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Anderson model

Random Schrödinger operator in Zd

(Hψ)(x) = V(x)ψ(x) +
∑

x′:|x′−x|=1

ψ(x′), x, x′ ∈ Zd, ψ ∈ l2[Zd]

{V(x)}x∈Zd-i.i.d. random variables

Spectral projections
Let EH(λ) be a resolution of identity, and P = EH(E) be its spectral projection
corresponding the interval I = (−∞,E].
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Large box entanglement entropy

Entanglement entropy
Consider a large box

Λ = [−L,L]d, PΛ(x, y) = 1Λ(x)P(x, y)1Λ(y)

Entanglement entropy, corresponding Λ

SΛ = Tr Λh(PΛ)

h(t) = −t log t− (1− t) log(1− t), t ∈ [0, 1]

We study the properties SΛ, as L→∞, in particular:

E{SΛ} ∼ Lm(d), m(d)−?

Var{SΛ} ∼ Lm1(d), m1(d)−?

L−m1(d)/2(SΛ − E{SΛ})→ ?
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Toy model of non interacting fermions
Consider a quadratic quantum Hamiltonian

Ĥ =
∑

x,y∈Ω

H(x, y)c+(x)c−(y), x, y ∈ Ω = [−N,N]d

where c−(x), c+(x) are the Fermi annihilation and creation operators

{c−(x), c+(y)} = δxy

H(x, y) assumed to be self-adjoint operator H(x, y) = H(y, x).
Consider Λ = [−L,L]d ⊂ Ω

1 << L << N

Then Ĥ acts in H(Λ)⊗H(Ω \ Λ). If we consider the density matrix ρ̂ of Ĥ and
set

ρΛ = Tr Ω\Λ(ρ),

then entanglement entropy of Λ is

SΛ = lim
N→∞

Tr ρΛ log2 ρΛ.
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Link with Szegö’s theorem

Determinant of the Toeplitz matrix
Consider an infinite Toeplitz matrix in d = 1 case

Ajk = Aj−k,0 = Aj−k, A = a(H0),

where H0 is a discrete Laplace operator.
We restrict A on the interval Λ = [−L,L]

A(L) = 1[−L,L]A1[−L,L] = 1[−L,L]a(H0)1[−L,L] = aΛ(H0)

and consider
log detA(L) = Tr log aΛ(H0)

The same happens in d > 1 case.

Hence the logarithm of the Toeplitz determinant is some special case of the
functional of operator, which is determined by two functions a and ϕ and by
the cube Λ

ΨΛ[H0; a, ϕ] = Trϕ(aΛ(H0)).
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Szegö’s theorem
Under rather general assumptions (when a and ϕ are e.g. C1)

ΨΛ[H0; a, ϕ] = LdC0(ν) + Ld−1C1(a, ϕ) + o(Ld−1)

where
ν(x) = ϕ(a(x))

The first term is proportional to the volume of Λ (volume term) and the
second is proportional to the area of the faces of Λ (area term).
If a or ϕ have a finite number of jumps, then

ΨΛ[H0; a, ϕ] = LdC0(ν) + Ld−1 log LC′1(a, ϕ) + o(Ld−1 log L).

Here we have the violation of the area law.

Results on the asymptotic of entanglement entropy can be treated as a
stochastic analogue of Szegö’s theorem, when

a(x) = 1(−∞,E](x), ϕ(x) = h(x).

Remark that in this case
ν(x) = 0.
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The most general setting

Let H be a random Schrödinger operator with i.i.d. potential.

Given two functions a and ϕ we want to study the asymptotic behaviour of
the functional

ΨΛ[H; a, ϕ] = Trϕ(aΛ(H))

in the limit L→∞.
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The simplest case a(x) = x. Law of Large Numbers

In this case we have

ΨΛ[H; a, ϕ] = Trϕ(HΛ) =
∑

ϕ(λi(HΛ)) = NΛ[ϕ],

where NΛ[ϕ] is a linear eigenvalue statistics of HΛ.

It is well known that there exists a measure σ, such that we have a volume law

|Λ|−1E{NΛ[ϕ]} →
∫
ϕ(x)dσ(x), as L→∞.

We have also self averaging property

Var
{
|Λ|−1NΛ[ϕ]

}
→ 0, as L→∞.
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The simplest case a(x) = x. CLT

Sobolev space Hα

We say the ϕ ∈ Hα if

||ϕ||2α =

∫
(1 + 2|k|)2α|ϕ̂(k)|2dk, ϕ̂(k) =

1
2π

∫
eikxϕ(x)dx.

