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Brownian motion and stopping time

» Brownian motion:

from CRM-physmath

» A stopping time 7 of Brownian motion is, roughly
speaking, a random time, prescribed to satisfy a
certain probabilistic condition, at which one stops a
particle following the Brownian motion.



Brownian motion and stopping time

[Skorokhod problem in R"]

For given probability measures p, v,
does there exist a stopping time 7 of
the Brownian motion such that

Bo~p & B, ~v?

from CRM-physmath

Remark:

» For such a stopping time 7 to exist (with E[7] < o0),
we need

» 1 and v are in subharmonic order, 1 <gy v,

i.e. [&du < [&adv,
vV subharmonic £ : R” — R (A¢ > 0).



Skorokod problem

[Skorokhod problem in R"]

For given probability measures , v,
does there exist a stopping time 7 of
the Brownian motion such that

By~u & B, ~v?

from CRM-physmath

» [Skorokhod] [Root] [Rost] [Azéma&Yor] [Vallois]
[Perkins] [Jacka] ...[Obloj]...

» [Hobson] .. ....
» [Beiglebdck, Cox, & Huesmann ’13].

» Optimal transport unifies the previous results on
Skorokhod problem.

» And many many more people.



Optimal Skorokhod problem
transportation cost c¢(x, y).
> eg. ¢(X,y)=|x—yl.
» Can also consider cost E [ [ L(t, B;)dt], etc.

Question: What can we say
about an optimal stopping time 7 for

Po(u,v) :=inf{ E[c(By,B.)] | Bo~p & B, ~v}?

» Existence?
» Uniquenss?
» Any extremal structure?

» Does 7 drop mass only in lower dimensional sets
(called barrier) ?



Martingale optimal transport:
Optimal Skorokhod problem is a special case of
martingale optimal transport:
» The joint distribution = ~ (By, B;) is martingale: The
distribution 7, ~ BX satisfies
martingale constraint for x — 7, € P(R"):

/ ydmx(y) = x.

(Branches out while keeping the barycentre.)

7
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Martingale optimal transport

> MT(p,v):

probability measures = on \Rﬂ
R" x R"?

with the marginals y, v,

such that its disintegration

(mx)xern has barycenter at x X
(martingale constraint):

[ ydr(y) = x.
inf / c(x,y)dn(x,y).

TeEMT (p,v)




Martingale optimal transport

» MT(u,v): n
probability measures = on \R
R" x R"?
with the marginals y, v,
such that its disintegration
(mx)xern has barycenter at x X
(martingale constraint):

[ ydr(y) = x.
inf / c(x,y)dn(x,y).

TeEMT (p,v)

Remark: [Strassen]
> MT(M, V) 7& Q)
< u and v are in convex order;
p=<cv,ie [{du< [&dv,Vconvex ¢ :R” — R.



Optimal transport
Martingale optimal transport is optimal transport with the
additional martingale constraint.
» T(p,v):
probability measures = on R” x R"
with the marginals y, v.

Monge-Kantorovich problem:

inf / c(x,y)dn(x,y).
RAxRA

weT(p,v)



Optimal transport
Martingale optimal transport is optimal transport with the
additional martingale constraint.

» T(p,v):
probability measures = on R” x R"
with the marginals y, v.

Monge-Kantorovich problem:

inf / c(x,y)dn(x,y).
RAxRA

e T ()

Many people contributed to this theory and related
problems in PDE, geometry, probability, ...., machine
learning, etc:
[Monge][Kantorovich][Brenier][McCann][Delanoé&][Urbas]
[Caffarelli] [Evans-Gangbo][Gangbo-McCann]
[Trudinger-Wang] [Ambrosio][Otto][ Villani] ...... [Figalli] ......



