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Things I learned from Yau
Spectral gaps for lattice systems (Martingale Method)
Lu, S.-L., Yau, H.-T.: Spectral gap and logarithmic Sobolev
Inequality for Kawasaki and Glauber dynamics. Commun.
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Outline
I Quasi-particles and excitation spectrum

I Kitaev’s quantum double models — the toric-code model

I Infinite systems, GNS representation, (in)equivalent
representations, superselection sectors

I Stability of superselection sectors
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Excitations as particles.
(i) Spin waves in the Heisenberg ferromagnet: a model of
quantum spins on the d-dimensional lattice Zd with isotropic
nearest neighbor interactions:

HXXX =
∑
|x−y |=1

(S21l− Sx · Sy ).

Holstein and Primakoff (1940) observed that the excitations
above the ground state (spin waves) can be regarded as
(weakly) interacting bosons with a hard-core constraint.

(ii) The quantum XY chain.

HXY = −
∑
x

σX
x σ

X
x+1 + σY

x σ
Y
x+1 − h

∑
x

σZ
x ,

was solved by mapping it to a system of free fermions
(Lieb-Schultz-Mattis, 1961).
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With a particle description of the elementary excitations in
hand, whether it be fermions or bosons, non-interacting or
(weakly) interacting, we obtain, at least at the heuristic level,
a model for the spectrum and dynamics of the many-body
system. This is often a starting point for further analysis of
what is, generally, a very hard (intractable) problem.

It is important, however that these (quasi-)particle
representations are robust to a degree.

In two space dimensions, particle-like states called anyons,
obeying a more general form of statistics, can play the same
role. We are interested in the stability of their structure.



6

There is a difference between the bosons of XXX and the
fermions in the XY chain (in addition to the different
statistics):

XXX: local

S+
x =

√
2Sb+

x

[
1l− b+

x bx
2S

]1/2

+

;

XY: non-local
σ+
x = c+

x

∏
y<x

(2c+
y cy − 1l).

We aim to prove ‘stability’ of the quasi-particles, including the
non-local excitations such as, e.g., the anyons of the
quantum-double models.
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Kitaev’s quantum double models (QDM)
(Kitaev, 2003)

• For concreteness, focus on the Toric Code model (TCM).
There is a QDM for every finite group G (G = Z2 for TCM).
• Everything generalizes to arbitrary abelian G and many
results also for non-abelian G .
• He = C2 for all e ∈ E(Z2), the edges of the square lattice,
and we are interested in the infinite-volume model.

a b
cd

t

r
v

u H =
∑

v (1l− Av )

+
∑

f (1l− Bf )

Bf = σ3
aσ

3
bσ

3
cσ

3
d

Av = σ1
r σ

1
t σ

1
uσ

1
v
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The TCM on the infinite lattice

• On all of Z2, the model has a unique frustration free (FF)
ground state (Alicki-Fannes-Horodecki, 2007): there is a unique
state ω0 on the infinite lattice such that
ω0(1l− Av ) = ω0(1l− Bf ) = 0 for all vertices v and faces f of
the infinite square lattice. (ω0 is a normalized positive linear
functional on the algebra of local observables.)
• AFH prove this using the algebra satisfied by the Av and Bf ,
by showing that the vanishing of these expectations
determines all expectation values.

An alternative description of ω0 is a gas of loops on (dual) Z2:



9

• We represent the spin configurations as a set of paths in the
dual lattice:
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+ spin =

• (1l− Bf ) vanishes when the number of − spins is even in all
plaquettes, and the terms (1l− Av ) preserve this condition.
Note that acting with a product of Av ’s on the all +
configuration creates closed loops.
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The FF ground state is the equal-weigth superposition of all
configurations of closed loops.
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However, it is also clear that the class of configurations that
have one half-infinite dual path ending in f , is also stable
under the action of the operators Av :
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The end point can be moved around by local operators but
cannot be removed. These are excited states of energy 2.
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• The equal-weight superposition of all configurations with
fixed end-point is an eigenvector of the Hamiltonian. This
state can be obtained from the vacuum Ω by applying a string
operator: let ρ be a dual path beginning in p and ending in q,
and define the unitary operator

