Evaporation of a thin sessile droplet in a shallow well

Hannah-May D'Ambrosio ${ }^{1}$, Teresa Colosimo ${ }^{2}$, Stephen K. Wilson ${ }^{1}$, Brian R. Duffy ${ }^{1}$, Colin D. Bain ${ }^{2}$ and Daniel E. Walker ${ }^{3}$
${ }^{1}$ Department of Mathematics and Statistics, University of Strathclyde
${ }^{2}$ Department of Chemistry, Durham University
${ }^{3}$ Merck Chemicals Ltd
BIRS Workshop on Modelling of Thin Liquid Films - Asymptotic Approach vs. Gradient Dynamics, 28th April to 3rd May 2019

$\underset{\substack{\text { Pioneering research } \\ \text { and skills }}}{\overline{\text { EPSR }}}$

Talk Outline

- Motivation

Talk Outline

- Motivation
- Assumptions and model

Talk Outline

- Motivation
- Assumptions and model
- Solution prior to touchdown

Talk Outline

- Motivation
- Assumptions and model
- Solution prior to touchdown
- Solution after touchdown

Talk Outline

- Motivation
- Assumptions and model
- Solution prior to touchdown
- Solution after touchdown
- Comparison with experiments

Talk Outline

- Motivation
- Assumptions and model
- Solution prior to touchdown
- Solution after touchdown
- Comparison with experiments
- Extension to different well shapes

Talk Outline

- Motivation
- Assumptions and model
- Solution prior to touchdown
- Solution after touchdown
- Comparison with experiments
- Extension to different well shapes
- Conclusions and further work

Motivation

- Droplet evaporation occurs commonly in a vast range of circumstances in nature, industry and biology

neelywang.com

Motivation

- Droplet evaporation occurs every day, with applications in nature, industry and biology
- Crucial process in technological applications - inkjet printing,
 coating, spray cooling, etc.

techxplore.com

Motivation

- Droplet evaporation occurs every day, with applications in nature, industry and biology
- Crucial process in technological applications - inkjet printing,

amazon.com coating, spray cooling, etc.
- The aim of the project is to understand droplet evaporation on textured substrates

techxplore.com

Motivation

- Droplet evaporation occurs every day, with applications in nature, industry and biology
- Crucial process in technological applications - inkjet printing, coating, spray cooling, etc.
- The aim of the project is to understand droplet evaporation on textured substrates
- In this talk we look at the evolution and lifetime of a drying droplet in a shallow well

The Model - Assumptions

The Model - Assumptions

- We consider a thin axisymmetric sessile droplet in a shallow cylindrical axisymmetric well

The Model - Assumptions

- We consider a thin axisymmetric sessile droplet in a shallow cylindrical axisymmetric well
- Diffusion-limited evaporation under ambient conditions

The Model - Assumptions

- We consider a thin axisymmetric sessile droplet in a shallow cylindrical axisymmetric well
- Diffusion-limited evaporation under ambient conditions
- Gravity is neglected - free surface determined by surface tension

The Model - Assumptions

- We consider a thin axisymmetric sessile droplet in a shallow cylindrical axisymmetric well
- Diffusion-limited evaporation under ambient conditions
- Gravity is neglected - free surface determined by surface tension
- Free surface evolves quasi-statically

The Model - Assumptions

- We consider a thin axisymmetric sessile droplet in a shallow cylindrical axisymmetric well
- Diffusion-limited evaporation under ambient conditions
- Gravity is neglected - free surface determined by surface tension
- Free surface evolves quasi-statically
- Contact line remains pinned at the lip of the well throughout the entire evaporation

The Model - Prior to Touchdown

The Model - Prior to Touchdown

- c is the vapour concentration in the air

The Model - Prior to Touchdown

- c is the vapour concentration in the air

The Model - Prior to Touchdown

- c is the vapour concentration in the air

The Model - Prior to Touchdown

- c is the vapour concentration in the air
- J is the local evaporative flux

The Model - Prior to Touchdown

Figure: View of the droplet on the scale of the atmosphere

The Model - Prior to Touchdown

Figure: View of the droplet on the scale of the atmosphere

Height Profile: $\quad h(r, t)=h_{m}\left(1-\frac{r^{2}}{R_{0}^{2}}\right), \quad h_{m}=h(0, t)=\frac{R_{0} \theta}{2}$

