
Convex Integration for the Gradient Flow of
Polyconvex Functionals

Baisheng Yan

Department of Mathematics
Michigan State University

East Lansing, Michigan, USA

BIRS Workshop on Convex Integration
Banff, Alberta, Canada

August 11–16, 2019

Baisheng Yan Convex Integration for Polyconvex Gradient Flows



Plan of the Talk

I discuss how the convex integration approaches in [Kim & Y.
’15-’18] on the Perona-Malik and forward-backward equations can
be generalized to study some general diffusion systems, including
the gradient flow of some polyconvex functionals; this may be
viewed as parallel to the study on critical points for polyconvex
functionals of [Székelyhidi ’04], but focusing on the aspects of
nonuniqueness and instability (flexibility) of the IBVP.

1 Introduction and Main Results

Gradient flow as nonhomogeneous PDI
Convex integration: TN -configurations and the building blocks

2 Condition (OC) and Existence for Diffusion System

General existence for diffusion system by Baire’s category
Construction and the density of subsolution sets U and Uε

3 Compatibility of (OC) with Polyconvexity

τ5-configuration supported by a polyconvex function on M2×2

Perturbations, the polyconvex functions F and open sets Σ
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I. Introduction and Main Results

Let Mm×n be the space of m × n matrices and F : Mm×n → R be
smooth. Consider the energy

E(u) =

∫
Ω

F (Du)dx , u : Ω→ Rm; (1)

here Ω ⊂ Rn is bounded open and Du is the Jacobian matrix of u.

Minimization of E over a Sobolev space is closely related to the
notion of Morrey’s quasiconvexity. We say that F is strongly
quasiconvex if for some ν > 0∫

Ω

(F (A + Dφ)− F (A))dx ≥ ν

2

∫
Ω

|Dφ|2dx (2)

holds for all A ∈Mm×n, φ ∈ C∞c (Ω;Rm); (ν = 0 is Morrey’s
quasiconvexity.) In this case, F may not be convex if m, n ≥ 2.

If F is C 1, then (2) implies that the strong rank-one monotonicity:

〈DF (A + p ⊗ α)− DF (A), p ⊗ α〉 ≥ ν|p|2|α|2 (3)

for all A ∈Mm×n, p ∈ Rm, and α ∈ Rn, where 〈A,B〉 stands for the
inner product of Mm×n and p ⊗ α for the matrix (piαk).
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In addition, if F is C 2, condition (3) is equivalent to the uniform
strong Legendre-Hadamard condition:

m∑
i,j=1

n∑
k,l=1

∂2F (A)

∂aik∂ajl
pipjαkαl ≥ ν|p|2|α|2 ∀ p ∈ Rm, α ∈ Rn. (4)

Minimizers of E in a Dirichlet class satisfy the Euler-Lagrange
equations:

divDF (Du) = 0 in Ω. (5)

We say (5) is strongly elliptic if (4) holds for some ν > 0.
The well-known results of [Evans ’86] and [Müller & Šverák ’03;
Székelyhidi ’04] show that, unlike for a convex F , a Lipschitz weak
solution u of elliptic system (5) may not be a minimizer of E .
We study a parabolic companion of (5), known as the (L2)
gradient flow of energy E . To be more specific, given T > 0 and
u0 : Ω̄→ Rm, we study the initial-boundary value problem (IBVP):

ut = divDF (Du) in ΩT = Ω× (0,T ),

u(x , t) = u0(x) (x ∈ ∂Ω, 0 < t < T ),

u(x , 0) = u0(x) (x ∈ Ω).

(6)
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If F is convex, then monotone operator theory applies to (6); in
particular, (6) has a unique weak solution. However, there is no
general theory on the solvability of IBVP (6) under condition (3).
For general gradient problems (see [Ambrosio et al ’05]), one may
use a time-discretization approximation based on the implicit Euler
scheme to produce the so-called generalized minimizing movements
and Young measure solutions for (6).

The existence of true weak solutions remains essentially open for
general nonconvex F ’s, including the strongly polyconvex functions

F (A) = ε|A|2 + G (A, detA) (ε > 0, G (A, δ) smooth convex) (7)

on M2×2 considered in [Székelyhidi ’04], which satisfy (2) with
ν = 2ε.

The similar open question remains open for elastodynamics
problems, despite many existing works; see [Kim & Koh ’19].

Our main result is concerning the nonuniqueness and instability
(or flexibility) of Lipschitz weak solutions of (6) for certain strongly
polyconvex functions F of the form (7).
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The main result

Theorem (A) (Y. ’19)

There exist smooth strongly polyconvex functions F : M2×2 → R
and smooth functions u0 such that the IBVP (6) possesses a
sequence of Lipschitz weak solutions that converges weakly* to a
function which is not a Lipschitz weak solution itself.

We stress that the polyconvex functions and anomalous
solutions for system (5) constructed in [Székelyhidi ’04] would
not give an example for our theorem. One must study the full
parabolic problem, not just the stationary elliptic problem.
In the theorem we may choose u0(x) = Ax for some
A ∈M2×2. In this case, the Lipschitz weak solutions in the
given sequence are (eventually) distinct and not a classical
solution by quasiconvexity; this proves the nonuniqueness of
the IBVP. However, we will not address the further irregularity
of these weak solutions: e.g., whether they can be nowhere
C 1 in x , but C 1,α in t.)
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The main approach

Consider general nonlinear diffusion system in divergence form:

ut = divσ(Du) in ΩT , (8)

where σ = (σi
k(A)) : Mm×n →Mm×n is a given diffusion flux.

