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Many body systems - Setup

Let V be a finite set of vertices. We consider quantum systems with a Hilbert
space Hx at each vertex x ∈ V . For X ⊂ V , the Hilbert space associated
with X is the tensor product HX =⊗x∈X Hx. The algebra of observables in
X is denoted by AX := B(X ). It naturally extends to AV for any X by
identifying AX ∈AX with

AX ⊗ IX c ∈AV .

An interaction for such a system is a map Φ : V →AV such that
Φ(X ) ∈AX and Φ∗(X ) = Φ(X ). The Hamiltonian H on HV is defined
by

H = ∑
X ⊂V

Φ(X ).

The dynamics of the model is the one-parameter group of automorphisms,
{τt}t∈R, defined by τt(A) = exp(itH)Aexp(−itH), A ∈AV .



Many body systems - Spin systems

I Spin systems: Each Hx is C2. The algebra of diagonal observables is
generated by the identity and Pauli matrices,

σ
x =

(
0 1
1 0

)
, σ

y =

(
0 −i
i 0

)
, σ

z =

(
1 0
0 −1

)
.

The interaction is typically of the nearest neighbor type: We think of V
as the graph G = (V ,E ) and Φ(X ) 6= 0 only if the graph diameter of
X ≤ 1. The singlet interaction is called a magnetic potential.



Lieb–Robinson bound, information propagation

For spin systems (with short range interaction, bounded interactions) one has

1 Lieb–Robinson bound: There exist constants C,m > 0 and v≥ 0 such
that ‖[AS ,τt (BT )]‖ ≤ C‖AS ‖‖BS ‖e−m(`−v|t|), where `= dist(S ,T ),
the graph distance between S ,T ⊂ V .

2 Information propagation, locality ( Bravyi–Hastings–Verstraete): There
exist constants C,m > 0 and v≥ 0 such that∥∥τt(AS )− tr(S+[−`,`])c τt(AS )

∥∥≤ C‖AS ‖e−m(`−v|t|), ` ∈ N.

Note that tr(S+[−`,`])c τt(AS ) ∈AS+[−`,`] .

I Equivalent to Lieb–Robinson bound.



Exponential clustering for gapped ground states
Are there more general statements valid for analytic functions of the
Hamiltonian? The difficulty: Even though H is local, its powers (and hence
analytic functions) are not! It does not happen in the one particle picture. But:

Theorem (Exponential clustering theorem, Hastings)
Assume that the ground state Eo of a local H is separated from the rest of
σ(H) by a finite gap g. Then there exist C,m > 0 (that depend on g) such that
for any normalized ψ ∈ NH−Eo we have, with `= dist(S ,T ),

|〈ψ,AS BT ψ〉−〈ψ,AS ψ〉〈ψ,BT ψ〉| ≤ C‖AS ‖‖BT ‖e−m`.

I If Eo is simple, the statement can be reformulated in terms of the spectral
projection PEo , which is a smooth function of H in the gapped case.

I Using the combinatorial approach of Arad–Kitaev–Landau–Vazirani, the
same statement can be shown to hold for other gapped simple evals of H.
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Area law for the gapped systems

I Let G = Zd, ΛL = [−L,L]d ∩Zd. For a local, gapped H with ψ ∈ NH−Eo ,
we consider ρ = |ψ〉〈ψ|, and its entanglement entropy

SL;` :=− trΛ`
ρ

Λ` logρ
Λ` , `� L.

I How SL;` behaves in the thermodynamic limit L→ ∞? Hastings showed
that it satisfies area law in d = 1 case, i.e., SL;` ≤ C = C`d−1.

I Brandao–Horodecki: In d = 1 the exponential clustering for a state ψ

(not necessary a ground state) implies area law. However, it is in general
false in higher dimension (data hiding states).

I Clearly shows that gapped ground states for local Hamiltonians do not
thermalize (otherwise SL;` ∼ `d)!