The Model - Prior to Touchdown

$$
\nabla^{2} c=0 \quad \begin{array}{cc}
z & c \rightarrow c_{\infty} \\
\frac{\partial c}{\partial z}=0 & c=c_{s a t} \\
\hline-R_{0} & \frac{\partial c}{\partial z}=0 \\
\hline
\end{array}
$$

Figure: View of the droplet on the scale of the atmosphere

Height Profile: $\quad h(r, t)=h_{m}\left(1-\frac{r^{2}}{R_{0}^{2}}\right), \quad h_{m}=h(0, t)=\frac{R_{0} \theta}{2}$
Volume: $\quad V(t)=V_{\text {well }}+V_{\text {drop }}=\pi H_{0} R_{0}^{2}+\frac{\pi R_{0}^{3} \theta}{4}$

The Model - Prior to Touchdown

- Mathematical model for a thin droplet evaporating in a shallow well prior to touchdown

$$
\begin{gathered}
\nabla^{2} c=0 \quad \text { for the half space } z>0 \\
c=c_{s a t} \quad \text { on } z=0 \text { for } r \leq R_{0} \\
c \rightarrow c_{\infty} \quad \text { as }|\mathbf{r}| \rightarrow \infty \\
\frac{\partial c}{\partial z}=0 \quad \text { on } z=0 \text { for } r>R_{0} \\
J=-D \frac{\partial c}{\partial z} \quad \text { on } z=0 \text { for } r \leq R_{0} \\
\rho \frac{d V}{d t}=-2 \pi \int_{0}^{R_{0}} J r d r
\end{gathered}
$$

The Vapour Problem - Prior to Touchdown

- We rescale so that the problem for the concentration c of vapour is

$$
\begin{gathered}
\nabla^{2} c=0 \quad \text { for the half space } z>0 \\
c=1 \quad \text { on } z=0 \text { for } r \leq 1 \\
c \rightarrow 0 \quad \text { as }|\mathbf{r}| \rightarrow \infty
\end{gathered}
$$

The Vapour Problem - Prior to Touchdown

- We rescale so that the problem for the concentration c of vapour is

$$
\begin{gathered}
\nabla^{2} c=0 \\
c=1 \quad \text { for the half space } z>0 \\
c \rightarrow 0 \quad \text { on } z=0 \text { for } r \leq 1 \\
\frac{\partial c}{\partial z}=0 \quad \text { as }|\mathbf{r}| \rightarrow \infty \\
J=-\frac{\partial c}{\partial z} \\
\text { on } z=0 \text { for } r>1 \\
\frac{d V}{d t}=-2 \pi \int_{0}^{1} J r d r
\end{gathered}
$$

- where

$$
\begin{gathered}
h=h_{m}\left(1-r^{2}\right), \quad h_{m}=\frac{\theta}{2} \\
V=\pi H_{0}+\frac{\pi \theta}{4}
\end{gathered}
$$

Solution for Concentration - Prior to Touchdown

- The exact solution for c is well known and may be written as

$$
c=\frac{2}{\pi} \sin ^{-1}\left(\frac{2}{\left[(1+r)^{2}+z^{2}\right]^{1 / 2}+\left[(1-r)^{2}+z^{2}\right]^{1 / 2}}\right)
$$

Figure: Plot of the concentration on $z=0$ and a contour plot of c.

Solution for the Flux - Prior to Touchdown

- The evaporative flux from the free surface J is

$$
J=-\left.\frac{\partial c}{\partial z}\right|_{z=0}=\frac{2}{\pi\left(1-r^{2}\right)^{1 / 2}} \quad \text { for } r<1
$$

Figure: Solution for the evaporative flux J prior to touchdown

Evolution - Prior to Touchdown

- $\frac{d V}{d t}$ is given by

$$
\frac{d V}{d t}=-2 \pi \int_{0}^{1} J r d r
$$

Evolution - Prior to Touchdown

- $\frac{d V}{d t}$ is given by

$$
\begin{aligned}
& \frac{d V}{d t}=-2 \pi \int_{0}^{1} J r d r \\
\Longrightarrow & \frac{d}{d t}\left(\pi H_{0}+\frac{\pi \theta}{4}\right)=-4 \int_{0}^{1} \frac{r}{\left(1-r^{2}\right)^{1 / 2}} d r
\end{aligned}
$$

