The Monge problem in Brownian stopping optimal transport

Young-Heon Kim

University of British Columbia

Based on joint work with
Nassif Ghoussoub and Aaron Zeff Palmer (UBC).
August 15, 2019
BIRS workshop: Convex Integratioon in PDEs, Geometry, and Variational Calculus.

Brownian motion and stopping time

- Brownian motion:

from CRM-physmath
- A stopping time τ of Brownian motion is, roughly speaking, a random time, prescribed to satisfy a certain probabilistic condition, at which one stops a particle following the Brownian motion.

Brownian motion and stopping time

[Skorokhod problem in R^{n}]

For given probability measures μ, ν, does there exist a stopping time τ of the Brownian motion such that

from CRM-physmath

Remark:

- For such a stopping time τ to exist (with $\mathbb{E}[\tau]<\infty$), we need
- μ and ν are in subharmonic order, $\mu \prec_{S H} \nu$, i.e. $\int \xi d \mu \leq \int \xi d \nu$, \forall subharmonic $\xi: \mathbb{R}^{n} \rightarrow \mathbb{R}(\Delta \xi \geq 0)$.

Skorokod problem

[Skorokhod problem in R^{n}]

For given probability measures μ, ν, does there exist a stopping time τ of the Brownian motion such that

$$
B_{0} \sim \mu \quad \& \quad B_{\tau} \sim \nu ?
$$

from CRM-physmath

- [Skorokhod] [Root] [Rost] [Azéma\&Yor] [Vallois] [Perkins] [Jacka] ...[Obloj]...
- [Hobson]
- [Beigleböck, Cox, \& Huesmann '13].
- Optimal transport unifies the previous results on Skorokhod problem.
- And many many more people.

Optimal Skorokhod problem

transportation cost $c(x, y)$.

- e.g. $c(x, y)=|x-y|$.
- Can also consider cost $\mathbb{E}\left[\int_{0}^{\tau} L\left(t, B_{t}\right) d t\right]$, etc.

Question: What can we say about an optimal stopping time τ for

$$
P_{c}(\mu, \nu):=\inf _{\tau}\left\{\mathbb{E}\left[c\left(B_{0}, B_{\tau}\right)\right] \quad \mid \quad B_{0} \sim \mu \quad \& \quad B_{\tau} \sim \nu\right\} ?
$$

- Existence?
- Uniquenss?
- Any extremal structure?
- Does τ drop mass only in lower dimensional sets (called barrier)?

Martingale optimal transport:

Optimal Skorokhod problem is a special case of martingale optimal transport:

- The joint distribution $\pi \sim\left(B_{0}, B_{\tau}\right)$ is martingale: The distribution $\pi_{x} \sim B_{\tau}^{x}$ satisfies martingale constraint for $x \mapsto \pi_{x} \in P\left(\mathbb{R}^{n}\right)$:

$$
\int y d \pi_{x}(y)=x
$$

(Branches out while keeping the barycentre.)

Martingale optimal transport

- MT (μ, ν) :
probability measures π on $\mathbb{R}^{n} \times \mathbb{R}^{n}$
with the marginals μ, ν, such that its disintegration $\left(\pi_{x}\right)_{x \in \mathbb{R}^{n}}$ has barycenter at x (martingale constraint):
$\int y d \pi_{x}(y)=x$.
$\inf _{\pi \in M T(\mu, \nu)} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} c(x, y) d \pi(x, y)$.

Remark: [Strassen]

Martingale optimal transport

- MT (μ, ν) :
probability measures π on $\mathbb{R}^{n} \times \mathbb{R}^{n}$
with the marginals μ, ν, such that its disintegration $\left(\pi_{x}\right)_{x \in \mathbb{R}^{n}}$ has barycenter at x (martingale constraint):
$\int y d \pi_{x}(y)=x$.
$\inf _{\pi \in M T(\mu, \nu)} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} c(x, y) d \pi(x, y)$.