XYZ Heisenberg model with a uniform magnetic potential

Hh =
L−1

∑
n=−L

(
Jxσ

x
n σ

x
n+1 + Jyσ

y
n σ

y
n+1 + Jzσ

z
nσ

z
n+1

)
+h

L

∑
n=−L

σ
z
n.

It is common to name the model depending on the values of Jx,y,z:
I XYZ model: Jx,Jy,Jz are distinct;
I XXZ model: Jx = Jy 6= Jz;
I XXX model: Jx = Jy = Jz;
I XY (or XX) model: Jx = Jy, Jz = 0;
I Ising model: Jy = Jz = 0.

The XYZ model is a protatypical model in statistical physics,
one-dimensional magnetism and quantum communication.



Solvability of XYZ model

I XXX chain is exactly solvable (Baxter, Takhtadzhan–Faddeev using
algebraic Bethe Ansatz, etc.); satisfies the Yang–Baxter equation.

I XXZ chain is diagonalizable by the algebraic Bethe Ansatz as well
(Babbitt–Thomas–Gutkin, Faddeev, Borodin, Corwin, etc). The analytic
Bethe Ansatz also reveals the structure of the spectrum near the ground
state (more on it later).

I XY chain can be mapped to a free Fermion system via the
Jordan–Wigner transform and solved quite explicitly (quasi-free
systems).

I The good model to test MBL: replace the uniform magnetic field with
the random one,

Hω =
L−1

∑
n=−L

(
Jxσ

x
n σ

x
n+1 + Jyσ

y
n σ

y
n+1 + Jzσ

z
nσ

z
n+1

)
+

L

∑
n=−L

ωnσ
z
n.



Random XY chain

I The analysis reduces effectively to the one of 1d (block) random
Schrödinger operator (plus the control of the J-W transformation), Stolz
and collaborators (Abdul-Rahman; Hamza; Sims).

I The results include almost sure p.p. spectrum, the zero velocity
Lieb–Robinson bound, exponential clustering of eigenvectors
(Sims–Warzel), and area law in in the strong disorder regime.

I Unfortunately, does not help to develop intuition about the disordered
spin chains... Rather, it goes other way around - whatever results one can
get without relying on exact solvability can be tested on the random XY
spin chain! The understanding (in the XXZ context, E.–Klein–Stolz) of
the results for energy intervals led to the study of their counterparts in the
XY model...
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Random XXZ chain

I The next problem (in the level of difficulty) is a random XXZ chain.
I Not exactly solvable, but in addition to energy has another conserved

quantity - the particle number operator (magnitization) N :

[H,N ] = 0, N =
L

∑
i=−L

Ni, Ni =
1
2 (1−σ

z
i ) .

Note that Ni is the projection onto the down-spin state on site i.
I Convenient to work in a (computational) basis β :=⊗L

i=−Leα
i ,

α ∈ {0,1}, e0
i =↑, e1

i =↓.
I Scaling and shifting energy, we may consider

Hω = 1
4

L−1

∑
i=−L

(
1−σ

z
i σ

z
i+1

)
− 1

∆

(
σ

x
i σ

x
i+1 +σ

y
i σ

y
i+1

)
+λ

L

∑
i=−L

ωiNi.



Random XXZ chain: 3 parts
Hω ≥ 0 as can be seen from Hω =− 1

2∆
D+

(
1− 1

∆

)
W +λVω , where:

I D = ∑
L−1
i=−L di,i+1 with 2di,i+1 = σ

z
i σ

z
i+1 +σ x

i σ x
i+1 +σ

y
i σ

y
i+1−1. This is

the Laplacian in disguise:
di,i+1 (↑i ⊗ ↑i+1) = di,i+1 (↓i ⊗ ↓i+1) = 0,
di,i+1 (↑i ⊗ ↓i+1) =↓i ⊗ ↑i+1 − ↑i ⊗ ↓i+1,
di,i+1 (↓i ⊗ ↑i+1) =↑i ⊗ ↓i+1 − ↓i ⊗ ↑i+1.