Evolution - Prior to Touchdown

- $\frac{d V}{d t}$ is given by

$$
\begin{aligned}
& \frac{d V}{d t}=-2 \pi \int_{0}^{1} J r d r \\
\Longrightarrow & \frac{d}{d t}\left(\pi H_{0}+\frac{\pi \theta}{4}\right)=-4 \int_{0}^{1} \frac{r}{\left(1-r^{2}\right)^{1 / 2}} d r \\
\Longrightarrow & \frac{d V}{d t}=\frac{\pi}{4} \frac{d \theta}{d t}=-4
\end{aligned}
$$

Evolution - Prior to Touchdown

- $\frac{d V}{d t}$ is given by

$$
\begin{aligned}
& \frac{d V}{d t}=-2 \pi \int_{0}^{1} J r d r \\
\Longrightarrow & \frac{d}{d t}\left(\pi H_{0}+\frac{\pi \theta}{4}\right)=-4 \int_{0}^{1} \frac{r}{\left(1-r^{2}\right)^{1 / 2}} d r \\
\Longrightarrow & \frac{d V}{d t}=\frac{\pi}{4} \frac{d \theta}{d t}=-4
\end{aligned}
$$

- The evolution of the droplet prior to touchdown is therefore given by

Evolution - Prior to Touchdown

- $\frac{d V}{d t}$ is given by

$$
\begin{aligned}
& \frac{d V}{d t}=-2 \pi \int_{0}^{1} J r d r \\
\Longrightarrow & \frac{d}{d t}\left(\pi H_{0}+\frac{\pi \theta}{4}\right)=-4 \int_{0}^{1} \frac{r}{\left(1-r^{2}\right)^{1 / 2}} d r \\
\Longrightarrow & \frac{d V}{d t}=\frac{\pi}{4} \frac{d \theta}{d t}=-4
\end{aligned}
$$

- The evolution of the droplet prior to touchdown is therefore given by

$$
\begin{gathered}
V=V_{0}-4 t, \quad V_{0}=V(0)=\pi H_{0}+\frac{\pi}{4} \\
\theta=\theta_{0}-\frac{16}{\pi} t, \quad \theta_{0}=\theta(0)=1
\end{gathered}
$$

Evolution - Prior to Touchdown

- Using

$$
\begin{gathered}
V=V_{0}-4 t, \quad V_{0}=V(0)=\pi H_{0}+\frac{\pi}{4} \\
\theta=\theta_{0}-\frac{16}{\pi} t, \quad \theta_{0}=\theta(0)=1
\end{gathered}
$$

Evolution - Prior to Touchdown

- Using

$$
\begin{gathered}
V=V_{0}-4 t, \quad V_{0}=V(0)=\pi H_{0}+\frac{\pi}{4} \\
\theta=\theta_{0}-\frac{16}{\pi} t, \quad \theta_{0}=\theta(0)=1
\end{gathered}
$$

- we now find $t_{\text {flat }}$ and $t_{\text {touchdown }}$ to be

$$
\begin{gathered}
t_{\text {flat }}=\frac{\pi}{16} \approx 0.1963 \\
t_{\text {touchdown }}=\frac{\pi\left(1+2 H_{0}\right)}{16}
\end{gathered}
$$

The Droplet - After Touchdown

- The free surface touches down at $r=0, z=-H_{0}$ at $t=t_{\text {touchdown }}$

The Droplet - After Touchdown

- The free surface touches down at $r=0, z=-H_{0}$ at $t=t_{\text {touchdown }}$
- Thereafter the droplet takes the form of an annulus of outer radius 1 and inner contact radius $R=R(t)$

The Droplet - After Touchdown

- The free surface touches down at $r=0, z=-H_{0}$ at $t=t_{\text {touchdown }}$
- Thereafter the droplet takes the form of an annulus of outer radius 1 and inner contact radius $R=R(t)$

Figure: Sketch of the annular droplet at some instant after touchdown

The Droplet - After Touchdown

$$
\begin{array}{lll}
\nabla^{2} c=0 & & c \rightarrow 0 \\
\frac{\partial c}{\partial z}=0 \\
-1 & c=1 & \frac{\partial c}{\partial z} /=0 \\
-R & c=1 \\
\hline
\end{array} \stackrel{\frac{\partial c}{\partial z}=0}{\longrightarrow} r
$$

