Central Limit Theorem for the entanglement entropy of free disordered fermions

M.Shcherbina

Institute for Low Temperature Physics Ukr. Ac. Sci., Kharkov, Ukraine

based on the joint papers with

L.Pastur

Workshop "From Many Body Problems to Random Matrices" BIRS, 4-9 August 2019

Anderson model

Random Schrödinger operator in \mathbb{Z}^d

$$(\mathrm{H}\psi)(\mathrm{x}) = \mathrm{V}(\mathrm{x})\psi(\mathrm{x}) + \sum_{\mathrm{x}':|\mathrm{x}'-\mathrm{x}|=1}\psi(\mathrm{x}'), \quad \mathrm{x}, \mathrm{x}' \in \mathbb{Z}^{\mathrm{d}}, \psi \in \mathrm{l}_2[\mathbb{Z}^{\mathrm{d}}]$$

 $\{V(x)\}_{x\in\mathbb{Z}^d}$ -i.i.d. random variables

Spectral projections

Let $\mathcal{E}_{H}(\lambda)$ be a resolution of identity, and $P = \mathcal{E}_{H}(E)$ be its spectral projection corresponding the interval $I = (-\infty, E]$.

<ロ> (四) (四) (日) (日) (日)

Large box entanglement entropy

Entanglement entropy

Consider a large box

$$\Lambda = [-\mathrm{L},\mathrm{L}]^{\mathrm{d}}, \quad \mathrm{P}_{\Lambda}(\mathrm{x},\mathrm{y}) = \mathbf{1}_{\Lambda}(\mathrm{x})\mathrm{P}(\mathrm{x},\mathrm{y})\mathbf{1}_{\Lambda}(\mathrm{y})$$

Entanglement entropy, corresponding Λ

$$\begin{split} &S_{\Lambda} = \operatorname{Tr}_{\Lambda} h(P_{\Lambda}) \\ &h(t) = -t \log t - (1-t) \log(1-t), \quad t \in [0,1] \end{split}$$

We study the properties S_{Λ} , as $L \to \infty$, in particular:

$$\begin{split} & \mathrm{E}\{\mathrm{S}_{\mathsf{A}}\}\sim\mathrm{L}^{\mathrm{m}(\mathrm{d})}, \quad \mathrm{m}(\mathrm{d})-? \\ & \mathrm{Var}\{\mathrm{S}_{\mathsf{A}}\}\sim \quad \mathrm{L}^{\mathrm{m}_{1}(\mathrm{d})}, \quad \mathrm{m}_{1}(\mathrm{d})-? \\ & \mathrm{L}^{-\mathrm{m}_{1}(\mathrm{d})/2}(\mathrm{S}_{\mathsf{A}}-\mathrm{E}\{\mathrm{S}_{\mathsf{A}}\}) \rightarrow \quad ? \end{split}$$

<ロ> (四) (四) (日) (日) (日)

Toy model of non interacting fermions

Consider a quadratic quantum Hamiltonian

$$\widehat{H} = \sum_{x,y\in\Omega} H(x,y)c^+(x)c^-(y), \quad x,y\in\Omega = [-N,N]^d$$

where $c^{-}(x)$, $c^{+}(x)$ are the Fermi annihilation and creation operators

$$\{c^{-}(x), c^{+}(y)\} = \delta_{xy}$$

H(x,y) assumed to be self-adjoint operator H(x,y)=H(y,x). Consider $\Lambda=[-L,L]^d\subset \Omega$

1 << L << N

Then \hat{H} acts in $\mathcal{H}(\Lambda) \otimes \mathcal{H}(\Omega \setminus \Lambda)$. If we consider the density matrix $\hat{\rho}$ of \hat{H} and set

$$\rho_{\Lambda} = \operatorname{Tr}_{\Omega \setminus \Lambda}(\rho),$$

then entanglement entropy of Λ is

$$S_{\Lambda} = \lim_{N \to \infty} \operatorname{Tr} \rho_{\Lambda} \log_2 \rho_{\Lambda}.$$

Link with Szegö's theorem

Determinant of the Toeplitz matrix

Consider an infinite Toeplitz matrix in d = 1 case

$$A_{jk}=A_{j-k,0}=A_{j-k},\quad A=a(H_0),$$

where H_0 is a discrete Laplace operator. We restrict A on the interval $\Lambda = [-L, L]$

$$A^{(L)} = \mathbf{1}_{[-L,L]} A \mathbf{1}_{[-L,L]} = \mathbf{1}_{[-L,L]} a(H_0) \mathbf{1}_{[-L,L]} = a_{\mathsf{A}}(H_0)$$

and consider

$$\log \det A^{(L)} = \operatorname{Tr} \log a_{\Lambda}(H_0)$$

The same happens in d > 1 case.