F µρ =
∏
x∈ρ

σ1
x ,

and take limq→∞.
• All configurations correspond to a configuration of dual
paths, some open, some closed. Local operators can locally
modify them by flipping spins, but parity of # of endpoints is
invariant.
• The role of σ3 and σ1 can be interchanged if we replace the
lattice Z2 by the dual lattice, again Z2 (and the same set of
spins).
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Electric and Magnetic Excitations
Omitting the soup of closed loops from the picture, the
‘electric’ (ε) and ‘magnetic’ (µ) excited states are associated
with the end points of half-infinite paths and dual paths,
respectively:
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On the infinite lattice these span `2(Z2)⊕ `2(Z2) worth of
energy 2 excitations.
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We also introduce ribbon states as the subspace of excitations
of energy 4 that a combination of ε at vertex v and µ at face
f , with v ∈ f :
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On the infinite lattice this is a subspace ∼= `2(Z2)⊗ C4.
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Fixed anyon number representations / spaces
Infinite system: diagonalize Hamiltonian in a GNS
representation (or diagonalize Heisenberg dynamics).
• Let (H0, π0,Ω0) be the GNS triple of ω0, the unique
frustration-free ground state of the Toric Code model on Z2.
• Let ρ be a dual path beginning in f and ending in f ′, and
consider π0(F µρ )Ω0. This is a 2-anyon state and we are
interested in single-anyon excitations.
• Let ρ be a half-infinite dual path starting in f , and consider
limn→∞ π0(F µρn)Ω0, with ρn given by the first n edges in ρ.
But this converges weakly to 0. Nevertheless, we can define
the matrix elements of the Hamiltonian:

lim
Λ↑Z2

lim
n→∞
〈π0(F µρ′n)Ω0, π0(HΛ)π0(F µρn)Ω0〉,

where ρ′ starts at f ′.
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This works because
〈π0(F µρ′n)Ω0, π0(HΛ)π0(F µρn)Ω0〉 = 〈Ω0, π0(F µρ′nHΛF

µ
ρn)Ω0〉, and

τµf (A) = lim
n→∞

F µρnAF
µ
ρn , A ∈ Aloc = ∪Λ⊂⊂Z2AΛ.

converges and defines an automorphism on Aloc, and

lim
n→∞

F µρ′nAF
µ
ρn = F µf→f ′τ

µ
f (A).

The resulting matrix elements define a bounded s.a. operator
on Hµ ∼= `2(Z2), so energies are well-defined, but this space
cannot be interpreted as a subspace of H0.
Similarly, define τ εv and τ εµ(v ,f ) using lattice paths and double
paths for the ribbon states that start at vertex v and a pair
(v , f ) for the ribbon, and define the corresponding anyon
Hamiltonians on separate Hilbert spaces Hε ∼= `2(Z2) and
Hεµ ∼= `2(Z2)⊗ C4.
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Define

ωµf = ω0 ◦ τµf ; ωµf (A) = lim
n→∞

ω0(F µρnAF
µ
ρn), A ∈ Aloc.

What is the GNS representation of ωµ?

ωµf (A) = ω0 ◦ τµf (A) = 〈Ω0, π0(τµf (A))Ω0〉.

Therefore, we can take the GNS triple given by (H0, π
µ
f ,Ω0),

with πµf = π0 ◦ τµf .
Since for any face f ′, τµf ′(A) = F µf→f ′τ

µ
f (A)F µf→f ′ , π

µ
f and πµf ′

are unitarily equivalent representations and ωµf and ωµf ′ are
vector states in the same Hilbert space.

Similarly, we have representations πεv and πεµv ,f .
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We now have four classes of states and representations:

K 0 = {π0}
Kµ = {πµf | any face f }
K ε = {πεv | any vertex v}
K εµ = {πεµv ,f | any vertex v , and face f }

Within each class the representations are equivalent. Two
representations from different classes are inequivalent.
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The ε and µ anyons behave as hard-core bosons which,
however, have mutual statistics: moving one around the other
multiplies the state vector by −1. Their combination, the
ribbons, are Majorana fermions.