Remark: [Strassen]

- MT $(\mu, \nu) \neq \emptyset$
$\Leftrightarrow \mu$ and ν are in convex order;

$$
\mu \prec c \nu \text {, i.e. } \int \xi d \mu \leq \int \xi d \nu, \forall \text { convex } \xi: \mathbb{R}^{n} \rightarrow \mathbb{R} \text {. }
$$

Optimal transport

Martingale optimal transport is optimal transport with the additional martingale constraint.

- $T(\mu, \nu)$:
probability measures π on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ with the marginals μ, ν.
Monge-Kantorovich problem:

$$
\inf _{\pi \in T(\mu, \nu)} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} c(x, y) d \pi(x, y)
$$

Many people contributed to this theory and related
problems in PDE, geometry, probability,, machine
learning, etc:
[Monge][Kantorovich][Brenier][McCann][Delanoë][Urbas]
[Caffarelli] [Evans-Gangbo][Gangbo-McCann]
[Trudinger-Wang] [Ambrosio][Otto][Villani]

Optimal transport

Martingale optimal transport is optimal transport with the additional martingale constraint.

- $T(\mu, \nu)$:
probability measures π on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ with the marginals μ, ν.
Monge-Kantorovich problem:

$$
\inf _{\pi \in T(\mu, \nu)} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} c(x, y) d \pi(x, y) .
$$

Many people contributed to this theory and related problems in PDE, geometry, probability,, machine learning, etc:
[Monge][Kantorovich][Brenier][McCann][Delanoë][Urbas] [Caffarelli] [Evans-Gangbo][Gangbo-McCann] [Trudinger-Wang] [Ambrosio][Otto][Villani][Figalli]

Some motivating comments

Many breakthroughs I know in optimal transport (OT) came when it meets with other areas:

- economics: matching theory
- fluids: Brenier theory
- physics of gas and crystals: McCann's displacement convexity
- diffusion phenomena: Otto calculus.
- Ricci curvature: Lott-Villani-Sturm theory.
- machine learning: Wasserstein GAN
- density functional theory ..
- general relativity ..
- stem cell research ..
Q. What if OT meets convex integration?

Let us get back to the discussion of martingale optimal transport and Skorokhod problem.

Martingale optimal transport:

- Backhoff, Bayraktar, Beiglböck, Bouchard, Claisse, Cox, Davis, Dolinsky, De March, Galichon, Ghoussoub, Griessler, Guo, Henry-Labordère, Hobson, Hu, Huesmann, Juillet, Kallblad, K., Klimmek, Lim, Neuberger, Nutz, Oblój, Palmer, Penkner, Perkowski, Proemel, Schachermayer, Siorpaes, Soner, Spoida, Stebegg, Tan, Touzi, Zaev, and many more people.......

Martingale optimal transport

vs. optimal Skorokhod problem

- π is martingale

$$
\int \psi(y) d \pi_{x}(y) \geq \psi(y) \text { for any convex function } \psi
$$

- [Ghoussoub, K., \& Lim '17] $\pi \sim\left(B_{0}, B_{\tau}\right)$ for a (randomized) stopping time τ $\Longleftrightarrow \pi$ is subharmonic martingale:

$$
\int \psi(y) d \pi_{x}(y) \geq \psi(y) \text { for any subharmonic function } \psi \text {. }
$$

They are the same in $1 D$:

- $1 \mathrm{D} \Rightarrow$ subharmonic = convex.

Different in general dimensions.

Randomized stopping time

Let $\Omega:=C\left(\mathbb{R}_{\geq 0} ; \mathbb{R}^{n}\right)$.

Stopping time

is a measurable function τ on the probability space $\left(\Omega, \mathbb{P}^{\mu}\right)$.
$\left(\mathbb{P}^{\mu}=\right.$ the Wiener measure with
 $B_{0} \sim \mu$).

Randomized stopping time is a probability measure τ on the

whose marginal on Ω is \mathbb{P}^{μ}.

A (nonradomized) stopping time gives Dirac mass along each path.

Randomized stopping time

Let $\Omega:=C\left(\mathbb{R}_{\geq 0} ; \mathbb{R}^{n}\right)$.

