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Brownian motion and stopping time
I Brownian motion:

from CRM-physmath

I A stopping time τ of Brownian motion is, roughly
speaking, a random time, prescribed to satisfy a
certain probabilistic condition, at which one stops a
particle following the Brownian motion.



Brownian motion and stopping time

[Skorokhod problem in Rn]
For given probability measures µ, ν,
does there exist a stopping time τ of
the Brownian motion such that

B0 ∼ µ & Bτ ∼ ν?

from CRM-physmath

Remark:

I For such a stopping time τ to exist (with E[τ ] <∞),

we need

I µ and ν are in subharmonic order, µ ≺SH ν,
i.e.

∫
ξdµ ≤

∫
ξdν,

∀ subharmonic ξ : Rn → R (∆ξ ≥ 0).



Skorokod problem
[Skorokhod problem in Rn]
For given probability measures µ, ν,
does there exist a stopping time τ of
the Brownian motion such that

B0 ∼ µ & Bτ ∼ ν?

from CRM-physmath

I [Skorokhod] [Root] [Rost] [Azéma&Yor] [Vallois]
[Perkins] [Jacka] ...[Obloj]...

I [Hobson] .. ....
I [Beigleböck, Cox, & Huesmann ’13].

I Optimal transport unifies the previous results on
Skorokhod problem.

I And many many more people.



Optimal Skorokhod problem
transportation cost c(x , y).

I e.g. c(x , y) = |x − y |.
I Can also consider cost E

[∫ τ
0 L(t ,Bt)dt

]
, etc.

Question: What can we say
about an optimal stopping time τ for

Pc(µ, ν) := inf
τ
{ E [c(B0,Bτ )] | B0 ∼ µ & Bτ ∼ ν}?

I Existence?
I Uniquenss?
I Any extremal structure?

I Does τ drop mass only in lower dimensional sets
(called barrier) ?



Martingale optimal transport:
Optimal Skorokhod problem is a special case of
martingale optimal transport:

I The joint distribution π ∼ (B0,Bτ ) is martingale: The
distribution πx ∼ Bx

τ satisfies
martingale constraint for x 7→ πx ∈ P(Rn):∫

y dπx (y) = x .

(Branches out while keeping the barycentre.)

 



Martingale optimal transport

I MT (µ, ν):
probability measures π on
Rn × Rn

with the marginals µ, ν,
such that its disintegration
(πx )x∈Rn has barycenter at x
(martingale constraint):∫

ydπx (y) = x .

inf
π∈MT (µ,ν)

∫
Rn×Rn

c(x , y)dπ(x , y).

 

Remark: [Strassen]
I MT (µ, ν) 6= ∅
⇔ µ and ν are in convex order;

µ ≺C ν, i.e.
∫
ξdµ ≤

∫
ξdν, ∀ convex ξ : Rn → R.
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Optimal transport
Martingale optimal transport is optimal transport with the
additional martingale constraint.

I T (µ, ν):
probability measures π on Rn × Rn

with the marginals µ, ν.

Monge-Kantorovich problem:

inf
π∈T (µ,ν)

∫
Rn×Rn

c(x , y)dπ(x , y).

Many people contributed to this theory and related
problems in PDE, geometry, probability, ...., machine
learning, etc:
[Monge][Kantorovich][Brenier][McCann][Delanoë][Urbas]
[Caffarelli] [Evans-Gangbo][Gangbo-McCann]
[Trudinger-Wang] [Ambrosio][Otto][Villani] ......[Figalli] ......
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Some motivating comments
Many breakthroughs I know in optimal transport (OT)
came when it meets with other areas:

I economics: matching theory
I fluids: Brenier theory
I physics of gas and crystals: McCann’s displacement

convexity
I diffusion phenomena: Otto calculus.
I Ricci curvature: Lott-Villani-Sturm theory.
I machine learning: Wasserstein GAN
I density functional theory ..
I general relativity ..
I stem cell research ..

Q. What if OT meets convex integration?



Let us get back to the discussion of martingale optimal
transport and Skorokhod problem.