If there exist functions v1, . . . , vm : ΩT → Rn such that

ui = div vi , vi
t = σi (Du) a.e. (x , t) ∈ ΩT , (9)

then u = (u1, . . . , um) is a weak solution of (8). We generalize the
framework of [Zhang ’06; Kim & Y. ’15–’18] to setup (9) as a
(space-time) partial differential inclusion (PDI), by introducing the
function

w = [u, (vi )] : ΩT → Rm × (Rn)m

with space-time Jacobian matrix ∇w =

[
Du ut

(Dvi ) (vi
t)

]
∈M(m+nm)×(n+1);

here M(m+nm)×(n+1) is the space of matrices X =

[
A a

(B i ) (bi )

]
with

A ∈Mm×n, a ∈ Rm, B i ∈Mn×n, bi ∈ Rn (i = 1, . . . ,m).
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For z ∈ Rm, define the matrix set K(z) ⊂M(m+nm)×(n+1) by

K(z) =

{[
A a

(B i ) (σi (A))

]
: tr(B i ) = z i (i = 1, . . . ,m)

}
. (10)

Then (9) is equivalent to the nonhomogeneous PDI for w

∇w(x , t) ∈ K(u(x , t)) a.e. (x , t) ∈ ΩT . (11)

The celebrated works [Müller & Šverák ’03; Székelyhidi ’04]
mentioned above rely on studying the elliptic system (5) in 2-D as a
homogeneous PDI for U = (u, ũ) : Ω ⊂ R2 → R2m,

DU =

(
Du
Dũ

)
∈ KF =

{(
A

DF (A)J

)
: A ∈Mm×2

}
, (12)

where J =

(
0 −1
1 0

)
and ũ is a stream function of DF (Du).

Under (3), the set KF has no rank-1 connections; however, its
rank-1 convex hull K rc

F is sufficiently large to contain many special
T4 or T5 configurations to build the so-called in-approximations; in
this way, Gromov’s convex integration is adapted to constructing
Lipschitz but nowhere-C 1 weak solutions for certain strongly
quasiconvex or polyconvex functions F on M2×2.
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The convex integration and Baire’s category methods

There are primarily two approaches for studying PDIs. One is a
generalization of Gromov’s convex integration method by Müller
& Šverák; the other is the Baire category method developed by
Dacorogna & Marcellini based on early ideas for ordinary differential
inclusions. Both methods rely on intermittent approximations by
certain relaxed (often open) relations.

In addition to many important earlier applications to

phase-transition and ferromagnetics problems, the method of convex

integration has recently found remarkable success in many

important PDE problems, e.g.: Incompressible Euler equations ([De

Lellis & Székelyhidi ’09, ’13; et al ’15]); Active scalar equations

([Shvydkoy ’11]); Porous medium equations ([Cordoba, Faraco &

Gancedo ’11]); Perona-Malik and forward-backward parabolic

equations ([Zhang ’06; Kim & Y. ’15–’18]); 2-D Monge-Ampère

equations ([Lewicka & Pakzad ’17]); Onsager’s conjecture ([Isett

’18]); Navier-Stokes equation ([Buckmaster & Vicol ’19]), etc.
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The main building blocks

The key building blocks for convex integration of PDIs are the rank-1
convex hulls of matrix sets. We need the following generalization of
Tartar’s famous T4-configurations.

Definition: Let N ≥ 2 and {X1,X2, . . . ,XN} ⊂Mp×q. The N-tuple
(X1,X2, . . . ,XN) is called a TN-configuration if ∃ P, C1, . . . ,CN in

Mp×q and κ1, . . . , κN in R, with rank(Cj) = 1,
∑N

j=1 Cj = 0 and κj > 1,
such that 

X1 = P + κ1C1,

X2 = P + C1 + κ2C2,
...

XN = P + C1 + · · ·+ CN−1 + κNCN .

(13)

Let P1 = P, Pj = P + C1 + · · ·+ Cj−1 for j = 2, 3, . . . ,N, and define

T (X1, . . . ,XN) = ∪Nj=1{(1− λ)Xj + λPj : 0 < λ ≤ 1}. (14)

Remark: We do not require that {X1,X2, . . . ,XN} contain no rank-1

connections; this allows for N = 2 and rank-1 connections.
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X1

P1 = PN+1

XN

P3

P2

XN−1
X2

To study the space-time PDI (11), due to the linear constraints in K(z),
we focus on the admissible TN-configurations in M(m+nm)×(n+1) whose
determining rank-1 matrices are of the form

C =

[
p ⊗ α sp

(βi ⊗ α) (sβi )

]
; p ∈ Rm, s ∈ R, α 6= 0, βi ∈ Rn, βi · α = 0.
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Theorem (Convex Integration Building Blocks)

(i) Let Y ∈ T (X1, . . . ,XN), where (X1, . . . ,XN) is an admissible
TN -configuration in M(m+nm)×(n+1). Then, for all bounded open
G ⊂ Rn+1 and ε > 0, ∃ω = [ϕ, (ψi )] ∈ C∞c (Rn+1;Rm × (Rn)m) with

(a) suppω ⊂⊂ G , divψi = 0 in Rn+1 for all i = 1, . . . ,m, and∫
Rn ϕ(x , t) dx = 0 for all t ∈ R;

(b) ‖ω‖L∞(Rn+1) < ε and Y +∇ω ∈ [T (X1, . . . ,XN)]ε on Rn+1;

(c) there exist an open set V ⊂⊂ G such that

|V | ≥ (1− ε)|G |, Y +∇ω ∈ {X1,X2, . . . ,XN} in V .

(ii) [Kim & Y. ’15] Let φ ∈W 1,∞
0 (Q0) satisfy

∫
Q̃0
φ(x , t) dx = 0 for all

t ∈ (0, 1). Let φ̃ = (Lȳ ,lφ)(y) = lφ( y−ȳ
l ) for y ∈ Qȳ ,l . Then there exists

g̃ = Rȳ ,lφ in W 1,∞
0 (Qȳ ,l ;Rn) such that div g̃ = φ̃ a.e. in Qȳ ,l and

‖g̃t‖L∞(Qȳ,l ) ≤ Cnl‖φ̃t‖L∞(Qȳ,l ). (15)

Moreover, if in addition φ ∈ C 1(Q0) then g̃ = Rȳ ,lφ ∈ C 1(Qȳ ,l ;Rn).
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II. Condition (OC) and Existence for Diffusion System

Definition: An N-tuple (ξ1, ξ2, . . . , ξN) with ξj ∈Mm×n × (Rn)m is
called a τN-configuration provided that there exist ρ, γ1, . . . , γN in
Mm×n × (Rn)m and κ1 > 1, . . . , κN > 1 such that

ξ1 = ρ+ κ1γ1,

ξ2 = ρ+ γ1 + κ2γ2,
...