Figure: View of the droplet on the scale of the atmosphere after touchdown

The Droplet - After Touchdown

$$
\begin{array}{ll}
\nabla^{2} c=0 & \\
\frac{\partial c}{z z}=0 \\
-1 & c=1 \\
\left.-R \quad \frac{\partial c}{\partial z} \right\rvert\,=0 & c=1 \\
R
\end{array}
$$

Figure: View of the droplet on the scale of the atmosphere after touchdown

Height Profile: $\quad h(r, t)=\frac{H_{0}\left(r^{2}-1-2 R^{2} \log r\right)}{1-R^{2}+2 R^{2} \log r}, \quad R=R(t)$

The Droplet - After Touchdown

$$
\begin{array}{lll}
\nabla^{2} c=0 & & c \rightarrow 0 \\
\frac{\partial c}{\partial z}=0 \\
-1 & c=1 & \left.\frac{\partial c}{\partial z} \right\rvert\,=0 \\
-R & c=1 \\
\xrightarrow{\frac{\partial c}{\partial z}=0} r
\end{array}
$$

Figure: View of the droplet on the scale of the atmosphere after touchdown

Height Profile: $\quad h(r, t)=\frac{H_{0}\left(r^{2}-1-2 R^{2} \log r\right)}{1-R^{2}+2 R^{2} \log r}, \quad R=R(t)$
Volume: $\quad V(t)=\frac{\pi H_{0}\left(1-R^{4}+4 R^{2} \log R\right)}{2\left(1-R^{2}+2 R^{2} \log R\right)}$

The Vapour Problem - After Touchdown

- Mathematical model of an evaporating thin annular droplet in a shallow well after touchdown

$$
\begin{gathered}
\nabla^{2} c=0 \quad \text { for the half space } z>0 \\
c=1 \quad \text { on } z=0 \text { for } R \leq r \leq 1 \\
c \rightarrow 0 \quad \text { as }|\mathbf{r}| \rightarrow \infty \\
\frac{\partial c}{\partial z}=0 \quad \text { on } z=0 \text { for } 0 \leq r<R \text { and for } r>1 \\
J=-\frac{\partial c}{\partial z} \quad \text { on } z=0 \text { for } R \leq r \leq 1 \\
\frac{d V}{d t}=-F(R), \quad F(R)=2 \pi \int_{R}^{1} J r d r
\end{gathered}
$$

The Vapour Problem - After Touchdown

- Mathematical model of an evaporating thin annular droplet in a shallow well after touchdown

$$
\begin{gathered}
\nabla^{2} c=0 \quad \text { for the half space } z>0 \\
c=1 \quad \text { on } z=0 \text { for } R \leq r \leq 1 \\
c \rightarrow 0 \quad \text { as }|\mathbf{r}| \rightarrow \infty \\
\frac{\partial c}{\partial z}=0 \quad \text { on } z=0 \text { for } 0 \leq r<R \text { and for } r>1 \\
J=-\frac{\partial c}{\partial z} \quad \text { on } z=0 \text { for } R \leq r \leq 1 \\
\frac{d V}{d t}=-F(R), \quad F(R)=2 \pi \int_{R}^{1} J r d r
\end{gathered}
$$

- No simple closed form solution is available for c

The Vapour Problem - After Touchdown

- Mathematical model of an evaporating thin annular droplet in a shallow well after touchdown

$$
\begin{gathered}
\nabla^{2} c=0 \quad \text { for the half space } z>0 \\
c=1 \quad \text { on } z=0 \text { for } R \leq r \leq 1 \\
c \rightarrow 0 \quad \text { as }|\mathbf{r}| \rightarrow \infty \\
\frac{\partial c}{\partial z}=0 \quad \text { on } z=0 \text { for } 0 \leq r<R \text { and for } r>1 \\
J=-\frac{\partial c}{\partial z} \quad \text { on } z=0 \text { for } R \leq r \leq 1 \\
\frac{d V}{d t}=-F(R), \quad F(R)=2 \pi \int_{R}^{1} J r d r
\end{gathered}
$$

- No simple closed form solution is available for c
- Our main concern is finding the total flux F

Solution - After Touchdown

- How to find the evaporative flux J and total flux F ?