Martingale optimal transport:

I Backhoff, Bayraktar, Beiglböck, Bouchard, Claisse,
Cox, Davis, Dolinsky, De March, Galichon,
Ghoussoub, Griessler, Guo, Henry-Labordère,
Hobson, Hu, Huesmann, Juillet, Kallblad, K.,
Klimmek, Lim, Neuberger, Nutz, Oblój, Palmer,
Penkner, Perkowski, Proemel, Schachermayer,
Siorpaes, Soner, Spoida, Stebegg, Tan, Touzi, Zaev,
and many more people· · · · · · .



Martingale optimal transport
vs. optimal Skorokhod problem

I π is martingale
⇐⇒∫

ψ(y)dπx (y) ≥ ψ(y) for any convex function ψ.

I [Ghoussoub, K., & Lim ’17]
π ∼ (B0,Bτ ) for a (randomized) stopping time τ
⇐⇒ π is subharmonic martingale:∫
ψ(y)dπx (y) ≥ ψ(y) for any subharmonic function ψ.

They are the same in 1D:
I 1D⇒ subharmonic = convex.

Different in general dimensions.



Randomized stopping time
Let Ω := C(R≥0;Rn).

Stopping time
is a measurable function τ on the
probability space (Ω,Pµ).
(Pµ= the Wiener measure with
B0 ∼ µ).

 

E

Eo

Randomized stopping time
is a probability measure τ on the
space R≥0 × Ω,
whose marginal on Ω is Pµ.

 

E

Eo

A (nonradomized) stopping time gives Dirac mass along
each path.
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Optimal Skorokhod problem: Kantorovich
solution (a measure-valued solution)

I [Beiglböck, Cox & Huesmann ’13]
Randomized stopping times give
Kantorovich relaxation to optimal Skorokhod
problem.

I The set of randomized stopping times from µ to ν
is nonempty if µ ≺SH ν.

I Space of randomized stopping times is compact:
weak* -compactness of the space of probability
measures.

I Optimal randomized stopping time exists through
lower semi-continuity of the functional
τ → E[c(B0,Bτ )] over randomized stopping times.



Optimal Skorokhod problem: Monge
solution?

I Question:
I When is the optimal Kantorovich solution a Monge

solution?
I In what case, does the optimal randomized stopping

time become pure, that is, non-randomized stopping
time?

I Any associated structure?



Optimal Skorokhod problem:
Monge solutions (non-randomized stopping)

I [Beigleböck, Cox, & Huesmann ’13].
I Some variational tools, called monotonicity principle,

comparing different paths.
I geometric structures for the cost E

[∫ τ
0 L(t)dt

]
.

I Stopping time is given by hitting a certain barrier.

I [Ghoussoub, K. & Palmer ’18]. For the cost
E
[∫ τ

0 L(t ,Bt)dt
]
.

I Some analytical tools based on dual formulation.
I dual attainment

I geometric structures
I Stopping time is determined by hitting a certain

barrier given by the optimal dual function.



Hitting time to a barrier in R≥0 × Rn

Barrier looks like the graph of a function on Rn.

 

iii



Hitting time to a barrier in R≥0 × Rn

hitting from below hitting from above



c(x , y)

I [Ghoussoub, K. & Lim ’17]
I For c(x , y) = |x − y |p,p > 1,p 6= 2:

geometric structures when µ, ν are radially
symmetric in Rn.

I Stopping time is given by hitting a certain barrier.

I [Ghoussoub, K. & Palmer ’19]
I Some analytical tools based on dual formulation.

I dual attainment

I For c(x , y) = |x − y |, geometric structures for
general cases in Rn.

I Stopping time is given by hitting a certain barrier
determined by the optimal dual function.



Hitting time to a barrier in Rn × Rn

The barrier depends on the starting point x ∈ Rn.

 

t



Hitting time to a space-time barrier
The barrier (depending on the starting point x) looks like a
vertical wall in the space-time.

 

EEt

E



Fundamental tool:

Duality and dual attainment

We will focus on the case:
I dim ≥ 2.
I c(x , y) = |x − y |.



Assume:

I O bounded open convex set in Rn.
I suppµ, supp ν ⊂ O
I c ∈ C(O ×O)



Duality for OT with probabilistic constraints

Theorem
Weak duality: Pc(µ, ν) = Dc(µ, ν).