Some motivating comments

Many breakthroughs | know in optimal transport (OT)
came when it meets with other areas:

>

>

>

>

>

economics: matching theory
fluids: Brenier theory

physics of gas and crystals: McCann’s displacement
convexity

diffusion phenomena: Otto calculus.
Ricci curvature: Lott-Villani-Sturm theory.
machine learning: Wasserstein GAN
density functional theory ..

general relativity ..

stem cell research ..

Q. What if OT meets convex integration?



Let us get back to the discussion of martingale optimal
transport and Skorokhod problem.



Martingale optimal transport:

» Backhoff, Bayraktar, Beiglbdck, Bouchard, Claisse,
Cox, Davis, Dolinsky, De March, Galichon,
Ghoussoub, Griessler, Guo, Henry-Labordere,
Hobson, Hu, Huesmann, Juillet, Kallblad, K.,
Klimmek, Lim, Neuberger, Nutz, Obléj, Palmer,
Penkner, Perkowski, Proemel, Schachermayer,
Siorpaes, Soner, Spoida, Stebegg, Tan, Touzi, Zaey,
and many more people:- - - - - - .



Martingale optimal transport

vs. optimal Skorokhod problem

» 7 is martingale
=

/w(y)dwx(y) > 1(y) for any convex function .
» [Ghoussoub, K., & Lim ’17]

7 ~ (By, B;) for a (randomized) stopping time 7
<= 7 is subharmonic martingale:

/w(y)dwx(y) > () for any subharmonic function .

They are the same in 1D:
» 1D = subharmonic = convex.
Different in general dimensions.



Randomized stopping time

Let @ := C(R>o; R").
Stopping time

is a measurable function 7 on the o
probability space (£, P*). o |
(P*= the Wiener measure with >

By ~ ).




Randomized stopping time

Let @ := C(R>o; R").

Stopping time .

is @ measurable function 7 on the o

probability space (£, P*). o |

(P#= the Wiener measure with = =
By ~ ).

Randomized stopping time

is a probability measure 7 on the
space Rxq x €,

whose marginal on € is P*.

A (nonradomized) stopping time gives Dirac mass along
each path.



Optimal Skorokhod problem: Kantorovich
solution (a measure-valued solution)

» [Beiglbock, Cox & Huesmann ’13]
Randomized stopping times give
Kantorovich relaxation to optimal Skorokhod
problem.

» The set of randomized stopping times from x to v
is nonempty if 4 <gy v.

» Space of randomized stopping times is compact:
weak* -compactness of the space of probability
measures.

» Optimal randomized stopping time exists through
lower semi-continuity of the functional
T — E[c(By, B;)] over randomized stopping times.



Optimal Skorokhod problem: Monge
solution?

» Question:
» When is the optimal Kantorovich solution a Monge
solution?

» In what case, does the optimal randomized stopping
time become pure, that is, non-randomized stopping
time?

» Any associated structure?



Optimal Skorokhod problem:
Monge solutions (non-randomized stopping)

» [Beiglebdck, Cox, & Huesmann ’13].
» Some variational tools, called monotonicity principle,
comparing different paths.
» geometric structures for the cost E [ [; L(t)dl].

» Stopping time is given by hitting a certain barrier.

[Ghoussoub K. & Palmer '18]. For the cost
Uo (t. B) dﬂ
» Some analytical tools based on dual formulation.
» dual attainment
» geometric structures

» Stopping time is determined by hitting a certain
barrier given by the optimal dual function.



Hitting time to a barrier in R>g x R”
Barrier looks like the graph of a function on R".




Hitting time to a barrier in R>o x R”

Sample Paths and Free Boundary

hitting from below

Sample Paths and Free Boundary
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c(x,y)

» [Ghoussoub, K. & Lim ’17]

» Fore(x,y)=[x—ylP,p>1,p#2:
geometric structures when p, v are radially
symmetric in R".
» Stopping time is given by hitting a certain barrier.

» [Ghoussoub, K. & Palmer '19]
» Some analytical tools based on dual formulation.
» dual attainment

» For c(x,y) = |x — y|, geometric structures for
general cases in R".