Solution - After Touchdown

- How to find the evaporative flux J and total flux F ?
- Following Cooke (1963) we first converted the above problem into an integral equation for c

Solution - After Touchdown

- How to find the evaporative flux J and total flux F ?
- Following Cooke (1963) we first converted the above problem into an integral equation for c
- We used a method based on Chebyshev-Gauss quadrature to solve this integral equation to obtain c and hence the local flux J and total flux F

Solution - After Touchdown

- How to find the evaporative flux J and total flux F ?
- Following Cooke (1963) we first converted the above problem into an integral equation for c
- We used a method based on Chebyshev-Gauss quadrature to solve this integral equation to obtain c and hence the local flux J and total flux F
- We also used the finite-element package COMSOL to find the solution for c and hence J and F

Solution - After Touchdown

- How to find the evaporative flux J and total flux F ?
- Following Cooke (1963) we first converted the above problem into an integral equation for c
- We used a method based on Chebyshev-Gauss quadrature to solve this integral equation to obtain c and hence the local flux J and total flux F
- We also used the finite-element package COMSOL to find the solution for c and hence J and F
- The two approaches were found to be in very good agreement for F

Solution - After Touchdown

Figure: Contour plot of the concentration c and a plot of the evaporative flux J for an annular droplet in $R \leq r \leq 1$ in the case $R=1 / 2$

Solution - After Touchdown

Figure: The numerical solution for the total evaporative flux F, obtained via COMSOL

Lifetime

$$
V=\frac{\pi H_{0}\left(1-R^{4}+4 R^{2} \log R\right)}{2\left(1-R^{2}+2 R^{2} \log R\right)}=\pi H_{0} f(R), \quad \frac{d V}{d t}=-F(R)
$$

Lifetime

$$
\begin{gathered}
V=\frac{\pi H_{0}\left(1-R^{4}+4 R^{2} \log R\right)}{2\left(1-R^{2}+2 R^{2} \log R\right)}=\pi H_{0} f(R), \quad \frac{d V}{d t}=-F(R) \\
\Longrightarrow \quad \pi H_{0} f^{\prime}(R) \frac{d R}{d t}=-F(R)
\end{gathered}
$$

Lifetime

$$
\begin{gathered}
V=\frac{\pi H_{0}\left(1-R^{4}+4 R^{2} \log R\right)}{2\left(1-R^{2}+2 R^{2} \log R\right)}=\pi H_{0} f(R), \quad \frac{d V}{d t}=-F(R) \\
\Longrightarrow \quad \pi H_{0} f^{\prime}(R) \frac{d R}{d t}=-F(R)
\end{gathered}
$$

- Solving with the condition $R\left(t_{\text {touchdown }}\right)=0$ gives

$$
t=t_{\text {touchdown }}-\pi H_{0} \int_{0}^{R} \frac{f^{\prime}(\hat{R})}{F(\hat{R})} d \hat{R}
$$

Lifetime

$$
\begin{gathered}
V=\frac{\pi H_{0}\left(1-R^{4}+4 R^{2} \log R\right)}{2\left(1-R^{2}+2 R^{2} \log R\right)}=\pi H_{0} f(R), \quad \frac{d V}{d t}=-F(R) \\
\Longrightarrow \quad \pi H_{0} f^{\prime}(R) \frac{d R}{d t}=-F(R)
\end{gathered}
$$

- Solving with the condition $R\left(t_{\text {touchdown }}\right)=0$ gives

$$
t=t_{\text {touchdown }}-\pi H_{0} \int_{0}^{R} \frac{f^{\prime}(\hat{R})}{F(\hat{R})} d \hat{R}
$$

- Then using the fact that $R\left(t_{\text {lifetime }}\right)=1$ we obtain

$$
\begin{gathered}
t_{\text {lifetime }}=t_{\text {touchdown }}+\pi \alpha H_{0}=\frac{\pi}{16}\left[1+2(1+8 \alpha) H_{0}\right] \\
\text { where } \alpha=-\int_{0}^{1} \frac{f^{\prime}(R)}{F(R)} d R \approx 0.1369
\end{gathered}
$$

Evolution - R and V

Figure: Evolution of the moving inner contact radius R and the volume V for $t=0 \ldots t_{\text {lifetime }}$ in the case $H_{0}=1$

Comparison with experiments

- We compare the theory to experiments conducted in Durham on droplets of methyl benzoate evaporating (into ambient air) from the wells in polished glass substrates coated with ITO

Comparison with experiments

- We compare the theory to experiments conducted in Durham on droplets of methyl benzoate evaporating (into ambient air) from the wells in polished glass substrates coated with ITO
- Droplets were deposited into wells of radius 30,50 and $75 \mu \mathrm{~m}$