The Stability Question: if the TCM is subjected to (small)
perturbations

H(λ) = HTC + λ
∑
X

Φ(X )

do we still have a basis for describing the system in terms of
these particular anyon types?
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A more precise version of the question
We adopt from QFT (‘local quantum physics’
(Doplicher-Haag-Roberts)) the notion that particle types are
given by superselection sectors.
A superselection sector is an equivalence class of
representations of the observable algebra generated by
composing the vacuum representation π0 with
endopmorphisms τ that satisfy a set of (physically motivated)
criteria.
• What are the appropriate criteria for the endomorphisms?
• Is the structure of superselection sectors stable under
perturbations?
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Superselection criteria
1) Almost-locality in cones: we denote the set of cones in Z2

with opening angle α by Cα and require of τ that there is
α ∈ (0, π) and Λ ∈ Cα, such that for all k ≥ 0

lim
n→∞

nk sup
A∈AΛcα−n,‖A‖=1

‖τ(A)− A‖ = 0

where ‘−n’ denotes translation by n in the direction opposite
to the forward direction of the axis of Λ.
2) transportability with respect to the vacuum state: for any
two cones Λ,Λ′ ∈ Cα, and τ (almost) localized in Λ, there is
an equivalent τ ′ (almost) localized in Λ′.
‘Almost locality’ is the quasi-local version of the ‘locality’
employed by Doplicher-Haag-Roberts (1971-74) in algebraic
QFT and the strict locality in cones used for the TCM by
Naaijkens (2011). It is used in Cha’s PhD thesis (2017) to treat
perturbations of TCM.
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Superselection sectors of the TCM
The superselection sectors of the TCM given as the
equivalence classes of automorphisms localized in cones
(Naaijkens 2011) is given by 4 classes of states equivalent to 4
classes of ground states K 0,K ε,Kµ,K εµ and can be given the
structure of the braided C ∗ tensor category of the
representations of the quantum double D(G = Z2).

• Next, if we add a finite-energy condition, we can show that
this structure is stable under uniformly small perturbations of
the TCM.

In particular, the same type of anyons describe its low-energy
excitations.
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Stability of the superselection sectors
• A general class of perturbations of the Hamiltonian:

HΛ(s) = HTC
Λ + s

∑
X⊂Λ

Φ(X ).

with Φ an interaction such that for some a > 0

‖Φ‖a = sup
x ,y∈Z2

ea|x−y |
∑
X⊂Z2

x,y∈X

‖Φ(X )‖ <∞,

For what follows it will be important that HTC
Λ is

frustration-free, gapped, and that its ground states satisfy a
property called Local Topological Quantum Order.
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Theorem (Cha 2017, Cha-Naaijkens-N arXiv:1804.03203)
There exists s0 > 0 such that for |s| ≤ s0, there exists a
quasi-local automorphism αs with the following properties:
(i) αs is the dynamics corresponding to a time-dependent
short-range interaction Ψ(s) (Bachmann et al. 2012)

(ii) ω0 ◦ αs is a translation invariant infinite volume ground
states of the perturbed model, with a positive spectral gap
(Bravyi-Hastings-Michalakis, JMP 2010);
(iii) K k ◦ αs , for k ∈ {0, ε, µ, εµ}, describe the finite-energy
superselection sectors of the perturbed model and are
generated by almost localized automorphisms
τ ks = α−1

s ◦ τ k ◦ αs ;
(iv) The set of superselection sectors of the perturbed model
has the same braided (C ∗-) fusion tensor category structure as
TCM.
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Comments and Outlook
I Exploiting quasi-locality is an essential ingredient in many

recent results, and can be applied to extended operators.

I Frustration-free models turn out to be a very useful class
of examples.

I Stability of the superselection sectors also comes with
stability of anyons (fusion and braiding). Anyons exist.

I Thermodynamics and effective equations for many-anyon
systems?

I The nature and role ‘edges states’ for infinite systems
with boundary needs mathematical investigation.
Bulk-Edge correspondence.

I Interesting examples of stable non-abelian anyons?