I Pc(µ, ν) := inf{ E [c(B0,Bτ )] | B0 ∼ µ & Bτ ∼ ν}

I Dc(µ, ν) := sup
ψ,φ,p

{∫
ψ(y)dν(y)−

∫
φ(x)dµ(x)

}
.

while
I ψ(y)− φ(x) + p(x , y) ≤ c(x , y)∀x , y and
I y 7→ p(x , y) subharmonic and p(x , x) = 0.

Question: Dual attainment? (Does the dual optimizer
(ψ, φ, p) exist?)



Dual attainment?

sup
ψ(y)−φ(x)+p(x ,y)≤c(x ,y)∀x ,y

{∫
ψ(y)dν(y)−

∫
φ(x)dµ(x)

}
.

y 7→ p(x , y) subharmonic and p(x , x) = 0.
This additional term p(x , y) adds non-compactness of
the problem for the dual attainment.

Remark
dim= 1: Dual attainment is shown [Beiglböck, Nutz, & Touzi]

[Beiglböck, Lim & Obloj].
dim≥ 2: We show dual attainment (for the Skorokhod

problem) for a certain class of c; e.g. |x − y |.
dim≥ 2: For martingale transport (y 7→ p(x , y) convex), dual

attainment is open in general.
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‘Brownian’ optimal tranport dual attainment

For attainment of the dual problem Dc(µ, ν), we want to
reduce it to a compact set of functions.

I Will use dynamic programming for the duality.
I Will find a normalization for the functions ψ.



Duality via dynamic programming
Theorem:

inf{ E [c(B0,Bτ )] | B0 ∼ µ & Bτ ∼ ν}

= sup
ψ∈LSC(O)

{∫
ψ(y)dν(y)−

∫
Jψ(x , x)dµ(x)

}
.

The value function:

Jψ(x , y) = sup
τ≤τO

E [ψ(By
τ )− c(x ,By

τ )]

Notation:
I τ : (randomized) stopping time.
I τO the exit time of O:

τO = inf{t | Bt 6∈ O}.



The value function:

Jψ(x , y) = sup
τ≤τO

E [ψ(By
τ )− c(x ,By

τ )] .

Remark: Compare
I the usual value function in dynamic programming:

Jψ(t , y) = sup
τ≥t & Bt =y

E
[
ψ(Bτ )−

∫ τ

t
L(s,Bs)ds

]
.

I Jψ(x , x) with the c-Legendre transform
ψc(x) = sup

y
[ψ(y)− c(x , y)].



Dynamic programming principle
For the value function:

Jψ(x , y) = sup
τ≤τO

E [ψ(By
τ )− c(x ,By

τ )]

We have
Dynamic programming principle:

I y 7→ J(x , y) is the smallest
superharmonic function over
y 7→ ψ(y)− c(x , y).

 



We will reduce the dual maximization problem for ψ,

Dc(µ, ν) = sup
ψ∈LSC(O)

{∫
ψ(y)dν(y)−

∫
Jψ(x , x)dµ(x)

}
.

to a compact function space, say BD:

Dc(µ, ν) = sup
ψ∈BD

{∫
ψ(y)dν(y)−

∫
Jψ(x , x)dµ(x)

}
.



Assumptions for dual attainment
Assume further

I 0 ≤ ∆yc(x , y) ≤ D (in the sense of viscosity)
I µ ≺SH ν

I µ ∈ H−1(O)

Remark
I OK with ∆yc(x , y) ≥ −M.

Let c̃(x , y) = c(x , y) + h(y), with h solving ∆h = M,
then, an optimizer ψ̃ for c̃ ⇔ an optimizer ψ̃ − h for c.

I ∆y |x − y | =∞ along x = y. But, still can handle this
by reducing to the case suppµ ∩ supp ν = ∅.

I counterexample to dual attainment [Beiglböck/Juillet]
if ∆yc(x , y) = −∞ (e.g. c(x , y) = −|x − y |).
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A key compact function space

Definition

ψ ∈ BD ⇐⇒


ψ ∈ H1

0 (O),

ψ ≤ 0,and
∆ψ(y) ≤ D (weakly).