Comparison with experiments

- We compare the theory to experiments conducted in Durham on droplets of methyl benzoate evaporating (into ambient air) from the wells in polished glass substrates coated with ITO
- Droplets were deposited into wells of radius 30,50 and $75 \mu \mathrm{~m}$
- Behaviour of the height profile, R, and V were measured

Comparison with experiments

- The following parameter values were used in the comparison of the theory with experiments

$$
\begin{gathered}
D=6.899 \times 10^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-1}, \quad \rho=1.085 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}, \\
c_{\text {sat }}= \begin{cases}2.330 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-3} & \text { Book Value 1 } \\
2.252 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-3} & \text { Book Value 2 }\end{cases} \\
c_{\infty}=0
\end{gathered}
$$

Comparison with Experiments - Height Profile

Figure: Comparison of the height profile predicted by the theory with the measured experimental values of a methyl benzoate droplet in a well of radius $50 \mu \mathrm{~m}$ at times $t=0,0.26 \ldots 4.16 \mathrm{~s}$

Comparison with Experiments - R

Figure: Comparison of the evolution of the moving inner contact radius R predicted by the theory with the measured experimental values for droplets of methyl benzoate in wells of radii 30,50 and $75 \mu \mathrm{~m}$

Comparison with Experiments - V

Figure: Comparison of the evolution of the volume V predicted by the theory with the measured experimental values for droplets of methyl benzoate in wells of radii 30,50 and $75 \mu \mathrm{~m}$

Comparison with Experiments - Critical Times

Well Dimensions $(\mu \mathrm{m})$	Critical Times	Experiments	Theory BV 2	\% diff.
$R_{0}=30, H_{0}=2.38$	$t_{\text {flat }}$	0.07 s	0.06 s	-14%
	$t_{\text {touchdown }}$	1.90 s	1.95 s	$+3 \%$
	$t_{\text {lifetime }}$	3.98 s	4.03 s	$+1 \%$
	$t_{\text {flat }}$	0.23 s	0.23 s	$\pm 0 \%$
	$t_{\text {touchdown }}$	2.88 s	2.79 s	-3%
$R_{0}=75, H_{0}=2.39$	$t_{\text {lifetime }}$	5.44 s	5.60 s	$+3 \%$
	$t_{\text {flat }}$	0.46 s	0.49 s	$+6 \%$
	$t_{\text {touchdown }}$	5.05 s	5.40 s	$+7 \%$
	$t_{\text {lifetime }}$	10.40 s	10.79 s	$+4 \%$

Table: Comparison of experimental results for the critical times with theory

Different Shapes of Well

- We have extended this approach to wells with height profile

$$
z=H(r)=-H_{0}\left[1-\left(\frac{r}{R_{0}}\right)^{n}\right]
$$

Different Shapes of Well

- We have extended this approach to wells with height profile

$$
z=H(r)=-H_{0}\left[1-\left(\frac{r}{R_{0}}\right)^{n}\right]
$$

Different Shapes of Well

- We have extended this approach to wells with height profile

$$
z=H(r)=-H_{0}\left[1-\left(\frac{r}{R_{0}}\right)^{n}\right]
$$

Different Shapes of Well

- We have extended this approach to wells with height profile

$$
z=H(r)=-H_{0}\left[1-\left(\frac{r}{R_{0}}\right)^{n}\right]
$$

Different Shapes of Well

- We have extended this approach to wells with height profile

$$
z=H(r)=-H_{0}\left[1-\left(\frac{r}{R_{0}}\right)^{n}\right]
$$

Different Shapes of Well

- We have extended this approach to wells with height profile

$$
z=H(r)=-H_{0}\left[1-\left(\frac{r}{R_{0}}\right)^{n}\right]
$$

Conclusions and Future Work

- We used the diffusion-limited evaporation model to describe the evolution of a thin droplet in a shallow well until total evaporation at $t_{\text {lifetime }}$

Conclusions and Future Work

- We used the diffusion-limited evaporation model to describe the evolution of a thin droplet in a shallow well until total evaporation at $t_{\text {lifetime }}$
- We found the solution prior to touchdown analytically

Conclusions and Future Work

- We used the diffusion-limited evaporation model to describe the evolution of a thin droplet in a shallow well until total evaporation at $t_{\text {lifetime }}$
- We found the solution prior to touchdown analytically
- We used the COMSOL Multiphysics package and Chebyshev-Gauss quadrature to obtain the evaporative flux J and the total flux F after touchdown