ξN = ρ+ γ1 + · · ·+ γN−1 + κNγN ,

(16)

where γj = [pj ⊗ αj , (sjβ
i
j )], with sj ∈ R, αj , β

i
j ∈ Rn, αj 6= 0 and

pj ∈ Rm satisfying∑N
j=1 sjpj = 0,

∑N
j=1 sjβ

i
j = 0 (i = 1, . . . ,m), (17)∑N

j=1 pj ⊗ αj = 0,
∑N

j=1 β
i
j ⊗ αj = 0 (i = 1, . . . ,m), (18)

βi
j · αj = 0 (j = 1, . . . ,N; i = 1, . . . ,m). (19)

Define ρ1 = ρ, ρj = ρ+ γ1 + · · ·+ γj−1 for j = 2, . . . ,N, and

τ(ξ1, . . . , ξN) = ∪Nj=1(ξj , ρj ]. (20)
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The main structural assumption

Definition: Let σ : Mm×n →Mm×n and K = {[A, (σi (A))] : A ∈Mm×n}.
We say that σ satisfies Condition (OC) if there exists a nonempty
bounded open set Σ in Mm×n × (Rn)m such that{
∀ [A, (bi )] ∈ Σ ∃ N ≥ 2 and τN -configuration (ξ1, . . . , ξN)

such that ξj ∈ K for all j and [A, (bi )] ∈ τ(ξ1, . . . , ξN) ⊆ Σ.
(21)

Remarks: [Comparison with Condition (C) in the previous works.]

Condition (OC) is substantially different from Condition (C) of
[Müller & Šverák ’03; Székelyhidi ’04] because the τN -configurations
required have no matrix rank-1 structures; moreover, it is defined for
all dimensions m, n, while Condition (C) is only for n = 2.

Even when n = 2, the τN -configurations are only equivalent to
certain spatial TN -configurations that are more restrictive than the
usual TN -configurations used for Condition (C); a general spatial
TN -configuration may not produce a τN -configuration at all.

In addition, Condition (OC) is more analytic and suitable for the use
of Implicit Function Theorem, which avoids the more geometrical
transversality and stability analysis of Condition (C).
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For scalar function cases (m = 1), we allow N = 2 to include the
following forward-backward diffusion equations (for n = 1):

For 2-D cases (n = 2), (19) becomes (βi
j )
⊥ = qijαj for qij ∈ R,

where β⊥ = βJ. Define L : Mm×2 × (R2)m →M2m×2 by

L([A, (bi )]) =

[
A
BJ

]
∀B = (bik) ∈Mm×2. (22)

Then (ξ1, . . . , ξN) is a τN -configuration in Mm×2 × (R2)m ⇐⇒
(Lξ1, . . . ,LξN) is a TN -configuration in M2m×2 with rank-1 matrices

Cj =

(
pj
sjqj

)
⊗ αj satisfying the more restrictive conditions:{∑N

j=1 pj ⊗ αj = 0,
∑N

j=1 sjqj ⊗ αj = 0,∑N
j=1 sjpj = 0,

∑N
j=1 qj ⊗ αj ⊗ αj = 0.

(23)
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Thus a TN -configuration in M2m×2 may not produce a
τN -configuration at all; this is the case for the T5 example of
[Székelyhidi ’04] which does not produce a τ5-configuration!

The set of TN -configurations satisfying (23) may be degenerate and
hard to study. We thus restrict ourselves to a set of even more
special TN -configurations, which turns out sufficient for our purpose.

Definition: Let n = 2 and N ≥ 3. Let M ′N be the set of
TN -configurations (X1, . . . ,XN) in M2m×2 whose determining rank-1

matrices are given by Cj =

(
pj

(αj · δ)qj

)
⊗ αj , where pj , qj ∈ Rm and

αj , δ ∈ R2 satisfy that at least three of αj ’s are mutually noncollinear and
that

N∑
j=1

pj ⊗ αj = 0,
N∑
j=1

qj ⊗ αj ⊗ αj = 0. (24)

(Thus all conditions in (23) are automatically satisfied with sj = αj · δ.)
We define M′N = L−1(M ′N) to be the set of special τN-configurations
in Mm×2 × (R2)m.
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The general existence theorem under Condition (OC)

The main technical theorem to prove our main result is the
following existence result under Condition (OC):

Theorem (B) (Y. ’19)

Let σ : Mm×n →Mm×n be continuous and satisfy Condition (OC),
with open set Σ ⊂Mm×n × (Rn)m as given in the definition.
Let ū ∈ C 1(Ω̄T ;Rm) and v̄i ∈ C 1(Ω̄T ;Rn) satisfy

ūi = div v̄i , [Dū, (v̄it)] ∈ Σ on Ω̄T (25)

for i = 1, . . . ,m. Then there exists a sequence {uµ} of weak
solutions of (8) in W 1,∞(ΩT ;Rm) satisfying uµ|∂ΩT

= ū that
converges weakly* to ū in W 1,∞(ΩT ;Rm).

Remark: Condition (25) can be viewed as a relaxation for (11);
any such ū’s are called a subsolution of diffusion system (8).
With an open set Σ as given in Condition (OC), we may construct
many nontrivial functions ū and v̄i satisfying (25).
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Existence/nonuniqueness/instability of the IBVP (6) is a simple
consequence of Condition (OC). For example:

Assume [A, (bi )] ∈ Σ; define ū = (ū1, . . . , ūm), v̄i = (v̄ i
1, . . . , v̄

i
n) by

ūi (x , t) =
n∑

k=1

aikxk + εg(x)t, v̄ i
j (x , t) =

1

2
aijx

2
j + bij t + εhj(x)t

for i = 1, . . . ,m; j = 1, . . . , n, where

h(x) = (h1, · · · , hn) ∈ C∞c (Ω;Rn), g(x) = div h(x),

g(x) = div h(x) = 1 ∀ x ∈ Ω′ ⊂⊂ Ω.

Then, for all sufficiently small |ε| > 0, condition (25) holds.

Each weak solution uµ in Theorem (B) solves the IBVP:
ut = divσ(Du) in ΩT ,

u(x , t) = Ax (x ∈ ∂Ω, 0 < t < T ),

u(x , 0) = Ax (x ∈ Ω).