Hence the logarithm of the Toeplitz determinant is some special case of the functional of operator, which is determined by two functions a and φ and by the cube Λ

$$\Psi_{\Lambda}[\mathrm{H}_{0}; \mathrm{a}, \varphi] = \mathrm{Tr}\,\varphi(\mathrm{a}_{\Lambda}(\mathrm{H}_{0})).$$

Szegö's theorem

Under rather general assumptions (when a and φ are e.g. C₁)

$$\Psi_{\Lambda}[\mathrm{H}_{0}; \mathrm{a}, \varphi] = \mathrm{L}^{\mathrm{d}} \mathrm{C}_{0}(\nu) + \mathrm{L}^{\mathrm{d}-1} \mathrm{C}_{1}(\mathrm{a}, \varphi) + \mathrm{o}(\mathrm{L}^{\mathrm{d}-1})$$

where

$$\nu(\mathbf{x}) = \varphi(\mathbf{a}(\mathbf{x}))$$

The first term is proportional to the volume of Λ (volume term) and the second is proportional to the area of the faces of Λ (area term). If a or φ have a finite number of jumps, then

$$\Psi_{\Lambda}[H_0; a, \varphi] = L^d C_0(\nu) + L^{d-1} \log L C_1'(a, \varphi) + o(L^{d-1} \log L).$$

Here we have the violation of the area law.

Results on the asymptotic of entanglement entropy can be treated as a stochastic analogue of Szegö's theorem, when

$$a(x) = 1_{(-\infty,E]}(x), \quad \varphi(x) = h(x).$$

Remark that in this case

$$\nu(\mathbf{x}) = 0.$$

M.Shcherbina (ILTP)

The most general setting

Let H be a random Schrödinger operator with i.i.d. potential.

Given two functions a and φ we want to study the asymptotic behaviour of the functional

$$\Psi_{\Lambda}[\mathrm{H}; \mathrm{a}, \varphi] = \mathrm{Tr}\,\varphi(\mathrm{a}_{\Lambda}(\mathrm{H}))$$

in the limit $L \to \infty$.

The simplest case a(x) = x. Law of Large Numbers

In this case we have

$$\Psi_{\Lambda}[\mathrm{H};\mathrm{a},\varphi]=\mathrm{Tr}\,\varphi(\mathrm{H}_{\Lambda})=\sum\varphi(\lambda_{\mathrm{i}}(\mathrm{H}_{\Lambda}))=\mathcal{N}_{\Lambda}[\varphi],$$

where $\mathcal{N}_{\Lambda}[\varphi]$ is a linear eigenvalue statistics of H_{Λ} .

It is well known that there exists a measure σ , such that we have a volume law

$$|\mathsf{A}|^{-1}\mathrm{E}\{\mathcal{N}_{\mathsf{A}}[\varphi]\} \to \int \varphi(x) \mathrm{d}\sigma(x), \text{ as } L \to \infty.$$

We have also self averaging property

$$\operatorname{Var}\left\{|\mathsf{\Lambda}|^{-1}\mathcal{N}_{\mathsf{\Lambda}}[\varphi]\right\} \to 0, \text{ as } \mathcal{L} \to \infty.$$

The simplest case a(x) = x. CLT

Sobolev space \mathcal{H}_{α}

We say the $\varphi \in \mathcal{H}_{\alpha}$ if

$$||\varphi||_{\alpha}^{2} = \int (1+2|\mathbf{k}|)^{2\alpha} |\widehat{\varphi}(\mathbf{k})|^{2} d\mathbf{k}, \quad \widehat{\varphi}(\mathbf{k}) = \frac{1}{2\pi} \int e^{i\mathbf{k}\mathbf{x}} \varphi(\mathbf{x}) d\mathbf{x}.$$

Theorem

If $\varphi \in \mathcal{H}_{\alpha}$ with $\alpha > 1$, then

 $|\Lambda|^{-1/2} \big(\mathcal{N}_{\Lambda}[\varphi] - \mathrm{E}\{\mathcal{N}_{\Lambda}[\varphi]\} \big) \to (\mathcal{V}\varphi,\varphi)^{1/2} \mathcal{N}(0,1), \text{ as } L \to \infty,$

where \mathcal{V} is non negative bounded operator in \mathcal{H}_{α} .