Stopping time

is a measurable function τ on the probability space $\left(\Omega, \mathbb{P}^{\mu}\right)$.
($\mathbb{P}^{\mu}=$ the Wiener measure with $B_{0} \sim \mu$).

Randomized stopping time is a probability measure τ on the space $\mathbb{R}_{\geq 0} \times \Omega$, whose marginal on Ω is \mathbb{P}^{μ}.

Optimal Skorokhod problem: Kantorovich solution (a measure-valued solution)

- [Beiglböck, Cox \& Huesmann '13]

Randomized stopping times give Kantorovich relaxation to optimal Skorokhod problem.

- The set of randomized stopping times from μ to ν is nonempty if $\mu \prec_{S H} \nu$.
- Space of randomized stopping times is compact: weak* -compactness of the space of probability measures.
- Optimal randomized stopping time exists through lower semi-continuity of the functional $\tau \rightarrow \mathbb{E}\left[c\left(B_{0}, B_{\tau}\right)\right]$ over randomized stopping times.

Optimal Skorokhod problem: Monge solution?

- Question:
- When is the optimal Kantorovich solution a Monge solution?
- In what case, does the optimal randomized stopping time become pure, that is, non-randomized stopping time?
- Any associated structure?

Optimal Skorokhod problem: Monge solutions (non-randomized stopping)

- [Beigleböck, Cox, \& Huesmann '13].
- Some variational tools, called monotonicity principle, comparing different paths.
- geometric structures for the cost $\mathbb{E}\left[\int_{0}^{\tau} L(t) d t\right]$.
- Stopping time is given by hitting a certain barrier.
- [Ghoussoub, K. \& Palmer '18]. For the cost $\mathbb{E}\left[\int_{0}^{\tau} L\left(t, B_{t}\right) d t\right]$.
- Some analytical tools based on dual formulation.
- dual attainment
- geometric structures
- Stopping time is determined by hitting a certain barrier given by the optimal dual function.

Hitting time to a barrier in $\mathbb{R}_{>0} \times \mathbb{R}^{n}$
Barrier looks like the graph of a function on \mathbb{R}^{n}.

Hitting time to a barrier in $\mathbb{R}_{\geq 0} \times \mathbb{R}^{n}$

hitting from below

hitting from above

- [Ghoussoub, K. \& Lim '17]
- For $c(x, y)=|x-y|^{p}, p>1, p \neq 2$: geometric structures when μ, ν are radially symmetric in \mathbb{R}^{n}.
- Stopping time is given by hitting a certain barrier.
- [Ghoussoub, K. \& Palmer '19]
- Some analytical tools based on dual formulation.
- dual attainment
- For $c(x, y)=|x-y|$, geometric structures for general cases in \mathbb{R}^{n}.
- Stopping time is given by hitting a certain barrier determined by the optimal dual function.

Hitting time to a barrier in $\mathbb{R}^{n} \times \mathbb{R}^{n}$

The barrier depends on the starting point $x \in R^{n}$.

Hitting time to a space-time barrier

The barrier (depending on the starting point x) looks like a vertical wall in the space-time.

Fundamental tool:
Duality and dual attainment
We will focus on the case:

- $\operatorname{dim} \geq 2$.
- $c(x, y)=|x-y|$.

Assume:

- O bounded open convex set in \mathbb{R}^{n}.
- $\operatorname{supp} \mu, \operatorname{supp} \nu \subset O$
- $c \in C(\bar{O} \times \bar{O})$

Duality for OT with probabilistic constraints

Theorem
Weak duality: $P_{c}(\mu, \nu)=D_{c}(\mu, \nu)$.

- $P_{c}(\mu, \nu):=\inf \left\{\mathbb{E}\left[c\left(B_{0}, B_{\tau}\right)\right] \mid B_{0} \sim \mu \quad \& \quad B_{\tau} \sim \nu\right\}$
- $D_{c}(\mu, \nu):=\sup _{\psi, \phi, p}\left\{\int \psi(y) d \nu(y)-\int \phi(x) d \mu(x)\right\}$.
while
- $\psi(y)-\phi(x)+p(x, y) \leq c(x, y) \forall x, y$ and
- $y \mapsto p(x, y)$ subharmonic and $p(x, x)=0$.

