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Ill-posedness in �uid dynamics

� what can we do about it?

Martina Hofmanova

Bielefeld University

based on a joint works with D. Breit and E. Feireisl
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@t%+divm = 0;

@tm+div
�
m
m
%

�
+r%
 = 0;

x2Td; t2 (0; T );

%(0)= %0; m(0)=m0

� density %: [0; T ]�Td! [0;1)

� momentum m: [0; T ]�Td!Rd, corresponds to m= %u where u is velocity

� %
 pressure, 
 > 1 adiabatic constant

� d=2; 3

Existence? Uniqueness?

� strong solutions exist only locally

� shocks appear

� weak solutions not unique
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@t%+divm = 0;
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�
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 = G(%;m)

dW
dt

;

� either G(%;m)= %G(x) or G(%;m)=m

� Brownian motion W : 
� [0; T ]!R � only C�([0; T ]) trajectories for �< 1/2

� probability needed to make sense of the stochastic forcing

� good (reasonable) solutions shall be measurable wrt the noise � adapted

� (%;m)j[0;t]: 
!Cweak

�
[0; t];L
�L
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�
measurable wrt �(W j[0;t])

� probabilistically strong solutions

� typically do not exist for problems without uniqueness

� existence by compactness ) probabilistically weak solutions
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Theorem (Breit, Feireisl, H., APDE '19) Let T > 0. Let [%0; m0] 2 C3, F0-measurable,
%0> 0 a.s.

There exist stopping times �M > 0 such that �M"1 a.s. and for every M > 0

the system admits in�nitely many adapted weak solutions on [0; �M ^T ].

� strong in the probabilistic sense, weak in the PDE sense

� stochastic version of the oscillatory lemma à la De Lellis�Székelyhidi, Feireisl

� rewrite as an abstract Euler system

� reduce to the oscillatory lemma in the incompressible setting

� keep track of the arrow of time � added oscillations are adapted
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Search for physical solutions
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� multiple weak solutions emanating from the same initial data

� admissibility criterium needed to select the physical one

� energy balance (in a suitable e.g. integrated/weak form)
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� convex integration by De Lellis�Székelyhidi, Chiodaroli et al.

� in�nitely many admissible weak solutions (even for certain smooth initial data)

� additional selection criterium à la Dafermos

� maximality of energy dissipation � the energy is dissipated at highest possible rate

� remains ill-posed
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A physical property implied by uniqueness - semi�ow property

� starting from 0 and going to s+ t gives the same output as 0! s! s+ t

� very unclear if uniqueness not valid

Question: existence of a semi�ow selection?

� for an initial time s there are possibly multiple solutions

� choose one of them so that the semi�ow property holds

� this would give a selection of better behaved (more physical) solutions
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Theorem (Breit, Feireisl, H., ARMA '19) The Euler system admits a solution semi�ow in
the class of admissible dissipative solutions (minimizing the total energy).

Physical relevance of the selection justi�ed through:

� stability of strong solutions

� strong solutions are unique (in the class of dissipative solutions) � are always selected

� maximal dissipation of energy

� the selected solution is admissible

� stability of stationary states %(T ; �)� const, m(T ; �)� 0

� if a stationary state is reached, the system remains there (because of energy minimization)

� wild solutions by convex integration are ruled out (at least to some extent)
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Dissipative solutions
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Consider an approximation (e.g. vanishing viscosity limit)

@t%n+divmn = F1;n %n(0)= %n;0

@tmn+div
�
mn
mn

%n

�
+r%n


 = F2;n mn(0)=mn;0

with F1;n; F2;n! 0 in D 0((0; T )�Td).

� the energy inequality � the only source of a priori estimates (needed for the approximation)
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(x) dx6E0

implies uniform bounds %n2L1(0; T ;L
) and mn2L1
�
0; T ;L
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�
� hence weak convergence %n!!!!!!!!!!!!

w
% and mn!!!!!!!!!!!!

w
m

Can we pass to the limit in the equation?
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� no compactness � cannot pass to the limit in the nonlinearities

� oscillations, concentrations

� but maybe there is a hidden regularity?

Theorem (Breit, Feireisl, H. '19) Let D�Rd be a bounded domain. Let %02L1, %0>0.

There exists a sequence of weak solutions [%n;mn] to the Euler system with %n= %n(x) such
that

%n!!!!!!!!!!!!!!!!!!!!!!
w�

%0 in L1(D); mn!!!!!!!!!!!!!!!!!!!!!!
w�

0 in L1((0; T )�D);

liminf
n!1

k%n¡ %kL1> 0:

� only choosing %0� const gives a weak solution in the limit

� otherwise the limit is not a weak solution
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Theorem (Feireisl, H. '19) Consider a vanishing viscosity approximation of the Euler system
on Rd (with energy inequality) so that

%n! % and mn!m in D 0((0; T )�Rd):

Then either

� the convergence is strong in the energy norm

or

� the limit is not a weak solution to the Euler system.

� weak convergence to weak solutions impossible!

� weak limits are dissipative solutions

� on domains one needs to assume that the convergence is nicer at the boundary

Main ingredient:

� structure of the system � convexity of the energy and the pressure

� not true in the incompressible case!
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They satisfy
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in the sense of distributions with some turbulent defect measures

Rv 2L1(0; T ;M+(Rd;Rsym
d�d)); Rp2L1(0; T ;M+(Rd)):

A sanity check: not every (%;m) can be a solution to Euler!

For approximations: %n!!!!!!!!!!!!
w

% and mn!!!!!!!!!!!!
w
m

Rv := lim
n!1

mn
mn

%n
¡ m
m

%
; Rp := lim

n!1
%n

 ¡ %


Proof of the theorem: limit is a weak solution ) div (Rv+RpI)= 0 in D 0

) Rv=0; Rp=0 ) the convergence is strong
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Construction of the semi�ow
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Semi�ow: determined by a triple [%;m;E] with

E(t)=

Z �
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+
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2
tr[Rv] +
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 ¡ 1Rp

�
(t; x) dx a:e: t2 (0;1)

Admissibility � [%1;m1; E1]� [%2;m2; E2] , E1(t� )6E2(t� ) for all t2 (0;1)

� a solution is admissible = minimal wrt �

� construction based on ideas from Markov selections (Krylov, Cardona�Kapitanski)

� subsequent minimization/maximization of a sequence of functionals

I�;F [%;m;E] =

Z
0

1
e¡�tF ([%;m;E](t))dt

� needed: existence, compactness, stability, shift, continuation

Uniqueness and further properties of the selection?



Dissipative solutions 16/17

� Existence: exist globally in time

� Stability: weak limits of dissipative solutions are dissipative solutions

� Weak�strong uniqueness: satis�ed

� Energy dissipation: the energy is nonincreasing

� Semi�ow: maximizes the energy dissipation, rules out wild solutions

� Consistency: if continuously di�erentiable ) then they are strong (classical) solutions
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Thanks for your attention!