<ロ> (四) (四) (日) (日) (日)

Case of smooth a, φ

Theorem[Large Numbers Law][Pastur,S:18]

Let $a \in \mathcal{H}_{\theta}$, $\theta > (d + 1)/2$, and $\nu \in \mathcal{H}_{\alpha}$ with $\alpha > 1$ ($\nu(x) = \varphi(a(x))$), then there exists a measure σ , such that we have a volume law

$$|\Lambda|^{-1} \mathrm{E}\{\Psi_{\Lambda}[\mathrm{H};\mathrm{a},\varphi]\} \to \int \nu(\lambda) \mathrm{d}\sigma(\lambda), \text{ as } \mathrm{L} \to \infty.$$

Theorem[CLT for smooth case][Pastur,S:18] If $a \in \mathcal{H}_{\theta}, \theta > (d+1)/2$ and $\nu \in \mathcal{H}_{\alpha}$ with $\alpha > 1$, then $|\Lambda|^{-1/2}(\Psi_{\Lambda}[H; a, \varphi] - E\{\Psi_{\Lambda}[H; a, \varphi]\}) \rightarrow (\mathcal{V}\nu, \nu)^{1/2}_{\alpha}\mathcal{N}(0, 1), \text{ as } L \rightarrow \infty.$

イロン イヨン イヨン イヨン

Case of
$$a = 1_{(-\infty, E]}, \varphi = h$$

Recall that in this case

$$\nu(\mathbf{x}) = \mathbf{h}(\mathbf{a}(\mathbf{x})) = 0,$$

so no hope to use previous results directly.

Observe that h(t) is symmetric with respect to x = 1/2

$$h(1/2 - t) = h(1/2 + t).$$

Hence there is an increasing function h_0 defined on (0, 1/4) such that

$$\begin{split} h(t) &= h_0(x(t)), \quad x(t) = t(1-t), \quad x \in [0, 1/4] \\ \Leftrightarrow h_0(x) &= h(t(x)), \quad t(x) = \frac{1}{2}(1 - \sqrt{1 - 4x}) \end{split}$$

It is easy to check that $h'_0(x) \to 2$, as $x \to 1/4$. Hence we can extend $h_0(x)$ to \mathbb{R} in such a way that $h_0 \in \mathcal{H}_{3/2-\varepsilon}$. Since $0 \leq P_{\Lambda} \leq 1$ it is evident that for any such extension

$$\operatorname{Tr} h(P_{\Lambda}) = \operatorname{Tr} h_0(P_{\Lambda}(1 - P_{\Lambda}))$$

《曰》 《圖》 《문》 《문》

New setting

Operator Π_Λ

$$\Pi_{\Lambda}=P_{\Lambda}(1-P_{\Lambda}); \quad \Pi_{\Lambda}(x,y)=\sum_{z\not\in\Lambda}P(x,z)P(y,z), \quad x,y\in\Lambda$$

Linear eigenvalue statistics of Π_Λ

$$\mathcal{N}_{\Lambda}[\varphi;\Pi_{\Lambda}] = \operatorname{Tr} \varphi(\Pi_{\Lambda}), \quad \mathcal{N}^{\circ}_{\Lambda}[\varphi;\Pi_{\Lambda}] = \mathcal{N}_{\Lambda}[\varphi;\Pi_{\Lambda}] - \operatorname{E} \{\mathcal{N}_{\Lambda}[\varphi;\Pi_{\Lambda}]\}$$

We study the behaviour of the random variable $\mathcal{N}_{\Lambda}[\varphi]$, as $\Lambda \to \infty$. The same questions:

$$\begin{split} & \mathrm{E}\{\mathcal{N}_{\Lambda}[\varphi;\Pi_{\Lambda}]\}\sim\mathrm{L}^{\mathrm{m}(\mathrm{d})}\phi_{0}, \quad \mathrm{m}(\mathrm{d})-?\\ & \mathrm{Var}\{\mathcal{N}_{\Lambda}[\varphi;\Pi_{\Lambda}]\}\sim\mathrm{L}^{\mathrm{m}_{1}(\mathrm{d})} \quad \mathrm{m}_{1}(\mathrm{d})-?\\ & \mathrm{L}^{-\mathrm{m}_{1}(\mathrm{d})/2}\mathcal{N}_{\Lambda}^{\circ}[\varphi;\Pi_{\Lambda}] \rightarrow \end{split}$$

Localization assumptions

Our main technical assumption is that the so-called fraction moment criteria for the Anderson localization is fulfilled, i.e. for some s < 1

$$\mathbb{E}\{|(\mathbf{H} - \mathbf{E} - \mathbf{i}\varepsilon)^{-1}(\mathbf{x}, \mathbf{y})|^{s}\} \le C(s)e^{-c(s)|\mathbf{x} - \mathbf{y}|}$$
(1)