Question: Dual attainment? (Does the dual optimizer (ψ, ϕ, p) exist?)

Dual attainment?

$$
\sup _{\psi(y)-\phi(x)+p(x, y) \leq c(x, y) \forall x, y}\left\{\int \psi(y) d \nu(y)-\int \phi(x) d \mu(x)\right\} .
$$

$y \mapsto p(x, y)$ subharmonic and $p(x, x)=0$.
This additional term $p(x, y)$ adds non-compactness of the problem for the dual attainment.
Remark
Dual attainment is shown [Beiglböck, Nutz, \& Touzi] [Beiglböck, Lim \& Obloj].
2: We show dual attainment (for the Skorokhod
problem) for a certain class of c; e.g. $|x-y|$.
2: For martingale transport ($y \mapsto p(x, y)$ convex), dual
attainment is open in general.

Dual attainment?

$$
\sup _{\psi(y)-\phi(x)+p(x, y) \leq c(x, y) \forall x, y}\left\{\int \psi(y) d \nu(y)-\int \phi(x) d \mu(x)\right\} .
$$

$y \mapsto p(x, y)$ subharmonic and $p(x, x)=0$.
This additional term $p(x, y)$ adds non-compactness of the problem for the dual attainment.
Remark
dim=1: Dual attainment is shown [Beiglböck, Nutz, \& Touzi] [Beiglböck, Lim \& Obloj].
$\operatorname{dim} \geq 2$: We show dual attainment (for the Skorokhod problem) for a certain class of c; e.g. $|x-y|$.
dim \geq 2: For martingale transport ($y \mapsto p(x, y)$ convex), dual attainment is open in general.

‘Brownian’ optimal tranport dual attainment

For attainment of the dual problem $D_{c}(\mu, \nu)$, we want to reduce it to a compact set of functions.

- Will use dynamic programming for the duality.
- Will find a normalization for the functions ψ.

Duality via dynamic programming

Theorem:

$$
\begin{aligned}
& \inf \left\{\mathbb{E}\left[C\left(B_{0}, B_{\tau}\right)\right] \quad \mid \quad B_{0} \sim \mu \quad \& \quad B_{\tau} \sim \nu\right\} \\
& =\sup _{\psi \in L S C(\bar{O})}\left\{\int \psi(y) d \nu(y)-\int J_{\psi}(x, x) d \mu(x)\right\} .
\end{aligned}
$$

The value function:

$$
J_{\psi}(x, y)=\sup _{\tau \leq \tau_{0}} \mathbb{E}\left[\psi\left(B_{\tau}^{y}\right)-c\left(x, B_{\tau}^{y}\right)\right]
$$

Notation:

- τ : (randomized) stopping time.
- τ_{0} the exit time of O :

$$
\tau_{O}=\inf \left\{t \mid B_{t} \notin O\right\} .
$$

The value function:

$$
J_{\psi}(x, y)=\sup _{\tau \leq \tau_{0}} \mathbb{E}\left[\psi\left(B_{\tau}^{y}\right)-c\left(x, B_{\tau}^{y}\right)\right] .
$$

Remark: Compare

- the usual value function in dynamic programming:

$$
J_{\psi}(t, y)=\sup _{\tau \geq t \&} \mathbb{B}=y\left[\psi\left(B_{\tau}\right)-\int_{t}^{\tau} L\left(s, B_{s}\right) d s\right] .
$$

- $J_{\psi}(x, x)$ with the c-Legendre transform

$$
\psi^{c}(x)=\sup [\psi(y)-c(x, y)] .
$$

Dynamic programming principle

For the value function:

$$
J_{\psi}(x, y)=\sup _{\tau \leq \tau_{0}} \mathbb{E}\left[\psi\left(B_{\tau}^{y}\right)-c\left(x, B_{\tau}^{y}\right)\right]
$$

We have
Dynamic programming principle:

$$
J_{\psi}(x, y)
$$

- $y \mapsto J(x, y)$ is the smallest superharmonic function over $y \mapsto \psi(y)-c(x, y)$.