I Think about ↓ as ’particle’, ↑ as ’background’, then ↑i ⊗ ↓i+1→↓i ⊗ ↑i+1
means that a particle hopped to the left;

I

W = 1
4

L−1

∑
i=−L

(
1−σ

z
i σ

z
i+1

)
= 1

8

L−1

∑
i=−L

(
σ

z
i −σ

z
i+1

)2
= 1

2

L−1

∑
i=−L

(Ni−Ni+1)
2 .

This is the interacting potential term (counts number of particles’
clusters);

I Vω = ∑
L
i=−L ωiNi is the random potential.
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Random XXZ chain: Structure of spectrum

I Illustration for D: A single particles’ cluster

Doff (. . . ↑↑↑↑↓↓↓↑↑↑↑ . . .) = . . . ↑↑↑↓↑↓↓↑↑↑↑ . . .+ . . . ↑↑↑↑↓↓↑↓↑↑↑ . . . .

I The number of particles is conserved, but clusters can split. So
associating a ’quasi-particle’ with each cluster is not such a great idea.

I We will consider the Ising phase of XXZ (∆ > 1).
I The ground state Ω: all spins are up (zero particles state, vacuum).

HωΩ = 0. Requires some natural boundary conditions.
I Energy goes up with (a) the number of clusters (thanks to W) and (b) the

number of particles N (thanks to Vω ). A ’typical’ N-particles state has
∼ N clusters, so its energy is ∼ N as well.

I Morale: Typical states in XXZ model correspond to the temperature
T ∼ N: (E = trHρ(T)). In the limit N→ ∞, T→ ∞. The hard problem...



Locality in XXZ chain
I Strategy: Find first some property that holds for the analytic functions of

the Hamiltonian, and then verify it for eigenprojections. Works in the
one particle localization!

I Given S⊂ [−L,L]∩Z, S 6= /0, we define projections P±(S) by

P(S)
+ =⊗j∈S (1−Nj) and P(S)

− = 1−P(S)
+ .

I In particular, P(S)
− P(T)

+ = P(T)
+ P(S)

− = 0. whenever S⊂ T .

Theorem (Locality)

Let S⊂ T be intervals, and let `= dist(S,Tc)−1≥ 1. Then we have∥∥∥P(S)
− f (H)P(T)

+

∥∥∥≤ C
∥∥f̂
∥∥

∞
`2e−

1
2 `+

∫
v|t|>`

∣∣f̂ (t)∣∣dt. (1)

I Useful if f̂ (t) decays rapidly with t.



Random XXZ chain: Results for the droplet spectrum

Fix δ ∈ (0,1). We set Ik =
[
(k−δ )

(
1− 1

∆

)
,(k+1−δ )

(
1− 1

∆

)]
.

I The spectrum σ(H) is contained in {0}∪
[
1− 1

∆
,∞
)
.

I The spectrum of Hω in the interval
[
1− 1

∆
,2
(
1− 1

∆

)]
is called the

droplet spectrum.

Theorem (Droplet localization (E.–Klein–Stolz ’17))
There exists a constant K > 0 with the following property: If

λ
√

∆−1min(1,∆−1)≥ K,

then there exist constants C < ∞ and m > 0 such that

E

(
∑

E∈σ(Hω )∩I1

‖NiψE‖‖NjψE‖
)
≤ Ce−m|i−j| for all i, j ∈ [−L,L], (2)

uniformly in L.



Remarks
I The ’finite temperature’ regime (E = trρ(T)H).
I Roughly speaking, (2) indicates that the droplet eigenstates of H

resemble a single cluster (droplet) of down-spins in a sea of up-spins.
I SULE: With large probability, for each E ∈ σ (Hω)∩ I1, we can find

xE ∈ N such that for i ∈ N,

‖NiψE‖ ≤ CLe−m|xE−i|. (3)

I Beaud–Warzel ’17: Results on N particle sectors of XXZ model, (2) can
be deduced from them.

I The result cannot be extended to energies above the droplet regime (due
to the presence of many cluster states).