The assumption implies, in particular, a very important bound

$$\mathrm{E}\{|\mathrm{P}(\mathrm{x},\mathrm{y})|\} \le \mathrm{Ce}^{-c|\mathrm{x}-\mathrm{y}|}$$

It is known (see e.g. the paper of Aizenman, Schenker, Friedrich, and Hundertmark (CMP, 01)), that if (1) is fulfilled for E of some interval (E_1, E_2) , then the spectrum H in (E_1, E_2) is pure point, end the eigenvectors are localized (their components decay exponentially).

When does criteria (1) fulfill?

- E belongs to the spectral gap of H;
- any $E \in \sigma(H)$, d = 1 and i.i.d. potentials (Minami 96);
- any E ∈ σ(H), d > 1 and V(x) has a sufficiently large amplitude (Aizenman-Molchanov 93);
- E belongs to a neighbourhood of the spectrum edges, d > 1, and V(x) has any amplitude (Aizenman-Graf 98);

< ロ > < 回 > < 回 > < 回 > < 回 >

Case of d = 1

Theorem [Elgart, Pastur, S:17]

There exists

 $\lim_{L\to\infty} \mathrm{E}\{\mathcal{N}_{\Lambda}[\mathrm{h}_0]\}.$

The result corresponds to the "area law" for d = 1.

Theorem [Pastur:16]

Large block entanglement entropy for d = 1 does not possess the self averaging property:

$$\lim_{L\to\infty} \operatorname{Var}\{\mathcal{N}_{\Lambda}[h_0]\} \neq 0$$

M.Shcherbina (ILTP)
----------------	-------

Case of $d \ge 2$: LLN

Theorem[Elgart, Pastur, S:17]

Let the Anderson localization criteria (1) is fulfilled. Then there exists

$$\lim_{L\to\infty} \mathrm{E}\{\mathrm{L}^{-(d-1)}\mathcal{N}_{\Lambda}[\mathrm{h}_0]\}.$$

The result corresponds to the "area law" for $d \ge 2$.

Theorem[Elgart, Pastur, S:17]

If the Anderson localization criteria (1) is fulfilled, then the large block entanglement entropy for $d \ge 2$ possesses the self averaging property:

$$\lim_{L\to\infty} \operatorname{Var}\{L^{-(d-1)}\mathcal{N}_{\Lambda}[h_0]\} = 0$$

Theorem [Pastur, S:19]

Let $\varphi \in \mathcal{H}_{\alpha}$ with $\alpha > 1$. If the Anderson localization criteria (1) is fulfilled, then

$$\mathrm{L}^{-(\mathrm{d}-1)/2}\mathcal{N}^{\circ}_{\Lambda}[arphi;\Pi_{\Lambda}] \to (\mathcal{V}\varphi,\varphi)^{1/2}_{\alpha}\mathcal{N}(0,1), \text{ as } \mathrm{L} \to \infty.$$

where \mathcal{V} is non negative bounded in \mathcal{H}_{α} operator.

Scheme of the proof of CLT in the case of $\varphi(\Pi)$ and $\nu(H)$ (with smooth a)

CLT for martingales (modification of [Billingsly:95])

Let $X_k = E_{< k} \{Y - E_k Y\}$ be a martingale differences array with respect to independent random vectors $V_1, \ldots, V_n, S_n = \sum_{k=1}^n X_k, \sigma_n = \sum_{k=1}^n E\{X_k^2\} = O(1)$. Assume that

(1)
$$\sum E\{X_k^4\} \le \varepsilon_n$$
, (2) $\operatorname{Var}\left\{\sum_{k=1}^n X_k^2\right\} \le \tilde{\varepsilon}_n$

Then

$$|\mathrm{E}\{\mathrm{e}^{\mathrm{i} t \mathrm{S}_{\mathrm{n}}}\} - \mathrm{e}^{-\mathrm{t}^2 \sigma_{\mathrm{n}}/2}| \leq \mathrm{C}'(\mathrm{t})(\varepsilon_{\mathrm{n}}^{1/2} + \tilde{\varepsilon}_{\mathrm{n}}^{1/2}).$$

イロン イヨン イヨン イヨン

At the first step we use the theorem to prove CLT for the test functions of the form

$$\varphi_\eta = \varphi * \mathcal{P}_\eta$$

where \mathcal{P}_{η} is the Poisson kernel

$$\mathcal{P}_{\eta}(\mathrm{x}) = rac{1}{\pi} rac{\eta}{\mathrm{x}^2 + \eta^2}$$