We will reduce the dual maximization problem for ψ,

$$
D_{c}(\mu, \nu)=\sup _{\psi \in L S C(\bar{O})}\left\{\int \psi(y) d \nu(y)-\int J_{\psi}(x, x) d \mu(x)\right\} .
$$

to a compact function space, say \mathcal{B}_{D} :

$$
D_{c}(\mu, \nu)=\sup _{\psi \in \mathcal{B}_{D}}\left\{\int \psi(y) d \nu(y)-\int J_{\psi}(x, x) d \mu(x)\right\} .
$$

Assumptions for dual attainment

Assume further

- $0 \leq \Delta_{y} c(x, y) \leq D$ (in the sense of viscosity)
- $\mu \prec S H^{\nu}$
- $\mu \in H^{-1}(O)$

Remark

- OK with $\Delta_{y} c(x, y) \geq-M$.

Let $\tilde{c}(x, y)=c(x, y)+h(y)$, with h solving $\Delta h=M$, then, an optimizer ψ for $\tilde{c} \Leftrightarrow$ an optimizer ψ - h for c.

- $\Delta_{y}|x-y|=\infty$ along $x=y$. But, still can handle this
by reducing to the case supp $\mu \cap \operatorname{supp} \nu=\emptyset$.
- counterexample to dual attainment [Beiglböck/Juillet] if $\Delta_{y} c(x, y)=-\infty$ (e.g. $\left.c(x, y)=-|x-y|\right)$.

Assumptions for dual attainment

Assume further

- $0 \leq \Delta_{y} c(x, y) \leq D$ (in the sense of viscosity)
- $\mu \prec s{ }^{\nu}$
- $\mu \in H^{-1}(O)$

Remark

- OK with $\Delta_{y} c(x, y) \geq-M$. Let $\tilde{c}(x, y)=c(x, y)+h(y)$, with h solving $\Delta h=M$, then, an optimizer $\tilde{\psi}$ for $\tilde{c} \Leftrightarrow$ an optimizer $\tilde{\psi}-h$ for c.
- $\Delta_{y}|x-y|=\infty$ along $x=y$. But, still can handle this by reducing to the case $\operatorname{supp} \mu \cap \operatorname{supp} \nu=\emptyset$.
- counterexample to dual attainment [Beiglböck/Juillet] if $\Delta_{y} c(x, y)=-\infty(e . g . c(x, y)=-|x-y|)$.

A key compact function space

Definition

$$
\psi \in \mathcal{B}_{D} \Longleftrightarrow\left\{\begin{array}{l}
\psi \in H_{0}^{\prime}(O), \\
\psi \leq 0, \text { and } \\
\Delta \psi(y) \leq D \text { (weakly). }
\end{array}\right.
$$

Remark
The class \mathcal{B}_{D} is weakly compact
as $\|\psi\|_{H_{0}^{1}(O)} \leq M \quad$ for all $\psi \in \mathcal{B}_{D}$.
Want to normalized ψ to a function in \mathcal{B}_{D}.

A key lemma for dual attainment

- Value function:

$$
J_{\psi}(x, y)=\sup _{\tau \leq \tau_{0}} \mathbb{E}\left[\psi\left(B_{\tau}^{y}\right)-c\left(x, B_{\tau}^{y}\right)\right]
$$

Lemma
Assume $\Delta_{y} c(x, y) \geq 0$. (\leftarrow essentia!!) the superharmonic envelope

Then,

$$
J_{\psi-\psi} \psi^{S H}(x, y) \leq J_{\psi}(x, y)-\psi^{S H}(y) \quad \forall x, y \in O \times O .
$$

(In fact, =.)