I Let S`(i) = [i− `,e+ `]∩Z, then the following is equivalent to (3):∥∥∥PS`(x)
+ ψE

∥∥∥≤ CLe−m`. (4)



Consequences of Eq. 2:Exponential clustering

Notation
(a) Time evolution τ I

t (X) of an observable X: τ I
t (X) = eitHI Xe−itHI ;

(b) Correlator RX,Y (ψ) of a (normalized) state ψ:
RX,Y (ψ) = |〈ψ,XYψ〉−〈ψ,Xψ〉〈ψ,Yψ〉|.

Theorem (Dynamical exponential clustering)
Eq. 2 implies that for all all local observables X and Y with
maxsuppX < minsuppY,

E

(
sup
t∈R

∑
E∈σ(H)∩I1

R
τ

I1
t (X),Y

(ψE)

)
≤ C‖X‖‖Y‖e−mdist(suppX,suppY), (5)

uniformly in L.
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Consequences of (2): Locality of the time evolution

Theorem (Locality of the time evolution, E.–Klein–Stolz ’17)
Let X be a local observable. Then Eq. 2 implies that for all t ∈ R and ` > 0
there exist constants m′ > 0,C < ∞ and a local observable X`(t) with support
contained in [minsuppX− `,maxsuppX+ `], such that

E
(

sup
t∈R
‖PI1 (X`(t)− τt (X))PI1‖1

)
≤ C‖X‖e−m′`. (6)

I In addition, the uniform area law (in expectation) holds for eigenstates in
the droplet regime (Beaud–Warzel ’18).
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Localization in XXZ model: Above the droplet spectrum

I Based on work in progress in collaboration with Abel Klein.



Combes-Thomas bound and failure of resolvent approach

Theorem (Combes-Thomas bound in I1 sector)
Let ψE be an eigenvector of H = H(λ = 0)+V, where V is an arbitrary
positive magnetic field and E ∈ σ(H)∩ I1. Then one has the deterministic
bound

‖NiNjψE‖ ≤ Ce−m|i−j|, (7)

that holds uniformly (in E).

I Cf. with (2), where one considers ‖NiψE‖‖NjψE‖ on l.h.s. instead.
Note that (7) holds even when V = 0 i.e. for translation invariant system
(no localization).



Difficulty with the resolvent approach

I Spells trouble down the road if one attempts the resolvent approach to
localization: For I1 where a-posteriori we know that states resemble a
single cluster of down spins, one can study ‖NiRzNj‖ where
Rz = (H− z)−1.

I However, for states that resemble say two clusters, the resolvent
approach suggests to consider ‖NiNjRzNkNm‖.

I At best, the information one can extract from this object is one about
‖NiNjψE‖‖NkNmψE‖...



Localization criterion in XXZ chain, I2 sector

Definition
Let τ ∈ (0,1). We will call ΛL := [−L,L]+ x a m2-localizing box for Hω in
I ⊂ I2 if for all normalized eigenfunctions ψλ with λ ∈ σ(HΛ

ω)∩ I and all
R ∈ N we can find either

I (A) xo ∈ ΛL or
I (B) (xo,yo) ∈ ΛL×ΛL with |xo− yo| ≥ Lτ

such that the following bounds hold:

‖Niψλ‖ ≤

{
e−m2|i−xo| if (A) and |i− xo|> Lτ

e−m2 dist(i,{xo,yo}) if (B) and dist(i,{xo,yo})> Lτ
, (8)

and ∥∥∥P(JR(xo))
+ ψλ

∥∥∥+∥∥∥P(JR(yo))
+ ψλ

∥∥∥≤ e−m2hI(λ )R, for R > Lτ . (9)



EMSA in XXZ chain

We can prove the following result:

Theorem (Localization in I2 sector of random XXZ, E.–Klein ’19+)
Fix δ > 0. Then for λ large enough there exist constants m2 > 0,β > 0 and a
scale L0 > 0 such that the probability that any ΛL box is m2-localizing box for
Hω exceeds 1− e−Lβ

, provided L≥ L0.