Remark
The class BD is weakly compact
as ‖ψ‖H1

0 (O) ≤ M for all ψ ∈ BD.

Want to normalized ψ to a function in BD.



A key lemma for dual attainment
I Value function:

Jψ(x , y) = sup
τ≤τO

E [ψ(By
τ )− c(x ,By

τ )]

Lemma
Assume ∆yc(x , y) ≥ 0. (← essential!)
the superharmonic envelope
ψSH(y) = sup

τ≤τO

E[ψ(By
τ )]

 

i

Then,

Jψ−ψSH (x , y) ≤ Jψ(x , y)− ψSH(y) ∀x , y ∈ O ×O.

(In fact, =.)



Normalization for dual attainment

I ψ −→ ψ̃ := ψ − ψSH . Then, ψ̃ ≤ 0 in O and ψ̃ = 0 on
∂O.

I

∫
(ψ − ψSH)dν −

∫
Jψ−ψSH︸ ︷︷ ︸
≤Jψ−ψSH

dµ ≥
∫
ψdν −

∫
Jψdµ.

(Used ∆yc(x , y) ≥ 0 as well as µ ≺SH ν here.)
Dual value increases.

I ψ̄(y) := inf
x

[Jψ̃(x , y) + c(x , y)].

I Dual value increases ( ψ̄ ≥ ψ̃ & Jψ̄ = Jψ̃. )

I ψ̄ ∈ BD:
I ψ̄ ≤ 0 in O & ψ̄ = 0 on ∂O.
I ∆yc(x , y) ≤ D =⇒ ∆y ψ̄(y) ≤ D.
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Dual attainment

Theorem
There exists ψ∗ ∈ BD that attains the maximum value of
the dual problem, i.e.,

Dc(µ, ν) =

∫
O
ψ∗(y)ν(dy)−

∫
O

Jψ∗(x , x)µ(dx).



Optimal paths stop in the contact set

I τ ∗ optimal (randomized) stopping time.
I π∗ ∼ (B0,Bτ∗). the optimal plan.

Theorem

The optimal Brownian path
stops at the contact set,
namely, for π∗-a.e.
(x , y) ∈ O ×O,

Jψ∗(x , y) = ψ∗(y)− c(x , y).

 

Rn
a

L y Ty CX y y y cc x gig

In particular
τ ∗ ≥ η := inf{t ; Jψ∗(B0,Bt) = ψ∗(Bt)− c(B0,Bt)}.



Optimal paths stop in the contact set

 

Rn
a

L y Ty CX y y y cc x gig

 

Jy X YI

ran

i 44g axis

contact set for x

An optimal path stops at the contact set, but, may enter
inside, not necessarily stopping when it hits the boundary.



Hitting a barrier and stopping immediately?
Monge solution:
characterization as the hitting time to a barrier.

 

t

 

EEt
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We need a key condition called,
the stochastic twist condition.



Stochastic twist condition

Definition
the stochastic twist (ST) condition at (x , y):
∀ stopping time ξ

E
[
∇xc(x ,By

ξ )
]

= ∇xc(x , y) =⇒ ξ = 0.

Remark
I Compare with the usual twist condition in optimal

transport: ∇xc(x , y1) = ∇xc(x , y2) =⇒ y1 = y2.

I [Henry-Labordere & Touzi ’16] the martingale
counterpart of the Spence-Mirrlees condition:

cyyx (x , y) > 0, x , y ∈ R1.



Stochastic twist condition: Examples
The quadratic cost c(x , y) = |x − y |2 does not satisfy ST,
because ∇x |x − y |2 = 2(x − y),

Example
I [Lim] c(x , y) = |x − y |

because
∇xc(x , y) = x−y

|x−y | ∈ Sn−1.
I Riemannian distance

c(x , y) = d(x , y) (as long as
it is differentiable).

 

I Separable costs

c(x , y) = g(x)h(y)

with ∇g(x) 6= 0 and y 7→ h(y) is either strictly
superharmonic or strictly subharmonic.