Normalization for dual attainment

- $\psi \longrightarrow \tilde{\psi}:=\psi-\psi^{S H}$. Then, $\tilde{\psi} \leq 0$ in O and $\tilde{\psi}=0$ on ∂O.

(Used $\Delta_{y} c(x, y) \geq 0$ as well as $\mu \prec_{S H} \nu$ here.) Dual value increases. - Dual value increases $\left(\bar{\psi} \geq \tilde{\psi}^{\&} J_{\bar{\psi}}=J_{\tilde{\psi}}.\right)$

Normalization for dual attainment

- $\psi \longrightarrow \tilde{\psi}:=\psi-\psi^{S H}$. Then, $\tilde{\psi} \leq 0$ in O and $\tilde{\psi}=0$ on $\partial 0$.
- $\int\left(\psi-\psi^{S H}\right) d \nu-\int \underbrace{J_{\psi-\psi^{S H}}}_{\leq J_{\psi}-\psi^{S H}} d \mu \geq \int \psi d \nu-\int J_{\psi} d \mu$.
(Used $\Delta_{y} c(x, y) \geq 0$ as well as $\mu \prec_{S H} \nu$ here.)
Dual value increases.
- $\bar{\psi}(y):=\inf _{x}\left[J_{\tilde{\psi}}(x, y)+c(x, y)\right]$. - Dual value increases $\left(\bar{\psi} \geq \tilde{\psi} \& J_{\bar{\psi}}=J_{\tilde{\psi}}\right.$.)

Normalization for dual attainment

- $\psi \longrightarrow \tilde{\psi}:=\psi-\psi^{S H}$. Then, $\tilde{\psi} \leq 0$ in O and $\tilde{\psi}=0$ on $\partial 0$.
- $\int\left(\psi-\psi^{S H}\right) d \nu-\int \underbrace{J_{\psi-\psi^{S H}}}_{\leq J_{\psi}-\psi^{S H}} d \mu \geq \int \psi d \nu-\int J_{\psi} d \mu$.
(Used $\Delta_{y} c(x, y) \geq 0$ as well as $\mu \prec_{S H} \nu$ here.)
Dual value increases.
- $\bar{\psi}(y):=\inf _{x}\left[J_{\tilde{\psi}}(x, y)+c(x, y)\right]$.
- Dual value increases $\left(\bar{\psi} \geq \tilde{\psi} \& J_{\bar{\psi}}=J_{\tilde{\psi}}\right.$.)
- $\bar{\psi} \in \mathcal{B}_{D}$:
- $\bar{\psi} \leq 0$ in $O \& \bar{\psi}=0$ on ∂O.
- $\Delta_{y} c(x, y) \leq D \Longrightarrow \Delta_{y} \bar{\psi}(y) \leq D$.

Dual attainment

Theorem
There exists $\psi^{*} \in \mathcal{B}_{D}$ that attains the maximum value of the dual problem, i.e.,

$$
\mathcal{D}_{c}(\mu, \nu)=\int_{O} \psi^{*}(y) \nu(d y)-\int_{0} J_{\psi^{*}}(x, x) \mu(d x)
$$

Optimal paths stop in the contact set

- τ^{*} optimal (randomized) stopping time.
- $\pi^{*} \sim\left(B_{0}, B_{\tau^{*}}\right)$. the optimal plan.

Theorem

The optimal Brownian path stops at the contact set, namely, for π^{*}-a.e.

$$
(x, y) \in O \times O
$$

$$
J_{\psi^{*}}(x, y)=\psi^{*}(y)-c(x, y)
$$

In particular
$\tau^{*} \geq \eta:=\inf \left\{t ; J_{\psi^{*}}\left(B_{0}, B_{t}\right)=\psi^{*}\left(B_{t}\right)-c\left(B_{0}, B_{t}\right)\right\}$.

Optimal paths stop in the contact set

An optimal path stops at the contact set, but, may enter inside, not necessarily stopping when it hits the boundary.

Hitting a barrier and stopping immediately?

 Monge solution: characterization as the hitting time to a barrier.

We need a key condition called, the stochastic twist condition.

