ensembles and lozenge tilings
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Proof Methods Random Path Ensembles

Random Non-Intersecting Path Ensembles

Fix initial data a = (a1, a2, . . . , an) ∈ Zn and β ∈ (0, 1).

Let Q = (q1,q2, . . . ,qn) be an ensemble of n Bernoulli random walks,
with jump probability β, starting at a1, a2, . . . , an and conditioned to
never intersect.

Its probability distribution is given by

Pβ;a[Q] = β|q(t)|−|a|(1− β)(m+n+1)t−|q(t)|+|a|
∏

−m≤j<k≤n

qk(t)− qj(t)
ak − aj

,

if Q is non-intersecting and 0 otherwise, where
q(t) =

(
q1(t), q2(t), . . . , qn(t)

)
and |p| =

∑
p∈p p.

Conditional on the final data q(t), Q is uniform (for any β).
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Proof Methods Random Path Ensembles

Universality Results for Non-Intersecting Random Walks

The model Pβ;a is the discrete analog of β = 2 Dyson Brownian motion.

Gorin–Petrov (2016): It is a determinantal point process with explicit
kernel (discrete analog of Brézin–Hikami identity).

Gorin–Petrov (2016): Suppose 1� U � T � V � N are scales and
a = (a1, a2, . . . , aN) is an initial data sequence that is approximately
uniform on any length U subinterval of [x0 − V, x0 + V]. Then the local
statistics of the non-intersecting random walk model Pβ;a, run for time T ,
converge around site x0 to a measure µs,t.

Discrete analog of results for Dyson Brownian motion by Erdős–Schnelli
(2017), Landon–Yau (2017), and Landon–Sosoe–Yau (2019)
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Proof Methods Proof Outline

Outline

Tileable R = RN ≈ NR ⊂ T
Uniformly random tiling M = MN

Associated height function H : R→ Z
Vertex v = vN ≈ Nv of R

We will prove universality by “locally comparing” M around v with a random
non-intersecting path ensemble.

1 Local Law: Establish a local law for M, that is, H is approximately linear
with slope ∇H(v) on any mesoscopic scale.

2 Comparison: Exhibit a coupling between M and a non-intersecting
random path ensemble P sampled under some Pβ;a, such that the two
models coincide around v with high probability.

3 Universality: Use results of Gorin–Petrov (and the local law) to show
that the local statistics of P around v are universal, and conclude that the
same holds for M.

Analogous to “three-step strategy” in random matrix theory
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Proof Methods Proof Outline

The Local Law

Assume R = B and BN−2 ⊂ R ⊂ BN (but no assumptions on the boundary height function).

Proposition (A., 2019)

For c = 1
20000 and any 1 ≤ M ≤ N,

P

[
max
|u−v|<M

∣∣∣M−1(H(u)− H(v)
)
−M−1(u− v) · ∇H(v)

∣∣∣ > (logM)−c

]
< CM−D.

Proof is based on a combination of a multi-scale analysis with estimates
obtained using the integrability of the tiling model.
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Proof Methods Comparison

Outline of the Comparison

Let v0 = (x0, y0) ∈ R.

Fix an integer 1� T � N ∼ diam(R).

Define the vertex u0 = v− (0, T) = (x0, y0 − T) ∈ R.

Interpret M as an ensemble Q of non-intersecting paths, and let q denote
the locations where these paths intersect the horizontal line {y = y0−T}.

R

v0

u0

T
v0

u0
q
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Proof Methods Comparison

Outline of the Comparison

Introduce particle configurations p and r that coincide with q near u0, but
are to the left and right of q, respectively, away from u0.

Define two random path ensembles P ∼ Pβ1;p and R ∼ Pβ2;r with
β1 ≈ β2, and show that there exists a coupling between (P,Q,R) such
that Q is likely bounded between P and R.

p
P

u0

v0

q
Q

u0

v0

r
R

u0

v0
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Proof Methods Comparison

Outline of the Comparison

Use identities from Gorin–Petrov to prove that the expected difference
between the height functions associated with P and R tends to 0 in a
large neighborhood of u0 (containing v0).

Using the ordering between (P,Q,R) and a Markov bound, conclude
that one can couple them to coincide near v0 with high probability.

p
P

u0

v0

q
Q

u0

v0

r
R

u0

v0
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