Monge solution: the hitting time to a barrier

Theorem

Suppose additionally
I c satisfies the stochastic twist

condition (ST) for all
(x , y) ∈ O ×O.

I µ� Leb, µ(∂suppµ) = 0, and
µ ∧ ν = 0.

Then,
∃ unique optimal stopping time τ ∗:

 

i

L y Ty CX y y y cc x y

τ ∗ = η := inf{t ; Jψ∗(B0,Bt) = ψ∗(Bt)− c(B0,Bt)}.



Monge solution: the hitting time to a barrier
Theorem
Assume

I c(x , y) = |x − y |, dim ≥ 2,
I suppµ ∩ supp ν = ∅.

Then,

I ∃ a constant D and ψ∗ ∈ BD such that (ψ∗, Jψ∗)
maximize the dual problem.

I ∃ unique optimal stopping time τ ∗:

τ ∗ = η = inf{t ; Jψ∗(B0,Bt) = ψ∗(Bt)− |B0 − Bt |}.

Remark
May allow suppµ ∩ supp ν 6= ∅, but, the barrier will not be
determined by a single dual optimizer ψ∗.



Monge solution: the hitting time to a barrier

Theorem
Assume

I c(x , y) = |y − x | and d ≥ 2
I µ ≺SH ν, and µ and ν have densities f ∈ C(O) and

g ∈ C(O),
Then

I ∃! optimal stopping time τ ∗ that is randomized only at
time 0.

I τ ∗ = 0 with density g ∧ f and otherwise τ ∗ is the
hitting time η,

η = inf{t > 0; (B0,Bt) ∈ R}

for some R ⊂ O ×O measurable.



Key steps in the proof:

Let
I ψ∗ dual optimal solution
I τ ∗ optimal (randomized) stopping time
I π∗ optimal plan
I the hitting time to the barrier
η = inf{t ; Jψ∗(B0,Bt) = ψ∗(Bt)− |B0 − Bt |}.

We can show
I d

dh

∣∣∣
h=0

Jψ∗(x + h, x) exists µ-a.e. x .

From this we derive for ξ = τ ∗ − η,
I

E
[
∇xc(x ,By

ξ )
]
−∇xc(x , y) = 0 for π∗-a.e. (x , y).

ST implies ξ = 0 so τ ∗ = η.



(a.e.) differentiability of optimal Jψ∗

Jψ(x , y) = sup
τ

E [ψ(By
τ )− c(x ,By

τ )]

Lemma
‖x 7→ c(x , y)‖Lip ≤ K =⇒ ‖x 7→ Jψ(x , y)‖Lip ≤ K .

Lemma
x 6∈ supp ν =⇒ y 7→ Jψ∗(x , y) is harmonic near x.



(a.e.) differentiability of optimal Jψ∗
Lemma
Let

I τ ∗ an optimal stopping time
I ζ be any stopping time, ζ ≤ τ ∗ satisfying

E
[
Jψ∗(x ,Bx

ζ )
]

= E
[
ψ∗(Bx

ζ )− c(x ,Bx
ζ )
]

for µ-a.e. x .

Then, for µ-a.e. x
I h 7→ Jψ∗(x + h, x), h 7→ E

[
Jψ∗(x + h,Bx

ζ )
]
, and

h 7→ E [Jψ∗(x + h,Bx
τ∗)] are differentiable at h = 0

I d
dh

∣∣∣
h=0

Jψ∗(x + h, x)

= d
dh

∣∣∣
h=0

E
[
Jψ∗(x + h,Bx

ζ )
]

= E
[
−∇xc(x ,Bx

ζ )
]

= d
dh

∣∣∣
h=0

E [Jψ∗(x + h,Bx
τ∗)] = E [−∇xc(x ,Bx

τ∗)] .



Remark
The results (the dual attainment and the hitting time
property) hold for Brownian motion valued in Riemannian
manifold, if

I c(x , y) = d(x , y), the Riemannian distance (as long
as it is differentiable).( =⇒ ST.)



Some future work

I With control. dXt = Adt + dBt .
I More general cost.
I Multi-marginals / multiple stopping.
I Regularity of the ψ∗, Jψ∗ and the corresponding

barriers (free boundaries).
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Thank you very much!