(26)

But the weak* limit ū is not a solution to (26) since g(x) = 1 on Ω′.
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Proof of Theorem (B):

The proof is based on the following general existence theorem under a
density assumption:

Theorem (C)

Let σ : Mm×n →Mm×n be continuous, ū ∈W 1,∞(ΩT ;Rm), and let U be
a nonempty bounded subset of W 1,∞

ū (ΩT ;Rm). Assume, for each ε > 0,
there exists a set

Uε ⊂ {u ∈ U | ‖ut − divσ(Du)‖H−1(ΩT ) < ε}

that is dense in U in the L∞(ΩT ;Rm)-norm. Then the set

S = {u ∈W 1,∞
ū (ΩT ;Rm) | u is Lipschitz solution of (8)}

is dense (thus nonempty) in U in the L∞(ΩT ;Rm)-norm.

This result is proved by the Baire category method similarly as in [Kim

& Y. ’15, ’17, ’18]. Note that, if ui = div vi , the H−1-norm above can be

bounded by ‖vt − σ(Du)‖L2 .
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The subsolution sets U and Uε

Theorem (B) follows from Theorem (C) if we prove the following:

Theorem (Density Theorem)

Let Σ, ū, v̄i be as given in Theorem (B); fix m > ‖ūt‖L∞(ΩT ). Define U to

be the set of u ∈ C 1
ū (Ω̄T ;Rm) such that ‖ut‖L∞(ΩT ) < m and{

∃ vi ∈ C 1
v̄i ,pc(ΩT ;Rn) with pieces {Ej}µj=1 satisfying

ui = div vi , [Du, (vi
t)] ∈ Σ on Ēj ∀ i = 1, . . . ,m; j = 1, . . . , µ,

and, for ε > 0, define Uε to be the set of u ∈ U such that{
∃ vi ∈ C 1

v̄i ,pc(ΩT ;Rn) with pieces {Ej}µj=1 satisfying

ui = div vi , [Du, (vi
t)] ∈ Σ on Ēj ; ‖vi

t − σi (Du)‖L2(ΩT ) < ε.

Then, for each ε > 0, Uε is dense in U in the L∞-norm.

The proof relies on the convex integration building block theorem;
property (21) of the open set Σ is critical.
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Proof of Density Theorem:

Let ε > 0, u ∈ U and ρ > 0 be fixed. Then ‖ut‖L∞(ΩT ) < m and there
exist vi ∈ C 1

v̄i ,pc(ΩT ;Rn) with piecees {Ej}µj=1 such that

ui = div vi , [Du, (vi
t)] ∈ Σ on Ēj

for i = 1, . . . ,m; j = 1, . . . , µ.
The goal is to construct ũ ∈ Uε with ‖ũ− u‖L∞(ΩT ) < ρ; that is,

(i) ũ ∈ C 1
ū (Ω̄T ;Rm), ‖ũt‖L∞(ΩT ) < m, ‖ũ− u‖L∞(ΩT ) < ρ, and

(ii) ∃ ṽi ∈ C 1
v̄i ,pc(ΩT ;Rn) with some pieces {Pj}κj=1 such that

ũi = div ṽi on each P̄j ,

[Dũ, (ṽi
t)] ∈ Σ on each P̄j ,

‖ṽi
t − σi (Dũ)‖L2(ΩT ) < ε.

(27)

Step 1: Fix ν ∈ {1, . . . , µ} and ȳ ∈ Eν . Let A = Du(ȳ) and bi = vi
t(ȳ);

then [A, (bi )] ∈ Σ. By (OC), ∃ τN -configuration (ξ1, ξ2, . . . , ξN) in K
given by ρ = [Ã, (b̃i )], γj = [pj ⊗ αj , (sjβ

i
j )] and κj > 1 such that

[A, (bi )] ∈ τ(ξ1, . . . , ξN) ⊂ Σ.
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Let (X̃ s
1 , . . . , X̃

s
N) be the TN -configuration in K(0). Let 0 < τ << 1 be

such that, for

X s,τ
j = (1− τ)X̃ s

j + τ P̃s
j (j = 1, 2, . . . ,N), (28)

the N-tuple (X s,τ
1 , . . . ,X s,τ

N ) is an admissible TN -configuration and that

[A, (bi )] ∈ P(T (X s,τ
1 , . . . ,X s,τ

N )). Since P(X s,τ
j ) = P(X̃ 1,τ

j ) for s 6= 0 and

lim
τ→0+

dist(P(X 1,τ
j );K) = dist(P(Xj);K) = 0,

there exists a further smaller τ > 0 such that

dist(P(X̄ 1,τ
j );K) <

ε

8(|ΩT |)1/2
(j = 1, 2, . . . ,N). (29)

Fix such a τ > 0. Then

P(T̄ (X 1,τ
1 , . . . ,X 1,τ

N )) ⊂ P(T (X1, . . . ,XN)) ⊂ Σ.

Since Σ is open and P(T̄ (X 1,τ
1 , . . . ,X 1,τ

N )) is compact, there exists a
number δτ > 0 such that

[P(T̄ (X 1,τ
1 , . . . ,X 1,τ

N ))]δτ ⊂ Σ.

Hence, for all s 6= 0,

P([T̄ (X s,τ
1 , . . . ,X s,τ

N )]δτ ) ⊂ [P(T̄ (X s,τ
1 , . . . ,X s,τ

N ))]δτ ⊂ Σ. (30)
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Step 2: Apply the Building Block Theorem to unit cube
G = Q0 ⊂ Rn+1 with X s ∈ T (X̄ s,τ

1 , . . . , X̄ s,τ
N ) to obtain a function

ω = [ϕ, (ψi )] ∈ C∞c (Q0;Rm × (Rn)m) such that
(a) divψi = 0, ‖ϕt‖L∞(Q0) < ε′ + M ′|s|, ‖ϕ‖L∞(Q0) < ε′,

∫
Q̃0
ϕ(x , t) dx = 0,

(b) |{y ∈ Q0 : [A + Dϕ(y), (bi + ψi
t(y))] /∈ ∪Nj=1{P(Xj)}| < ε′,

(c) [A + Dϕ(y), (bi + ψi
t(y))] ∈ P([T̄ (X̃ s,τ

1 , . . . , X̃ s,τ
N )]ε′) for all y ∈ Q0.