Theorem
If ϕ ∈ Hα with α > 1, then

|Λ|−1/2(NΛ[ϕ]− E{NΛ[ϕ]}
)
→ (Vϕ,ϕ)1/2N (0, 1), as L→∞,

where V is non negative bounded operator in Hα.
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Case of smooth a, ϕ

Theorem[Large Numbers Law][Pastur,S:18]
Let a ∈ Hθ, θ > (d + 1)/2, and ν ∈ Hα with α > 1 (ν(x) = ϕ(a(x))), then
there exists a measure σ, such that we have a volume law

|Λ|−1E{ΨΛ[H; a, ϕ]} →
∫
ν(λ)dσ(λ), as L→∞.

Theorem[CLT for smooth case][Pastur,S:18]
If a ∈ Hθ, θ > (d + 1)/2 and ν ∈ Hα with α > 1, then

|Λ|−1/2(ΨΛ[H; a, ϕ]− E{ΨΛ[H; a, ϕ]})→ (Vν, ν)1/2α N (0, 1), as L→∞.
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Case of a = 1(−∞,E], ϕ = h
Recall that in this case

ν(x) = h(a(x)) = 0,

so no hope to use previous results directly.

Observe that h(t) is symmetric with respect to x = 1/2

h(1/2− t) = h(1/2 + t).

Hence there is an increasing function h0 defined on (0, 1/4) such that

h(t) = h0(x(t)), x(t) = t(1− t), x ∈ [0, 1/4]

⇔ h0(x) = h(t(x)), t(x) =
1
2

(1−
√
1− 4x)

It is easy to check that h′0(x)→ 2, as x→ 1/4. Hence we can extend h0(x) to
R in such a way that h0 ∈ H3/2−ε.
Since 0 ≤ PΛ ≤ 1 it is evident that for any such extension

Tr h(PΛ) = Trh0(PΛ(1− PΛ))

M.Shcherbina (ILTP) CLT for entropy 06.08.2019 11 / 23



New setting

Operator ΠΛ

ΠΛ = PΛ(1− PΛ); ΠΛ(x, y) =
∑
z 6∈Λ

P(x, z)P(y, z), x, y ∈ Λ

Linear eigenvalue statistics of ΠΛ

NΛ[ϕ; ΠΛ] = Trϕ(ΠΛ), N ◦Λ [ϕ; ΠΛ] = NΛ[ϕ; ΠΛ]− E{NΛ[ϕ; ΠΛ]}

We study the behaviour of the random variable NΛ[ϕ], as Λ→∞.
The same questions:

E{NΛ[ϕ; ΠΛ]} ∼ Lm(d)φ0, m(d)−?

Var{NΛ[ϕ; ΠΛ]} ∼ Lm1(d) m1(d)−?

L−m1(d)/2N ◦Λ [ϕ; ΠΛ] → ?
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Localization assumptions

Our main technical assumption is that the so-called fraction moment criteria
for the Anderson localization is fulfilled, i.e. for some s < 1

E{|(H− E− iε)−1(x, y)|s} ≤ C(s)e−c(s)|x−y| (1)

The assumption implies, in particular, a very important bound

E{|P(x, y)|} ≤ Ce−c|x−y|

It is known (see e.g. the paper of Aizenman, Schenker, Friedrich, and Hun-
dertmark (CMP, 01)), that if (1) is fulfilled for E of some interval (E1,E2),
then the spectrum H in (E1,E2) is pure point, end the eigenvectors are
localized (their components decay exponentially).
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When does criteria (1) fulfill?

E belongs to the spectral gap of H;
any E ∈ σ(H), d = 1 and i.i.d. potentials (Minami 96);
any E ∈ σ(H), d > 1 and V(x) has a sufficiently large amplitude
(Aizenman-Molchanov 93);
E belongs to a neighbourhood of the spectrum edges, d > 1, and V(x) has
any amplitude (Aizenman-Graf 98);
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Case of d = 1

Theorem[Elgart, Pastur, S:17]
There exists

lim
L→∞

E{NΛ[h0]}.

The result corresponds to the "area law" for d = 1.

Theorem[Pastur:16]
Large block entanglement entropy for d = 1 does not possess the self averaging
property:

lim
L→∞

Var{NΛ[h0]} 6= 0
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Case of d ≥ 2: LLN

Theorem[Elgart, Pastur, S:17]
Let the Anderson localization criteria (1) is fulfilled. Then there exists

lim
L→∞

E{L−(d−1)NΛ[h0]}.