Stochastic twist condition

Definition
the stochastic twist (ST) condition at (x, y):
\forall stopping time ξ

$$
\mathbb{E}\left[\nabla_{x} c\left(x, B_{\xi}^{y}\right)\right]=\nabla_{x} c(x, y) \quad \Longrightarrow \quad \xi=0
$$

Remark

- Compare with the usual twist condition in optimal transport: $\nabla_{x} c\left(x, y_{1}\right)=\nabla_{x} c\left(x, y_{2}\right) \Longrightarrow y_{1}=y_{2}$.
- [Henry-Labordere \& Touzi '16] the martingale counterpart of the Spence-Mirrlees condition:

$$
c_{y y x}(x, y)>0, \quad x, y \in \mathbb{R}^{1} .
$$

Stochastic twist condition: Examples

The quadratic cost $c(x, y)=|x-y|^{2}$ does not satisfy ST, because $\nabla_{x}|x-y|^{2}=2(x-y)$,

Example

- [Lim] $c(x, y)=|x-y|$ because

$$
\nabla_{x} c(x, y)=\frac{x-y}{|x-y|} \in S^{n-1} .
$$

- Riemannian distance $c(x, y)=d(x, y)$ (as long as it is differentiable).
- Separable costs

$$
c(x, y)=g(x) h(y)
$$

with $\nabla g(x) \neq 0$ and $y \mapsto h(y)$ is either strictly superharmonic or strictly subharmonic.

Monge solution: the hitting time to a barrier

Theorem
Suppose additionally

- c satisfies the stochastic twist condition (ST) for all $(x, y) \in O \times O$.
- $\mu \ll L e b, \mu(\partial \operatorname{supp} \mu)=0$, and $\mu \wedge \nu=0$.
Then,
\exists unique optimal stopping time τ^{*} :

$$
\tau^{*}=\eta:=\inf \left\{t ; J_{\psi^{*}}\left(B_{0}, B_{t}\right)=\psi^{*}\left(B_{t}\right)-c\left(B_{0}, B_{t}\right)\right\} .
$$

Monge solution: the hitting time to a barrier

Theorem
Assume

- $c(x, y)=|x-y|, \operatorname{dim} \geq 2$,
- $\operatorname{supp} \mu \cap \operatorname{supp} \nu=\emptyset$.

Then,

- \exists a constant D and $\psi^{*} \in \mathcal{B}_{D}$ such that $\left(\psi^{*}, J_{\psi^{*}}\right)$ maximize the dual problem.
- \exists unique optimal stopping time τ^{*} :

$$
\tau^{*}=\eta=\inf \left\{t ; J_{\psi^{*}}\left(B_{0}, B_{t}\right)=\psi^{*}\left(B_{t}\right)-\left|B_{0}-B_{t}\right|\right\}
$$

Remark
May allow supp $\mu \cap \operatorname{supp} \nu \neq \emptyset$, but, the barrier will not be determined by a single dual optimizer ψ^{*}.

Monge solution: the hitting time to a barrier

Theorem

Assume

- $c(x, y)=|y-x|$ and $d \geq 2$
- $\mu \prec_{S H} \underline{\nu}$, and μ and ν have densities $f \in C(\bar{O})$ and $g \in C(\bar{O})$,
Then
- \exists ! optimal stopping time τ^{*} that is randomized only at time 0.
- $\tau^{*}=0$ with density $g \wedge f$ and otherwise τ^{*} is the hitting time η,

$$
\eta=\inf \left\{t>0 ;\left(B_{0}, B_{t}\right) \in R\right\}
$$

for some $R \subset \bar{O} \times \bar{O}$ measurable.

Key steps in the proof:
Let

- ψ^{*} dual optimal solution
- τ^{*} optimal (randomized) stopping time
- π^{*} optimal plan
- the hitting time to the barrier

$$
\eta=\inf \left\{t ; J_{\psi^{*}}\left(B_{0}, B_{t}\right)=\psi^{*}\left(B_{t}\right)-\left|B_{0}-B_{t}\right|\right\} .
$$

We can show

- $\left.\frac{d}{d h}\right|_{h=0} J_{\psi^{*}}(x+h, x)$ exists μ-a.e. x.