Let 0 < l < 1. Consider functions [ϕ̃, (ψ̃i )] = Lȳ ,l [ϕ, (ψ
i ))] and

g̃ i = Rȳ ,lϕ
i defined on Qȳ ,l , where Lȳ ,l and Rȳ ,l are defined in the

Building Block Theorem above. Let

ũ = uȳ ,l = u + ϕ̃, ṽi = vi
ȳ ,l = vi + ψ̃i + g̃ i on Qȳ ,l . (31)

Then ũ ∈ u + C∞c (Qȳ ,l), ṽi ∈W 1,∞
vi (Qȳ ,l) ∩ C 1(Qȳ ,l), div ṽi = ũi ; so

‖ũ− u‖L∞(Qȳ,l ) = ‖ϕ̃‖L∞(Qȳ,l ) < lε′ < ε′,

‖ũt‖L∞(Qȳ,l ) < ‖ut‖L∞(ΩT ) + ε′ + M ′|s|,
‖g̃ i

t‖L∞(Qȳ,l ) ≤ Cnl(ε
′ + M ′|s|),

‖Dϕ̃‖L∞(Qȳ,l ) ≤ ε′ + M,

‖ψ̃i
t‖L∞(Qȳ,l ) ≤ ε′ + M.

(32)

Baisheng Yan Convex Integration for Polyconvex Gradient Flows



Step 3: We estimate ‖ṽi
t − σi (Dũ)‖L2(Qȳ,l ). Note that

‖ṽi
t − σi (Dũ)‖L2(Qȳ,l ) = ‖vi

t + ψ̃i
t + g̃ i

t − σi (Du + Dϕ̃)‖L2(Qȳ,l )

≤ ‖vi
t − bi‖L2(Qȳ,l ) + ‖bi + ψ̃i

t − σi (A + Dϕ̃)‖L2(Qȳ,l )

+‖g̃ i
t‖L2(Qȳ,l ) + ‖σi (A + Dϕ̃)− σi (Du + Dϕ̃)‖L2(Qȳ,l ).

By (32), ‖g̃ i
t‖L2(Qȳ,l ) ≤ Cnl(ε

′ + M ′|s|)|Qȳ ,l |1/2. Note that

‖bi + ψ̃i
t − σi (A + Dϕ̃)‖2

L2(Qȳ,l )
=

∫
F∪F c

|bi + ψ̃i
t − σi (A + Dϕ̃)|2 dy ,

where F = {y ∈ Qȳ ,l | [A + Dϕ̃(y), (bi + ψ̃i
t(y))] /∈ {∪Nj=1P(Xj)}}.

By Step 2, |F | < ε′|Qȳ ,l | and, by (32), |A + Dϕ̃| ≤ 1 + 3M and
|Du + Dϕ̃| ≤ 1 + 3M on Qȳ ,l . Hence∫

F

|bi + ψi
t − σi (A + Dϕ)|2 dy < ε′(1 + 3M + M̃)2|Qȳ ,l |,∫

G

|bi + ψi
t − σi (A + Dϕ)|2 dy ≤ ε2

32|ΩT |
|Qȳ ,l |,

‖bi+ψ̃i
t−σi (A+Dϕ̃)‖2

L2(Qȳ,l )
≤
[

(1 + 3M + M̃)
√
ε′ +

ε

4(|ΩT |)1/2

]
|Qȳ ,l |1/2.
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Let
m(l) = max

1≤j≤N; y∈Qȳ,l

(
|v i

t (y)− bi |+ |Du(y)− A|
)
.

Then m(l)→ 0 as l → 0+. We have the following estimates:

‖v i
t − bi‖L2(Qȳ,l ) ≤ m(l)|Qȳ ,l |1/2;

‖σi (A + Dϕ̃)− σi (Du + Dϕ̃)‖L2(Qȳ,l ) ≤ α(m(l))|Qȳ ,l |1/2,

where α(s) is the module of continuity of σ. Hence, we obtain

‖ṽi
t − σi (Dũ)‖L2(Qȳ,l ) ≤

[
(1 + 3M + M̃)

√
ε′ + Cnlε

′

+m(l) + α(m(l)) + 2MCnl |s|+
ε

4(|ΩT |)1/2

]
|Qȳ ,l |1/2.

Step 4: We estimate dist([Dũ, (ṽi
t)]; P(T̄ (X 1,τ

1 , . . . ,X 1,τ
N ))) on Qȳ ,l .

Since Dũ = Du + Dϕ and ṽi
t = vi

t + ψ̃i
t + g̃ i

t , we have on Qȳ ,l ,

dist([Dũ, (ṽi
t)]; P(T̄ (X 1,τ

1 , . . . ,X 1,τ
N )))

≤ dist([A+Dϕ̃, (bi+ψ̃i
t)]; P(T̄ (X 1,τ

1 , . . . ,X 1,τ
N )))+|[Du−A, (vi

t−bi+g̃ i
t )]|

≤ dist([A+Dϕ̃, (bi+ψ̃i
t)]; P(T̄ (X 1,τ

1 , . . . ,X 1,τ
N )))+|Du−A|+|(vi

t−bi )|+|g̃ i
t |,

< (1 + Cnl)ε
′ + 2m(l) + 2MCnl |s|.
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Step 5: In this step, we select the small numbers ε′ ∈ (0, 1) and s 6= 0 in
the previous estimates to ensure that, for all sufficiently small l ∈ (0, 1),
it holds that

‖ũ− u‖L∞(Qȳ,l ) < ρ,

‖ũt‖L∞(Qȳ,l ) < m,

[Dũ, (ṽi
t)] ∈ Σ on Qȳ ,l ,

‖ṽi
t − σi (Dũ)‖L2(Qȳ,l ) <

ε

2(|ΩT |)1/2
|Qȳ ,l |1/2.

(33)

Step 6: Fixed ν, the family {Qȳ ,l | ȳ ∈ Eν , 0 < l < lȳ} forms a Vitali
covering of the set Eν by closed cubes. There exists a countable
subfamily of disjoint closed cubes {Pν,k = Qȳk ,lk | k = 1, 2, . . . } such that

Eν = (∪∞k=1Pν,k) ∪ Rν , |Rν | = 0.

Let ũν,k = uȳk ,lk and ṽi
ν,k = vi

ȳk ,lk
be defined by (31) on Pν,k = Qȳk ,lk .