The result corresponds to the "area law" for d ≥ 2.

Theorem[Elgart, Pastur, S:17]
If the Anderson localization criteria (1) is fulfilled, then the large block
entanglement entropy for d ≥ 2 possesses the self averaging property:

lim
L→∞

Var{L−(d−1)NΛ[h0]} = 0
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Case of d ≥ 2: CLT

Theorem[ Pastur, S:19]

Let ϕ ∈ Hα with α > 1. If the Anderson localization criteria (1) is fulfilled,
then

L−(d−1)/2N ◦Λ [ϕ; ΠΛ]→ (Vϕ,ϕ)1/2α N (0, 1), as L→∞,

where V is non negative bounded in Hα operator .
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Scheme of the proof of CLT in the case of ϕ(Π)
and ν(H) (with smooth a)

CLT for martingales (modification of [Billingsly:95])
Let Xk = E<k{Y − EkY} be a martingale differences array with respect to
independent random vectors V1, . . . ,Vn, Sn =

∑n
k=1 Xk,

σn =
∑n

k=1 E{X2
k} = O(1). Assume that

(1)
∑

E{X4
k} ≤ εn, (2) Var

{ n∑
k=1

X2
k

}
≤ ε̃n

Then

|E{eitSn} − e−t2σn/2| ≤ C′(t)(ε1/2n + ε̃1/2n ).
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At the first step we use the theorem to prove CLT for the test functions of the
form

ϕη = ϕ ∗ Pη
where Pη is the Poisson kernel

Pη(x) =
1
π

η

x2 + η2

It is easy to see that

NΛ[ϕη] = π−1
∫
ϕ(λ)=Tr γ(λ+ iη)dλ.

where

γ(z) =

{
Tr(H− z)−1, for smooth a (i)
Tr(Π− z)−1 for a(H) = P (ii)
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Introduce

Xu(z) = L−l(d)/2(γ(z)− γu(z)) with l(d) = d or l(d) = d− 1

where γu is the trace of the resolvent of Hu or Πu, where Hu is obtained by the
replacing u-th line and column of H by 0, and Πu is constructed from the
spectral projection of Hu.

It is easy to check that in both cases it suffices to check 2 conditions:

(1)
∑
u

E{|Xu|4} → 0

(2) Var
{∑

u

(=Xu)2
}
→ 0

Checking these 2 conditions for z with =z = ε we prove CLT for the functions
ϕη = ϕ ∗ Pη.
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Extension of CLT to ϕ ∈ Hα

Proposition 1

Let {ξ(n)
l }nl=1 be a triangular array of random variables,

Nn[ϕ] =
n∑

l=1

ϕ(ξ
(n)
l )

be its linear statistics, corresponding to a test function ϕ : R→ R, and

Vn[ϕ] = Var{d−1/2
n Nn[ϕ]}

be the variance of Nn[ϕ], where {dn}∞n=1 is some bounded from below sequence
of numbers. Assume that
(a) there exists a space L with a norm ||...|| such that for ϕ ∈ L

Vn[ϕ] ≤ C||ϕ||2, ∀ϕ ∈ L;

(b) there exists a dense subset L1 ⊂ L such that the CLT is valid for
d−1/2

n Nn[ϕ], ϕ ∈ L1,
Then CLT is valid for all d−1/2

n Nn[ϕ], ϕ ∈ L.
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Uniform bounds for the variance of LES

Proposition 3 [S:11]
For any real symmetric or hermitian matrix M with random entries, any
α > 0, and ϕ ∈ Hα we have

Var{Trϕ(M)} ≤ Cα||ϕ||2α
∫ ∞

0
dye−yy2α−1

∫ ∞
−∞

Var{γ(x + iy)}dx,

γ(z) =Tr (M− z)−1

Remark
Proposition 3 is more efficient than Helffer-Sjöstrand’s formula, since, e.g., for
Wigner and sample covariance matrices the formula requires ϕ to be C3

function, while Proposition 3 requires ϕ ∈ Hα with α > 2.
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Bounds for the variance of the resolvent trace

Proposition 2
In both cases (i) and (ii) for any z : =z > 0 there exists some C > 0 such that

L−l(d)Var{γ(z)} ≤ C logm |=z|−1/|=z|2,

where l(d) = d for the case (i), l(d) = d− 1 for the case (ii) and m is some
constant which is not important for us.
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