» Stopping time is given by hitting a certain barrier
determined by the optimal dual function.



Hitting time to a barrier in R” x R”
The barrier depends on the starting point x € R".

e
- Z
R =%




Hitting time to a space-time barrier
The barrier (depending on the starting point x) looks like a
vertical wall in the space-time.

ﬂiﬂ ﬂ?&rﬂek

Rzo



Fundamental tool:
Duality and dual attainment

We will focus on the case:
» dim > 2.
> c(x,y) = |x -yl



Assume:

» O bounded open convex set in R”.

» supp u, suppr C O
» cc C(Ox 0)



Duality for OT with probabilistic constraints

Theorem
Weak duality: P(u,v) = De(p, v).

» Po(u,v) :=inf{ E[c(By,B,)] | Bo~pn & B, ~v}
- D) i=sup { [ v)duty) - [ otxduta )

while

> Y(y) — o(x) + p(x.y) < c(x,y)Vx, y and
» ¥ — p(x,y) subharmonic and p(x, x) = 0.

Question: Dual attainment? (Does the dual optimizer
(v, 0, p) exist?)



Dual attainment?

sup { [ewiauty) - [otadutn}.

YY) —d(x)+p(x,y)<c(x,y)vx,y

y — p(x, y) subharmonic and p(x, x) = 0.
This additional term p(x, y) adds non-compactness of
the problem for the dual attainment.



Dual attainment?

sup { [ [ ¢(X)du(X)}-
(y)—d(x)+p(x,y)<c(x,y)vx,y

y — p(x, y) subharmonic and p(x, x) = 0.
This additional term p(x, y) adds non-compactness of
the problem for the dual attainment.

Remark
dim= 1: Dual attainment is shown [Beiglbock, Nutz, & Touzi]
[Beiglbock, Lim & Obloj].
dim> 2: We show dual attainment (for the Skorokhod
problem) for a certain class of c; e.g. |x — y|.

dim> 2: For martingale transport (y — p(x, y) convex), dual
attainment is open in general.



‘Brownian’ optimal tranport dual attainment

For attainment of the dual problem D¢ (u, ), we want to
reduce it to a compact set of functions.

» Will use dynamic programming for the duality.
» Will find a normalization for the functions .



Duality via dynamic programming

Theorem:

Inf{ E [C(Bo, | Bo~p & B~ V}
- Ydv(y) — | Ju(x,x)d .
weilsjg(o {/¢ ) / s (X, X) ,u(x)}

The value function:

Jy(x,y) = sup E [y(B) — c(x, BY)]

<70

Notation:
» 7: (randomized) stopping time.
» 7o the exit time of O:

70 = inf{t | B & O}.



The value function:

Jo(X,y) = Sup E[0(B) — c(x, B)].

<10

Remark: Compare
» the usual value function in dynamic programming:

T

Ait) = s Elu(B)- [ Ls B)ds|

T>t& B,:y
» Jy(x, x) with the c-Legendre transform
¥e(x) = sup[¥(y) — c(x, y)].
y



Dynamic programming principle
For the value function:

Jy (X, y) = sup E [y(BY) — c(x, B))]

<70

NPL2),

We have
Dynamic programming principle: Y- co

» y — J(x,y) is the smallest
superharmonic function over

y=(y) —ce(x,y).

N
>
n

/ K



We will reduce the dual maximization problem for v,

Doy, v :wié’f@{ [ ey - [ tcdutay

to a compact function space, say 5p:

D¢( = 5€upr {/w )dv(y) — /JL,(X,X)du(x)}.