For each ν = 1, 2, . . . , µ, let Nν be such that

∣∣∪∞k=Nν+1Pν,k
∣∣ =

∞∑
k=Nν+1

|Pν,k | <
ε2

2µM2
. (34)
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Consider the partition

ΩT =
(
∪µν=1 ∪

Nν
k=1 Pν,k

)
∪ P, (35)

where P = ΩT \
(
∪µν=1 ∪

Nν
k=1 Pν,k

)
=
(
∪µν=1 ∪∞k=Nν+1 Pν,k

)
∪ R with

|R| = 0. Using partition (35), define

ũ = uχP +

µ∑
ν=1

Nν∑
k=1

ũν,kχPν,k , ṽi = vχP +

µ∑
ν=1

Nν∑
k=1

ṽi
ν,kχPν,k .

Then ũ− u ∈ C∞c (Pν,k), ṽi − vi ∈ C 1(Pν,k),

ũ ∈W 1,∞
ū (ΩT ) ∩ C 1(Ω̄T ;Rm) and ṽi ∈ C 1

v̄i ,pc(ΩT ; (Rn)m) with pieces

{P, Pν,k | ν = 1, . . . , µ, k = 1, . . . ,Nν}. Then, all requirements in (i)
and (ii) at the start of the proof are satisfied because

‖ṽi
t − σi (Dũ)‖2

L2(ΩT )

=

µ∑
ν=1

Nν∑
k=1

‖ṽi
t − σi (Dũ)‖2

L2(Pν,k ) +

µ∑
ν=1

∞∑
k=Nν+1

‖vi
t − σi (Du)‖2

L2(Pν,k )

≤
µ∑
ν=1

Nν∑
k=1

ε2

4|ΩT |
|Pν,k |+

µ∑
ν=1

∞∑
k=Nν+1

M2|Pν,k | ≤
ε2

4|ΩT |
|ΩT |+

µM2ε2

2µM2
< ε2.
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III. Compatibility of Condition (OC) with Polyconvexity

In this final part we discuss the following compatibility result on M2×2.

Theorem (D) (Y. ’18)

There exist strongly polyconvex functions F on M2×2 such that σ = DF
satisfies Condition (OC) with N = 5.

Remark:

The search for a τ5-configuration supported by a strongly
polyconvex function is greatly aided by the linear programming

and jacobian computations using MATLAB, but our computations
are more restrictive than those in [Székelyhidi ’04].

Also, for the special τ5-configuration constructed, the required
polyconvex functions F can be constructed for “generic values” of
{D2F (A0

i )}; we derive such a result directly from the construction
of F as the result of [Sz ’04] on stably embedded TN -configurations
may not be available for the special TN -configurations due to
dimension deficiency.
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A τ5-configuration in M ′5 supported by a polyconvex F0

Let F (A) = ε
2 |A|

2 + G (A, detA) on M2×2 with a smooth G . Then

σ = DF (A) = εA + GA(Ã) + Gδ(Ã) cof A; Ã = (A, detA). (36)

Suppose (X1, . . . ,X5) ∈ M ′N with Xj =

[
Aj

Bj

]
. Then Xj ∈ KF ⇐⇒

εAj + GA(Ãj) + Gδ(Ãj) cof Aj = −BjJ. (37)

It is well known that ∃ smooth convex G : M2×2 × R→ R with

G (Ãj) = cj , GA(Ãj) = Qj , Gδ(Ãj) = dj

provided cj − ci > 〈Qi ,Aj − Ai 〉+ di (detAj − detAi ) for i 6= j .
Under (37), this condition holds for sufficiently small ε > 0 provided

ci − cj + di det(Ai − Aj) + 〈Ai − Aj ,BiJ〉 < 0 (i 6= j). (38)

Lemma (MATLAB Lemma 1)

There exists (X 0
1 , . . . ,X

0
5 ) ∈ M ′5 such that (38) holds for some c1, . . . , c5;

d1, . . . , d5. Also, ∀ 0 < ε << 1, ∃ smooth convex G : M2×2 × R→ R
such that F0(A) = ε

2 |A|
2 + G (A, detA) satisfies that X 0

j ∈ KF0 for all j .
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Perturbations of (X 0
1 , . . . ,X

0
5 ) and F0

To embed more T5-configurations on (KF )5, we perturb
(X 0

1 , . . . ,X
0
5 ) and F0.

Perturbation of F0: Let B1(0) ⊂M2×2, ζ ∈ C∞c (B1(0)) with
0 ≤ ζ(A) ≤ 1, ζ(0) = 1. Given r > 0 and tensor H = (Hpqij) with
Hpqij = H ijpq ∈ R, define

VH,r (A) =
1

2
ζ(A/r)

∑
i,j,p,q∈{1,2}

H ijpqaijapq (A = (aij) ∈M2×2).

Let r0 = mini 6=j |A0
i −A0

j | > 0. Let F be a perturbation of F0 of the form:

F (A) = F0(A) +
5∑

j=1

VH̃j ,r0
(A− A0

j ) (with H̃j to be chosen). (39)

Then
DF (A0

j ) = DF0(A0
j ), D2F (A0

j ) = D2F0(A0
j ) + H̃j ; (40)

thus, X 0
j ∈ KF , and F will be strongly polyconvex if

5∑
j=1

|H̃j | <
ε

C
(with a C independent of r0 and {H̃j}). (41)
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Perturbations of (X 0
1 , . . . ,X

0
5 ): Perturb (X 0

1 , . . . ,X
0
5 ) around each

vertex of the “pentagon” [P0
1 · · ·P0

5 ] by the parameters:
Q ∈M4×2 ∼= R8, δ = δ0 = (1, 1),

α1 = (−1, z1), α2 = (y2,−1), α3 = (1, z3), α4 = (1, z4), α5 = (y5, 1),

p3 = (p31, p32), p4 = (p41, p42), p5 = (p51, p52),

q4 = (q41, q42), q5 = (q51, q52), κ1, κ2, κ3, κ4, κ5.