It is easy to see that

$$\mathcal{N}_{\Lambda}[\varphi_{\eta}] = \pi^{-1} \int \varphi(\lambda) \Im \operatorname{Tr} \gamma(\lambda + \mathrm{i}\eta) \mathrm{d}\lambda.$$

where

$$\gamma(z) = \begin{cases} \operatorname{Tr}(H - z)^{-1}, & \text{for smooth a (i)} \\ \operatorname{Tr}(\Pi - z)^{-1} & \text{for a}(H) = P (ii) \end{cases}$$

Introduce

$$X_u(z) = L^{-l(d)/2}(\gamma(z) - \gamma_u(z)) \quad \text{with} \quad l(d) = d \text{ or } l(d) = d - 1$$

where γ_{u} is the trace of the resolvent of H_{u} or Π_{u} , where H_{u} is obtained by the replacing u-th line and column of H by 0, and Π_{u} is constructed from the spectral projection of H_{u} .

It is easy to check that in both cases it suffices to check 2 conditions:

(1)
$$\sum_{u} E\{|X_{u}|^{4}\} \to 0$$

(2)
$$Var\left\{\sum_{u} (\Im X_{u})^{2}\right\} \to 0$$

Checking these 2 conditions for z with $\Im z = \varepsilon$ we prove CLT for the functions $\varphi_{\eta} = \varphi * \mathcal{P}_{\eta}$.

◆□ > ◆□ > ◆三 > ◆三 > ・

Extension of CLT to $\varphi \in \mathcal{H}_{\alpha}$

Proposition 1

Let $\{\xi_l^{(n)}\}_{l=1}^n$ be a triangular array of random variables,

$$\mathcal{N}_{\mathrm{n}}[arphi] = \sum_{\mathrm{l}=1}^{\mathrm{n}} arphi(\xi_{\mathrm{l}}^{(\mathrm{n})})$$

be its linear statistics, corresponding to a test function $\varphi : \mathbb{R} \to \mathbb{R}$, and

$$V_n[\varphi] = Var\{d_n^{-1/2}\mathcal{N}_n[\varphi]\}$$

be the variance of $\mathcal{N}_n[\varphi]$, where $\{d_n\}_{n=1}^{\infty}$ is some bounded from below sequence of numbers. Assume that

(a) there exists a space \mathcal{L} with a norm ||...|| such that for $\varphi \in \mathcal{L}$

$$V_n[\varphi] \le C ||\varphi||^2, \ \forall \varphi \in \mathcal{L};$$

(b) there exists a dense subset $\mathcal{L}_1 \subset \mathcal{L}$ such that the CLT is valid for $d_n^{-1/2} \mathcal{N}_n[\varphi], \ \varphi \in \mathcal{L}_1$, Then CLT is valid for all $d_n^{-1/2} \mathcal{N}_n[\varphi], \ \varphi \in \mathcal{L}$.

Uniform bounds for the variance of LES

Proposition 3 [S:11]

For any real symmetric or hermitian matrix M with random entries, any $\alpha > 0$, and $\varphi \in \mathcal{H}_{\alpha}$ we have

$$egin{aligned} &\operatorname{Var}\{\operatorname{Tr} \varphi(\mathrm{M})\} \leq \mathrm{C}_{lpha} || \varphi ||_{lpha}^2 \int_0^\infty \mathrm{dy} \mathrm{e}^{-\mathrm{y}} \mathrm{y}^{2lpha-1} \int_{-\infty}^\infty \mathrm{Var}\{\gamma(\mathrm{x}+\mathrm{i}\mathrm{y})\} \mathrm{d}\mathrm{x}, \ &\gamma(\mathrm{z}) = &\operatorname{Tr} (\mathrm{M}-\mathrm{z})^{-1} \end{aligned}$$

Remark

Proposition 3 is more efficient than Helffer-Sjöstrand's formula, since, e.g., for Wigner and sample covariance matrices the formula requires φ to be C³ function, while Proposition 3 requires $\varphi \in H_{\alpha}$ with $\alpha > 2$.

Bounds for the variance of the resolvent trace

Proposition 2

In both cases (i) and (ii) for any $z : \Im z > 0$ there exists some C > 0 such that

$$L^{-l(d)} \operatorname{Var}\{\gamma(z)\} \le C \log^m |\Im z|^{-1} / |\Im z|^2,$$

where l(d) = d for the case (i), l(d) = d - 1 for the case (ii) and m is some constant which is not important for us.