From this we derive for $\xi=\tau^{*}-\eta$,

$$
\mathbb{E}\left[\nabla_{x} c\left(x, B_{\xi}^{y}\right)\right]-\nabla_{x} c(x, y)=0 \text { for } \pi^{*} \text {-a.e. }(x, y) .
$$

ST implies $\xi=0$ so $\tau^{*}=\eta$.

(a.e.) differentiability of optimal $J_{\psi^{*}}$

$$
J_{\psi}(x, y)=\sup \mathbb{E}\left[\psi\left(B_{\tau}^{y}\right)-c\left(x, B_{\tau}^{y}\right)\right]
$$

Lemma
$\|x \mapsto c(x, y)\|_{L i p} \leq K \Longrightarrow\left\|x \mapsto J_{\psi}(x, y)\right\|_{L i p} \leq K$.
Lemma
$x \notin \operatorname{supp} \nu \Longrightarrow y \mapsto J_{\psi^{*}}(x, y)$ is harmonic near x.

(a.e.) differentiability of optimal $J_{\psi^{*}}$

Lemma

Let

- τ^{*} an optimal stopping time
- ζ be any stopping time, $\zeta \leq \tau^{*}$ satisfying

$$
\mathbb{E}\left[J_{\psi^{*}}\left(x, B_{\zeta}^{x}\right)\right]=\mathbb{E}\left[\psi^{*}\left(B_{\zeta}^{x}\right)-c\left(x, B_{\zeta}^{x}\right)\right] \quad \text { for } \mu \text {-a.e. } x .
$$

Then, for μ-a.e. x

- $h \mapsto J_{\psi^{*}}(x+h, x), h \mapsto \mathbb{E}\left[J_{\psi^{*}}\left(x+h, B_{\zeta}^{x}\right)\right]$, and $h \mapsto \mathbb{E}\left[J_{\psi^{*}}\left(x+h, B_{\tau^{*}}^{X}\right)\right]$ are differentiable at $h=0$
- $\left.\frac{d}{d h}\right|_{h=0} J_{\psi^{*}}(x+h, x)$
$=\left.\frac{d}{d h}\right|_{h=0} \mathbb{E}\left[J_{\psi^{*}}\left(x+h, B_{\zeta}^{x}\right)\right]=\mathbb{E}\left[-\nabla_{x} c\left(x, B_{\zeta}^{x}\right)\right]$
$=\left.\frac{d}{d h}\right|_{h=0} \mathbb{E}\left[J_{\psi^{*}}\left(x+h, B_{\tau^{*}}^{\times}\right)\right]=\mathbb{E}\left[-\nabla_{x} c\left(x, B_{\tau^{*}}^{x}\right)\right]$.

Remark

The results (the dual attainment and the hitting time property) hold for Brownian motion valued in Riemannian manifold, if

- $c(x, y)=d(x, y)$, the Riemannian distance (as long as it is differentiable).(\Longrightarrow ST.)

Some future work

- With control. $d X_{t}=A d t+d B_{t}$.
- More general cost.
- Multi-marginals / multiple stopping.
- Regularity of the $\psi^{*}, J_{\psi^{*}}$ and the corresponding barriers (free boundaries).

References

- [Ghoussoub, K., \& Lim] Optimal Brownian Stopping between radially symmetric marginals in general dimensions. ArXiv e-prints, 2017.
- [Ghoussoub, K. \& Palmer] Optimal transport with controlled dynamics and free end times. SIAM Journal on Control and Optimization, 2018.
- [Ghoussoub, K., \& Palmer] PDE methods for Skorokhod embeddings. Calc. Var. PDE (2019) 58: 113. 2018.
- [Ghoussoub, K., \& Palmer] A solution to the Monge transport problem for Brownian martingales Arxiv e-prints, 2019.

Thank you very much!