The resulting p1, p2, q1, q2 and q3 from (24) are thus given by:

p1 = y2z3+1
1−y2z1

p3 + y2z4+1
1−y2z1

p4 + y2+y5

1−y2z1
p5,

p2 = z1+z3

1−y2z1
p3 + z1+z4

1−y2z1
p4 + y5z1+1

1−y2z1
p5,

q1 = (y2z4+1)(z3−z4)
(z1+z3)(y2z1−1)q4 + (y2+y5)(y5z3−1)

(z1+z3)(y2z1−1)q5,

q2 = − (z1+z4)(z3−z4)
(y2z1−1)(y2z3+1)q4 − (y5z1+1)(y5z3−1)

(y2z1−1)(y2z3+1)q5,

q3 = − (z1+z4)(y2z4+1)
(z1+z3)(y2z3+1)q4 − (y2+y5)(y5z1+1)

(z1+z3)(y2z3+1)q5.

(42)

Let Y = (z1, y2, z3, z4, y5, p3, p4, p5, q4, q5, κ1, . . . , κ5) ∈ R20 and

Cj = Cj(Y ) =

(
pj

(αj · δ0)qj

)
⊗ αj (j = 1, . . . , 5).
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For each ν = 1, . . . , 5, define

Zν1 (Y ) = κνCν ,

Zν2 (Y ) = Cν + κν+1Cν+1,

Zν3 (Y ) = Cν + Cν+1 + κν+2Cν+2,

Zν4 (Y ) = Cν + Cν+1 + Cν+2 + κν+3Cν+3,

Zν5 (Y ) = Cν + Cν+1 + Cν+2 + Cν+3 + κν+4Cν+4.

(43)

Define X ν
j (Y ,Q) = Q + Zνj (Y ) for all ν and j . Let

Pν1 (Y ,Q) = Q, Pν2 (Y ,Q) = Q + Cν , P
ν
3 (Y ,Q) = Q + Cν + Cν+1,

Pν4 (Y ,Q) = Q + Cν + Cν+1 + Cν+2,

Pν5 (Y ,Q) = Q + Cν + Cν+1 + Cν+2 + Cν+3.

Then, (X ν
1 , · · · ,X ν

5 ) ∈ M ′5 with pentagon [Pν1 P
ν
2 · · ·Pν5 ] for all (Y ,Q).

For all ν, j , i mod 5, with j ≥ i , the invariance property holds:

X ν
j (Y ,Q) = X ν+i−1

j−i+1 (Y ,Pνi (Y ,Q)). (44)
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To embed X ν
j (Y ,Q) on KF , define Φ: M4×2 ∼= R8 →M2×2 ∼= R4 by

Φ(X ) = DF (A) + BJ, (45)

where X =

(
A
B

)
∈M4×2. Then X ∈ KF ⇐⇒ Φ(X ) = 0. We have

A = PX and BJ = EX , where

P =

(
I O O O
O O I O

)
, E =

(
O O O I
O −I O O

)
.

Thus, DΦ(X ) = D2F (A)P + E ; so rank(DΦ(X )) = 4 ∀X ∈M4×2.
Define the functions:

Ψν(Y ,Q) = (Φ(X ν
1 (Y ,Q)), . . . ,Φ(X ν

5 (Y ,Q))). (46)

To study Ψν(Y ,Q) = 0 near (Y 0,P0
ν), compute partial Jacobian matrix

∂Ψν

∂Y
(Y ,Q) =


DΦ(X ν

1 )
∂Zν1
∂Y

...

DΦ(X ν
5 )
∂Zν5
∂Y

 . (47)
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Nondegeneracy of functions Ψν

Note that ∂Ψν

∂Y (Y ,Q) depends affinely on the Hessians {D2F (PX ν
k )}k

and is otherwise independent of F and Q. Let Jν = det ∂Ψν

∂Y (Y 0,P0
ν).

Since X ν
j (Y 0,P0

ν) = X 0
ν+j−1 for all ν, j = 1, . . . , 5, we have

D2F (PX ν
j (Y 0,P0

ν)) ∈ {D2F (A0
1), . . . ,D2F (A0

5)} ∀ ν, j = 1, . . . , 5.

Thus Jν is a polynomial of tensors H1 = D2F (A0
1), . . . ,H5 = D2F (A0

5)
whose coefficients are independent of F . We write this polynomial as

Jν = jν(H1,H2,H3,H4,H5). (48)

Lemma (MATLAB Lemma 2)

Given s, t, let h1(s) =

(
sI O
O I

)
and h2(t) =

(
I O
O tI

)
, and

gν(s, t) = jν(h1(s), h2(t), h1(s), h1(s), h2(t)). Then

g1(1, 0) 6= 0, g2(0, 0) 6= 0, g3(0, 1) 6= 0, g4(0, 0) 6= 0, g5(0, 0) 6= 0.

Thus jν(H1, . . . ,H5) is not identically zero for each ν = 1, . . . , 5.
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We first select (H0
1 , . . . ,H

0
5 ) with the property:{

jν(H0
1 , . . . ,H

0
5 ) 6= 0 ∀ ν = 1, 2, . . . , 5;

H̃j = H0
j − D2F0(A0

j ) satisfy (41).
(49)

Since Ψν(Y 0,P0
ν) = 0, det ∂Ψν

∂Y (Y 0,P0
ν) = jν(H0

1 , . . . ,H
0
5 ) 6= 0, by the

Implicit Function Theorem, ∃ η > 0 and smooth functions

Yν : Bη(P0
ν) ⊂M4×2 ∼= R8 → Bη(Y 0) ⊂ R20

for ν = 1, · · · , 5, such that for Y ∈ Bη(Y 0) and Q ∈ Bη(P0
ν),

det
∂Ψν

∂Y
(Y ,Q) 6= 0; Ψν(Y ,Q) = 0 ⇐⇒ Y = Yν(Q). (50)

We may also select η > 0 sufficiently small so that, for all ν, i (modulo 5)

Pνi (Yν(Q),Q) ∈ Bη(P0
ν+i−1) ∀ Q ∈ Bη(P0

ν). (51)
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Lemma (Eigenvalue Lemma)

Let zν(Q) = Zν1 (Yν(Q)) for Q ∈ Bη(P0
ν) ⊂ R8. Then

M = Dzν(Q) ∈M8×8 has −1 as eigenvalue of multiplicity at least 4 and
0 as eigenvalue of multiplicity at least 3, and all eigenvalues of M consist
of {−1, 0, µM}, where µM = 4 + tr(M). Furthermore, if µM /∈ {0,−1},
then rank[adj(I − µ−1

M M)] = 1 and, for any b ∈ R8,

det(I − µ−1
M M + zν ⊗ b) = [adj(I − µ−1

M M)zν ] · b. (52)

Let M0 = Dzν(P0
ν). Then M0 =

W (H0
1 ,...,H

0
5 )

jν(H0
1 ,...,H

0
5 )
, where H0

j = D2F (A0
j )

(j = 1, . . . , 5), and W (H1, . . . ,H5) is a 8× 8 matrix whose entries are
polynomials of tensors (H1, . . . ,H5). Both W and jν are independent of
F . Therefore, both µM0 (1 + µM0 ) and |adj(I − µ−1

M0M
0)zν0 |2, where

zν0 = κ0
νC

0
ν ∈ R8, are rational functions of (H0

1 , . . . ,H
0
5 ) that are

independent of the function F .