I The method of proof: the eigensystem multiscale analysis (EMSA).
I Previously developed for Anderson Hamiltonian (E.–Klein, ’16–18).
I Requires proving (8) - (9) simultaneously (scale by scale).
I (9) and the Combes-Thomas bound below imply (a weaker version of)

(8).
I While it is pretty clear how to go up in energy (to Ik), no chances of

pushing it to T = ∞ regime since inter-cluster distance is no longer small.
A completely different characterization of MBL is required...



Localization criterion in XXZ chain

Theorem (Combes-Thomas bound in Ik sector)
Let ψE be an eigenvector of H = H(λ = 0)+V, where V is an arbitrary
positive magnetic field and E ∈ σ(H)∩ Ik. Then one has the deterministic
bound ∥∥∥ k+1

∏
n=1

NinψE

∥∥∥≤ Ce−m(D({in})−N), (10)

where D({in}) is the all-pairs shortest path, i.e., D({in}) = minin 6=im |in− im|,
and N ψ = Nψ (i.e., N is the total magnetization).



Consequences of (9)

I By itself, (9) does not imply exponential clustering.
I Computational basis β :=⊗L

i=−Leα
i , α ∈ {0,1}, e0

i =↑, e1
i =↓.

I Consider a state ψ of the form

ψ = e1
xo
⊗ e1

yo
⊗i6=xo,yo e0

i + e1
xo+1⊗ e1

yo+1⊗i 6=xo+1,yo+1 e0
i , (11)

Then it satisfies (9), but

〈ψ,NxoNyo+1ψ〉= 0, 〈ψ,Nxoψ〉= 〈ψ,Nyo+1ψ〉= 1.

I In fact, such ψ is a matrix product state, a generalization of the product
state concept.



Consequences of (9)
I Not a fluke: The exponential clustering will fail in general if the

eigenvalues in droplet band are not level spaced, in the appropriate
sense.

I However, with level spacing, (9) does imply (dynamical) exponential
clustering property,

Rτt(X),Y (ψE)≤ C‖X‖‖Y‖e−mdist(suppX,suppY).

I Information propagation estimate similar to the one we have in the
droplet regime does not hold: Even 〈ψn, [Nj,τt(Ni)]ψk〉 does not decay
with |i− j| for En,Ek ∈ I2, in general. However,

Theorem
Suppose that (9) hold for all eigenvectors in I2. Then for t ≥ 1 there exists an
operator Ot supported on [i−5`, i+5`] such that

‖PI2 (τt(Ni)−Ot)PI2‖ ≤ Cte−`/2, τt(A) = eitHAe−itH. (12)



Proofs ideas: Elements of EMSA
I To get a feeling for the eigensystem multiscale analysis, let’s consider I1

(the droplet spectrum).
I Let E ∈ I1 and J = [E−A,E+A] for some small ε . Let

hJ(s) = 1− (s−E)2/A2 for s ∈ J, hJ(s) = 0 otherwise.
I Suppose that some box Λ`(x) := [−`,`]+ x in a big box ΛL is

m1-localizing for Hω , meaning (in this setting) that

Localizing box

For all normalized eigenfunctions φν of HΛ`(x)
ω with ν ∈ σ(HΛ`(x)

ω )∩ I1 there
exists xo s.t.

‖Niφλ‖ ≤ e−m1hJ(ν)|i−xo| provided |i− xo|> `τ . (13)

I the factor hJ(ν) modulates localization length within the window of
energies J.



Proofs ideas: Elements of EMSA

I Assume now that ψλ is an eigenvector of HΛL
ω with λ ∈ I1 and

No resonance condition
For some β ∈ (0,1)

dist
(

λ ,σ(HΛ`(x)
ω )

)
≥ e−m1`

β

. (14)



Proofs ideas: Elements of EMSA

Lemma (Local decay for ψλ )
Assuming that (13) - (14) hold, then there exists some y ∈ ΛL \Λ`(x) such that

‖Nxψλ‖ ≤ e−m′1hJ(λ )|x−y| ‖Nyψλ‖ , (15)

where m′1 satisfies m′1
m1
−1 = O(`−β ).