Assumptions for dual attainment

Assume further
» 0 < Ayc(x,y) < D (in the sense of viscosity)
> [ =SHV
> € H(O)



Assumptions for dual attainment

Assume further
» 0 < Ayc(x,y) < D (in the sense of viscosity)
> [ =SHV
> € H(O)
Remark
» OKwith Ayc(x,y) > —M.
Letc(x,y) = c(x,y) + h(y), with h solving Ah = M,
then, an optimizer +) for ¢ < an optimizer ) — h for c.
» Ay|x —y| = o0 along x = y. But, still can handle this
by reducing to the case supp p N supp v = ().
» counterexample to dual attainment [Beiglbéck/Juillet]
ifAyC(x,y) = —c0 (.g. ¢(X,y) = —|x — yI).



A key compact function space

Definition

¥ € Hy(0),
Y € Bp < ¥ < 0,and
Ay(y) < D (weakly).

Remark
The class Bp is weakly compact
as |[¢[lyy o) <M forally € Bp.

Want to normalized ¢ to a function in Bp.



A key lemma for dual attainment
» Value function:

Jy(x, y) = sup E [y(BY) — c(x, B))]

T7<T0

Lemma
Assume Ay c(x.,y) > 0. («+ essentiall) Wt
%

the superharmonic envelope
V(y) = sup E[¢:(B))] ' 4

<70 v D
Then,

Jyousn(X,¥) < dp(x,y) = ¢¥(y) Vx,y € OxO.

Y

(In fact, =.)



Normalization for dual attainment

> ) — 1) =1 — ", Then, ) <0in O and ¢ = 0 on
00.



Normalization for dual attainment

> ) — 1) =1 — ", Then, ) <0in O and ¢ = 0 on
00.

> [ =0y [y o o> [vdv— [ s

SJw—¢SH
(Used Ayc(x,y) > 0 as well as pn <gp v here.)
Dual value increases.



Normalization for dual attainment

> ) — 1) =1 — ", Then, ) <0in O and ¢ = 0 on

00.
> /(w — Sy — / Jy—ysr dp > /wdl/— /J¢du.
——
<y —ypSH

(Used Ayc(x,y) > 0 as well as pn <gp v here.)
Dual value increases.

> P(y) = iQf[JqL(X, y) +c(x, y)l-
> Dual value increases (¢ > ¢ & J; = J;.)

> &EBD
> ¢ <0in O &1 =0o0ndo.
» Aye(x,y) <D= Ayy(y) <D.



Dual attainment

Theorem
There exists ¢* € Bp that attains the maximum value of
the dual problem, i.e.,

Depv) = /O 5 (y)(dy) — /O Jy (X, X)),



Optimal paths stop in the contact set

» 7 optimal (randomized) stopping time.
» 7 ~ (By, B.+). the optimal plan.

Theorem
The optimal Brownian path ———
stops at the contact set, X/ ’
namely, for 7*-a.e. :;) =7 ¢
(x,y) € Ox O, /R;/“ N ;&}’/
(X, ¥) = " (y) — e(x, y). S A D e — ooy
In particular

™ > n = |nf{t ; J¢*(Bo, Bt) = ¢*(Bt) — C(Bo, Bt)}



Optimal paths stop in the contact set

JL(} x,v)

7 Yy-coon ™

;! i H! % :/
T TR
nfact é%(* For < .

Contoct =t
=3y \jq/kcx, I =¥ »C(x,jj}

An optimal path stops at the contact set, but, may enter
inside, not necessarily stopping when it hits the boundary.



Hitting a barrier and stopping immediately?

Monge solution:
characterization as the hitting time to a barrier.

. /b arrler
R

barrie, ~0

We need a key condition called,
the stochastic twist condition.



Stochastic twist condition
Definition
the stochastic twist (ST) condition at (x, y):
V stopping time ¢

E[Vxe(x,B!)] = Vic(x,y) = £=0.

Remark
» Compare with the usual twist condition in optimal
transport: Vyc(X, y1) = VxC(X, Y2) = ¥1 = Vo.
» [Henry-Labordere & Touzi ’16] the martingale
counterpart of the Spence-Mirrlees condition:

Cyx(X,y) >0, x,yeR"



Stochastic twist condition: Examples
The quadratic cost ¢(x, y) = |x — y|? does not satisfy ST,
because Vy|x — y|? = 2(x — y),

Example
> [Lim] c(x,y) =[x — y|
because
Vie(x,y) = p € S"

» Riemannian distance
c(x,y) =d(x,y) (as long as
it is differentiable).