Conclusions and Future Work

- We used the diffusion-limited evaporation model to describe the evolution of a thin droplet in a shallow well until total evaporation at $t_{\text {lifetime }}$
- We found the solution prior to touchdown analytically
- We used the COMSOL Multiphysics package and Chebyshev-Gauss quadrature to obtain the evaporative flux J and the total flux F after touchdown
- We found that the lifetime of the droplet is linear in H_{0}

Conclusions and Future Work

- We used the diffusion-limited evaporation model to describe the evolution of a thin droplet in a shallow well until total evaporation at $t_{\text {lifetime }}$
- We found the solution prior to touchdown analytically
- We used the COMSOL Multiphysics package and Chebyshev-Gauss quadrature to obtain the evaporative flux J and the total flux F after touchdown
- We found that the lifetime of the droplet is linear in H_{0}
- We found good agreement with experimental data for the height profile, R, V and the critical times

Future Work

- Deposition and "coffee stains" from an evaporating droplet inside a well

Future Work

- Deposition and "coffee stains" from an evaporating droplet inside a well
- Extend analysis to other modes of evaporation

Future Work

- Deposition and "coffee stains" from an evaporating droplet inside a well
- Extend analysis to other modes of evaporation
- Multicomponent droplets

Acknowledgements

Thank You for Listening!

Hannah-May D'Ambrosio Brian Duffy
Teresa Colosimo
Colin Bain
Dan Walker

EPSRC
 Pioneering research
 and skills

Different Shapes of Wells

- For $0<n<2$

$$
\begin{gathered}
t_{\text {touchdown }}=\frac{\pi\left(1+n H_{0}\right)}{16} \\
t_{\text {lifetime }}=\frac{\pi\left(1+n+3 n H_{0}\right)}{16(1+n)}
\end{gathered}
$$

$$
n=0.5
$$

Different Shapes of Wells

Figure: Evolution of the height profile of a droplet in a conical well from the theory where $\mathrm{n}=1$.

Different Shapes of Wells

- For $n=2$

$$
t_{\text {touchdown }}=t_{\text {lifetime }}=\frac{\pi\left(1+2 H_{0}\right)}{16}
$$

Different Shapes of Wells

Figure: Evolution of the height profile of a droplet in a parabolic well from the theory where $\mathrm{n}=2$.

Different Shapes of Wells

- For $2<n<\infty$

$$
\begin{gathered}
t_{\text {touchdown }}=\frac{\pi\left(1+2 H_{0}\right)}{16} \\
t_{\text {lifetime }}=\frac{\pi}{16}\left[1+2(1+8 \alpha) H_{0}\right] \\
\alpha=-\int_{0}^{1} \frac{f^{\prime}(R)}{F(R)} d R(>0)
\end{gathered}
$$

Different Shapes of Wells

Figure: Evolution of the height profile in an axisymmetric well from the theory where $\mathrm{n}=9$.

Different Shapes of Wells - Evolution of α

Figure: Evolution of parameter α for varying n .

Experimental Analysis

Figure: Experimental values for the height in the middle of the droplet h_{m} for three wells of radius 30,50 and $75 \mu \mathrm{~m}$.

Experimental Analysis

(a) $R_{0}=30 \mu \mathrm{~m}$

(b) $R_{0}=50 \mu \mathrm{~m}$

(c) $R_{0}=75 \mu \mathrm{~m}$

Figure: Parabolic fits of the experimental values for the height profile of a droplet in wells of radius 30,50 and $75 \mu \mathrm{~m}$ before touchdown at time intervals of (a) $t=0,0.18 \ldots 1.80 \mathrm{~s}$, (b) $t=0,0.26 \ldots 2.60 \mathrm{~s}$ and $(\mathrm{c})_{t} t=0,0.48 \ldots 4.80 \mathrm{~s} \mathrm{~s}$.

Experimental Analysis

Figure: Modified fits of the experimental values for the height profile of a droplet in wells of radius 30,50 and $75 \mu \mathrm{~m}$ after touchdown at time intervals of (a) $t=1.92,1.98 \ldots 2.52 \mathrm{~s}$, (b) $t=3.12,3.18 \ldots 3.78 \mathrm{~s}$ and (c) $t=5.68,5.84$