I Interpretation: Each time the spectrum associated with the Hamiltonian
on a small scale ` is not too close to λ , we pick a decaying factor (at least
e−m1hJ(λ )` small).

I It turns out that there exists (with large probability) only one small box
Λ`(xo) for which this can occur (a simple consequence of the so called
Wegner between boxes estimate).

I This and the management of the bad boxes quickly leads to extension of
(13) to the scale L.



Sketch of the proof

I The proof of the lemma above is based on locality property mentioned
above and Gaussian filter functions.

I Specifically, let Hx denote the (decoupled Hamiltonian)
HΛ`(x)

ω +HΛL\Λ`(x)
ω . Note that the difference ∆H := HΛL

ω −Hx is supported
at sites x± `,x± (`+1).

I We now decompose

Niψ = Nie−t((Hx−E)2−(λ−E)2)ψ +Ni

(
1− e−t((Hx−E)2−(λ−E)2)

)
ψ.

The first term we split further as

NiχJ(Hx)e−t((Hx−E)2−(λ−E)2)ψ +NiχJc(Hx)e−t((Hx−E)2−(λ−E)2)ψ.



Sketch of the proof
I Let S ⊂ ΛL and let PS

+ denote the projection onto the vacuum on AS ,
and PS

− := 1−PS
+ . Then

NiχJc(Hx)e−t((Hx−E)2−(λ−E)2)ψ = NiχJ(Hx)e−t((Hx−E)2−(λ−E)2)PΛ`(x)
− ψ,

and we can bound this term using∥∥∥χJc(Hx)e−t((Hx−E)2−(λ−E)2)
∥∥∥≤ e−tA2hI(λ ).

I To estimate Ni

(
1− e−t((Hi−E)2−(λ−E)2)

)
ψ , notice that

Ni

(
1− e−t((Hx−E)2−(λ−E)2)

)
ψ

= Ni

(
1− e−t((Hx−E)2−(λ−E)2)

)
(Hi−λ )−1 (Hx−HL)ψ

where Ft,λ is an analytic function. We use locality here.
I Finally, the term

NiχJ(Hx)e−t((Hx−E)2−(λ−E)2)ψ

is estimated using localization of Λ`(x) box.



Proofs ideas: Locality

I Let H = ∑
L−1
n=−L hn,n+1, supp(hn,n+1) = {n,n+1}.

I Let a < b be integers, and set S = [−a,a], T = [−b,b], `= b−a.

I Let Ĥ = H−h−b−1,−b−hb,b+1 and assume that [Ĥ,P(T)
+ ] = 0 (this is the

case for XXZ model).

Then P(S)
− eitĤP(T)

+ = P(S)
− P(T)

+ eitĤ = 0 for all t. On the other hand, we have

‖e−itHP(S)
− eitH− e−itĤP(S)

− eitĤ‖ ≤
∫ |t|

0

∥∥∥[ (H− Ĥ
)
,e−isHP(S)

− eisH
]∥∥∥ds

(exercise). By L–R, rhs is bounded by C |t|e−m` for all |t| ≤ `/v, so∥∥∥P(S)
− f (H)P(T)

+

∥∥∥≤ ∥∥f̂
∥∥

∞

∫
|t|≤`/v

∥∥∥P(S)
− eitHP(T)

+

∥∥∥dt+
∫
|t|>`/v

∣∣f̂ (t)∣∣dt

≤ C
∥∥f̂
∥∥

∞
`2e−

1
2 `+

∫
v|t|>`

∣∣f̂ (t)∣∣dt.



Proofs ideas: Combes–Thomas estimate
Let P be an orthogonal projection onto at most k cluster states, let P̄ = 1−P.
Let E ∈ σ(H)∩ Ik and Hψ = Eψ . Then P̄(H−E)P̄ > δ > 0. Hence

0 = P̄(H−E)ψ = P̄(H−E)P̄ψ + P̄HPψ,

which yields
P̄ψ =−(P̄(H−E)P̄)−1 P̄HPψ.