» Separable costs

c(x,y) = g(x)h(y)

with Vg(x) # 0 and y — h(y) is either strictly
superharmonic or strictly subharmonic.



Monge solution: the hitting time to a barrier

Theorem
Suppose additionally —

» c satisfies the stochastic twist ///«
condition (ST) for all / “ )
(x,y) € Ox O, (7

» 1< Leb, pu(dsupp ) =0, and f// W/Q}l
wAv=0. K20

Then, barrier

=y 'ljw(x,j Y= ¥y -C(x,jﬁ

3 unique optimal stopping time 7*:

™ =n = inf{t; Jy-(Bo, B) = ¢v*(Bt) — ¢(Bo, Bt)}.



Monge solution: the hitting time to a barrier
Theorem
Assume
» c(x,y)=|x—yl|, dm>2,
» supp p N suppv = 0.
Then,
» 3 aconstant D and ¢* € Bp such that (1", Jy~)
maximize the dual problem.
» J unique optimal stopping time 7*:

™ =1 = inf{t; Jy-(Bo, By) = ¥*(B;) — |By — By|}.
Remark

May allow supp 1. N supp v # 0, but, the barrier will not be
determined by a single dual optimizer )*.



Monge solution: the hitting time to a barrier

Theorem
Assume

» c(x,y)=|y—x|andd > 2
> 11 <sy v, and u and v have densities f € C(O) and
g € C(0),
Then

» ! optimal stopping time 7* that is randomized only at
time 0.

» 7" = 0 with density g A f and otherwise 7* is the
hitting time 1),

n= Inf{t > 0; (Bo, Bt) c R}

for some R c O x O measurable.



Key steps in the proof:

Let

v

1* dual optimal solution
7* optimal (randomized) stopping time
7 optimal plan
the hitting time to the barrier
n = inf{t; Jy-(Bo, Bt) = ©*(Bt) — |Bo — Byl}.
We can show
> %)h 0Jw*(x + h, x) exists u-a.e. x.

v

v

v

From this we derive for { = 7 — 1,

>
E[Vxc(x, B{)] — Vxc(x,y) = 0 for 7*-a.e. (x, y).

ST implies £ =0 so 7 = 1.



(a.e.) differentiability of optimal J,-

Jy(X, ¥) = SUp 2 [v(B)) — c(x, B)]

Lemma
X = (X, ¥)|lp < K =[x = Jy(X, ¥)llip < K.

Lemma
X & suppr = y — Jy=(X, y) is harmonic near x.



(a.e.) differentiability of optimal J,-

Lemma
Let

» 7% an optimal stopping time
» ( be any stopping time, ( < T* satisfying

E [Jy-(x, BY)] = E [¢*(B) — ¢(x,BY)| for u-a.e. x.

Then, for u-a.e. x
> h— Jy (X + h,x), h— E [Jy-(x + h, BY)] , and
h — E[Jy(x + h, BX.)] are differentiable at h =0

e
dh h=0

=& B [d(x+h BY)] = E[~Vac(x. B)
E [Jy- (x + h, BX)] = E[-Vc(x, BL)].

>

Jy«(X + h, x)

- d”‘h:o



Remark
The results (the dual attainment and the hitting time
property) hold for Brownian motion valued in Riemannian
manifold, if
» ¢(x,y) = d(x,y), the Riemannian distance (as long
as it is differentiable).( — ST.)



Some future work

v

With control. dX; = Adt + dB;.
More general cost.
Multi-marginals / multiple stopping.

Regularity of the ¢*, J,« and the corresponding
barriers (free boundaries).

v

v

v
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Thank you very much!