Lemma (MATLAB Lemma 3)

Similar to the MATLAB computations in Lemma 2, one verifies that the
rational functions of (H1, . . . ,H5) representing µM0 (1 + µM0 ) and
|adj(I − µ−1

M0M
0)zν0 |2 are not identically zero.
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The construction of polyconvex functions F and the set Σ

We then select the values of (H0
1 , . . . ,H

0
5 ) = (D2F (A0

1), . . . ,D2F (A0
5)) to

satisfy (49) and the property:{
µM0 /∈ {−1, 0};
|adj(I − µ−1

M0M
0)zν0 |2 6= 0.

(53)

Remark: Such values of (H0
1 , . . . ,H

0
5 ) are generic near

(D2F0(A0
1), . . . ,D2F0(A0

5)).

We finally define F by (39) with the chosen (H0
1 , . . . ,H

0
5 ).

Then select η > 0 further small so that, by continuity,

µM(Q) /∈ {−1, 0}, adj
[
I − µ−1

M(Q)M(Q)
]
zν(Q) 6= 0 (54)

for all Q ∈ Bη(P0
ν) and ν = 1, . . . , 5, where M(Q) = Dzν(Q). Let

X̂ ν
j (Q) = Q + Zνj (Yν(Q)), P̂νj (Q) = Pνj (Yν(Q),Q).

Then (X̂ ν
1 (Q), . . . , X̂ ν

5 (Q)) ∈ M ′5 ∩ (KF )5. Define

Σ̃ =
5⋃
ν=1

{T (X̂ ν
1 (Q), . . . , X̂ ν

5 (Q)) : Q ∈ Bη(P0
ν)}, Σ = L−1(Σ̃).
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The openness of Σ and Proof of Theorem (D):

Clearly, Σ̃ and Σ are nonempty, bounded, and Σ satisfies (21). To finish
the proof, we need to show Σ is open, which is equivalent to showing Σ̃
is open. Let X̄ ∈ Σ̃; then X̄ ∈ T (X̂ ν

1 (Q̄), . . . , X̂ ν
5 (Q̄)) for some

ν ∈ {1, . . . , 5}, Q̄ ∈ Bη(P0
ν); thus for some i ∈ {1, . . . , 5} and 0 < λ̄ < 1,

X̄ = λ̄X̂ ν
i (Q̄) + (1− λ̄)P̂νi (Q̄)

(See Figure below.) By (51), P̂νi (Q̄) ∈ Bη(P0
ν+i−1). Let

z(U) = zν+i−1(U) = Zν+i−1
1 (Yν+i−1(U)). Then

X̄ = P̂νi (Q̄) + λ̄z(P̂νi (Q̄)) = Ū + λ̄z(Ū) (Ū ≡ P̂νi (Q̄)). (55)

Case 1: det(I + λ̄Dz(Ū)) 6= 0.
Let F (U,X ) = U + λ̄z(U)− X . Then, by (55), one has F (Ū, X̄ ) = 0,
and det ∂F∂U (Ū, X̄ ) = det(I + λ̄Dz(Ū)) 6= 0. Thus, by the ImFT, there are

balls Bη′(Ū) ⊂ Bη(P0
ν+i−1) and Bρ(X̄ ) such that, for each X ∈ Bρ(X̄ ),

∃U ∈ Bη′(Ū) ⊂ Bη(P0
ν+i−1) such that F (U,X ) = 0; that is,

X = U + λ̄Zν+i−1
1 (Yν+i−1(U)) ∈ T (X̂ ν+i−1

1 (U), . . . , X̂ ν+i−1
5 (U)) ∈ Σ̃.

This proves Bρ(X̄ ) ⊂ Σ̃.
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X 0
1
X̂ 2

5

X̂ 2
2

X 0
3

P0
1

P0
5

P0
3

P0
4

X 0
5

X̂ 2
4

P0
2

Q̄

X 0
4

X̂ 2
3X 0

2

X̂ 2
1

X

U

Here ν = 2, i = 3, Q̄ = P̂2
1 = P̂2

1 (Q̄), Ū = P̂2
3 = P̂2

3 (Q̄). Blue dashed

lines represent T5-configuration (X̂ 2
1 , . . . , X̂

2
5 ) with X̄ ∈ (X̂ 2

3 , P̂
2
3 ). Two

smaller red circles represent Bρ(X̄ ), Bη′(Ū). Red dotted lines represent a

special T5-configuration to be found determined by some U ∈ Bη′(Ū).
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Case 2: det(I + λ̄Dz(Ū)) = 0.

Let M̄ = Dz(Ū). Since 0 < λ̄ < 1, by the Eigenvalue Lemma, one has
λ̄ = −µ−1

M̄
. Let

b̄ = adj
(
I − µ−1

M̄
M̄
)
z(Ū).

By (54), b̄ 6= 0. Let

G (U,X ) = U +
(
λ̄+ (U − Ū) · b̄

)
z(U)− X .

Then G (Ū, X̄ ) = 0 and

∂G

∂U
(Ū, X̄ ) = I + λ̄M̄ + z(Ū)⊗ b̄.

Hence det ∂G∂U (Ū, X̄ ) =
(
adj(I − µ−1

M̄
M̄)z(Ū)

)
· b̄ = |b̄|2 6= 0.

The rest of the proof of Bρ(X̄ ) ⊂ Σ̃ follows the same way as in Case 1.

Thank you very much for your attention!
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