Since
(

∏
k+1
j=1 Nij

)
P = 0 if {ij} are sufficiently spaced,

( k+1

∏
j=1

Nij

)
ψ =−

( k+1

∏
j=1

Nij

)
(P̄(H−E)P̄)−1 P̄HPψ.

Note that P̄HP acts on the interface between k and k+1 cluster states. The
graph distance between any particles’ configuration with k clusters and the
one where some particles are located at {ij}k+1

j=1 is at least `−N. This yields
the desired decay via the variant of the Combes–Thomas estimate developed
earlier in E.–Klein–Stolz.



Thanks!



Time evolution τ I
t (X)

I Quasi-local observables: X is quasi-local centered at i if
‖[X,Yj]‖ ≤ Ce−m|i−j| for any Yj with suppYj = {j}.

I Quasi-local operators: T is quasi-local if
‖[[T,X],Y]‖ ≤ Ce−mdist(suppX,suppY).

I In one particle setting, the operator HI = HPI is quasi-local in the
window I of localization, i.e.

|HI (x,y)| ≤ Ce−m|x−y|.

I This feature fails in the many body setting, as even H2 is not local!
I Natural question: Why τ I

t (X) in the dynamical clustering result works,
and how it should be interpreted?

I What other consequences can be drawn from Eq. 2?
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Consequences of (2): Zero velocity LR bounds
Theorem (Zero velocity LR-type bounds, E.–Klein–Stolz ’17)

Let X,Y and Z be local observables and let I = I1. Set

J = {0}∪ I, XI = PIXPI, X0 = P0XP0.

Then Eq. 2 implies that

(i) [X0,Y0] = 0, E
(
supt∈R

∥∥[τ I
t (XI) ,YI]

∥∥
1

)
≤ C‖X‖‖Y‖e− 1

8 mdist(X,Y);

(ii) E
(
supt∈R

∥∥[τJ
t (XJ) ,YJ

]
−PJ

(
τJ

t (X)P0Y−YP0τJ
t (X)

)
PJ
∥∥

1

)
≤ C‖X‖‖Y‖e− 1

8 mdist(X,Y);

(iii) E
(
supt,s∈R

∥∥[[τJ
t (XJ) ,τ

I
s (YJ)

]
,ZJ
]∥∥

1

)
≤ C‖X‖‖Y‖‖Z‖e− 1

8 mmin{dist(X,Y),dist(X,Z),dist(Y,Z)}.
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Locality in the droplet spectrum

Interpretation of (i)
The item (i) for t = 0 indicates that XI is a quasi-local observable in the
subspace of the single cluster eigenstates of H (and same with X0 in the
subspace of no clusters states (that happen to have dimension one). It also
implies that HI is the quasi-local operator in the same subspace. Thus τ I

t (XI)
is the physically meaningful object.

Meaning of (ii)-(iii)
The item (ii) indicates that XJ is not a quasi-local operator as it mixes the
single cluster eigenstates with no clusters states. In particular, it is not a good
idea to select the subspace in which you want to prove LR bounds by spectral
characteristics alone. But one can circumvent this difficulty by considering
the higher order commutators, as in the item (iii).
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Consequences of (9)
I Matrix product state (MPS) is a pure quantum state of many particles,

written in the following form:

ψ = ∑
{s}

Tr[A(s1)
1 A(s2)

2 · · ·A(sL)
L ]⊗L

p=1 esp
p , (16)

where s = (s1, . . . ,sL), si’s take values 0,1 and A(sp)
p are complex, square

matrices of order dp (called local dimension). For ψ in (11) one can
choose

A(0)
p =

[
1 0
0 0

]
; A(1)

p = 0, for p 6= i, i+1, j, j+1, (17)

and
A(0)

i,j = P; A(1)
i,j = P̄, A(0)

i+1,j+1 = P̄; A(1)
i+1,j+1 = P, (18)

with

P =
1
2

[
1 1
1 1

]
; P̄ = 1−P. (19)


