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(Full) Euler system in conservative variables

Equation of continuity

∂t%+ divxm = 0

Momentum equation

∂tm + divx

(
m⊗m

%

)
+∇xp = 0

Energy balance

∂tE + divx

[
(E + p)

m

%

]
= 0

Constitutive relations

E =
1

2

|m|2

%
+ %e, (γ − 1)%e = p, γ > 1



Second law – entropy

Gibbs’ relation

ϑDs = De + pD

(
1

%

)
, S = %s

Entropy balance

∂tS + divx(sm) = 0, ∂tS + divx(sm) ≥ 0

Boyle–Mariot law

p = %ϑ, e = cvϑ, cv =
1

γ − 1
, s = cv log(ϑ)− log(%)

Renormalized entropy balance

∂ts +
m

%
· ∇xs = (≥)0, ∂tG(s) +

m

%
· ∇xG(s) = (≥)0, G ′ ≥ 0



Isentropic (barotropic) Euler system

Constant entropy

s = s, p = %ϑ = exp

(
s

cv

)
%γ , p = p(%), p′ ≥ 0

Total energy

E =
1

2

|m|2

%
+ P(%), P ′(%)%− P(%) = p(%)

Total energy balance

∂tE + divx

[
(E + p(%))

m

%

]
= (≤)0

Energetically closed system

m · n|∂Ω = 0,
d

dt

∫
Ω

E dx = (≤)0



Data

Initial data

%(0, ·) = %0, m(0, ·) = m0, ϑ(0, ·) = ϑ0, %0 > 0, ϑ0 > 0

Impermeable boundary

m · n|∂Ω = 0



First ansatz – constant thermostatic variables

Constant density, temperature (internal energy), and total energy

% = %Ω > 0, ϑ = ϑΩ > 0 ⇒ S = SΩ > 0

E =
1

2

|m|2

%Ω
+ %Ωe(%Ω, ϑΩ) = EΩ

Mass and entropy conservation

∂t%+ divxm = 0, ∂tS + divx(sm) = 0 ⇒ divxm = 0

Total energy balance

∂tE + divx

[
(E + p)

m

%

]
= 0 ⇒ divxm = 0

Momentum balance

∂tm + divx

(
m⊗m

%Ω

)
= 0



Incompressible Euler system with constant pressure

Momentum equation

∂tm + divx

(
m⊗m

%Ω
− 1

N

|m|2

%Ω
I
)

= 0, divxm = 0

Prescribed (constant) kinetic energy energy

1

2

|m|2

%Ω
= −N

2
p(%Ω, ϑΩ) + Λ(t)

Weak formulation – no flux boundary conditions

[∫
Ω

m · φ dx

]t=τ

t=0

=

∫ τ

0

∫
Ω

m·∂tϕ+

(
m⊗m

%Ω
− 1

N

|m|2

%Ω
I
)

: ∇xϕ dxdt = 0

∫ T

0

∫
Ω

m · ∇xϕ dxdt = 0

ϕ ∈ C 1([0,T ]× Ω;RN), ϕ ∈ C 1([0,T ]× Ω)



Convex integration [DeLellis and Székelyhidi]

Relaxation – subsolutions

∂tm + divxV = 0, divxm = 0, m(0, ·) = m0, V ∈ C 1([0,T ]× Ω;RN×N
sym,0)

Convex constraint

1

2

|m|2

%Ω
≤ N

2
λmax

[
m⊗m

%Ω
− V

]
< −N

2
p(%Ω, ϑΩ) + Λ(t) ≡ E

Algebraic relations

(v,V) 7→ λmax [v ⊗ v − V] convex

1

2
|v|2 ≤ N

2
λmax [v ⊗ v − V]

1

2
|v|2 =

N

2
λmax [v ⊗ v − V] ⇒ V = v ⊗ v − 1

N
|v|2I



Convex integration [DeLellis and Székelyhidi]

Non–empty set of subsolutions

E large enough ⇒ set of subsolutions is non–empty

E − 1

2

|m|2

%Ω
> 0

Energy defect functional

I [v] =
1

2

|m|2

%Ω
− E < 0 convex

I [m] = 0 ⇒ m is a (weak) solution of the constant pressure Euler system

m is a point of continuity of I ⇒ I [m] = 0



Convex integration [DeLellis and Székelyhidi]

Oscillatory lemma

Let
m with the associated flux V

be a subsolution.
Then there exists a sequence {vn,Un}∞n=1 such that

vn ∈ C∞c ((0,T )× Ω;RN), Un ∈ C∞c ((0,T )× Ω;RN×N
sym,0)

m + vn with the associated flux V + Un are subsolutions

vn → 0 weakly in L2((0,T )× Ω)

lim inf
n→∞

∫ T

0

∫
Ω

1

2

|vn|2

%Ω
dxdt ≥ c(N,E)

∫ T

0

∫
Ω

(
E − 1

2

|m|2

%Ω

)2

dxdt



Conclusion for the Euler system with constant (zero) pressure

Conclusion A

Given %Ω > 0, m0 ∈ C 1(Ω;RN), divxm0 = 0, m · n|∂Ω = 0, there exist
(infinitely many) E > 0 such that the Euler system with constant pressure
admits infinitely many weak solutions. The solution may experience the
initial energy “jump”.

Conclusion B

Given %Ω > 0, there exist (infinitely many) m0, E > 0 such that the Euler
system with constant pressure admits infinitely many weak solutions with
the energy continuous at t = 0



Application to the full Euler system

Full Euler system with piece–wise constant data

Suppose that Ω ⊂ RN is a bounded domain,

Ω = ∪i>0Ωi , Ωi domains Ωi ∩ Ωj = ∅ for i 6= j .

Let the initial data %0, ϑ0 be given,

%0|Ωi = %Ωi > 0, ϑ0|Ωi = ϑΩi > 0, i = 1, 2, . . .

The there exist infinitely many m0 ∈ L∞(Ω;RN) such that the full Euler
system supplemented with the impermeability boundary condition

m · n|∂Ω = 0

admits infinitely many weak solutions satisfying the entropy (in)equality.



Application to stochastically driven Euler system

Euler system with Stratonowich intergral

d%+ divxmdt = 0

dm + divx

(
m⊗m

%

)
dt +∇xpdt = −1

2
m ◦ dW

dE + divx

(
(E + p)

m

%

)
dt = −E ◦ dW ,

Entropy inequality

d(%s) + divx(sm)dt ≥ −cv% ◦ dW .

Impermeability condition

m · n|∂Ω = 0



Second ansatz – barotropic Euler system

Equation of continuity

m = v +∇xΦ, divxv = 0, ∆xΦ = divxm, (∇xΦ−m) · n|∂Ω = 0

∂t%+ ∆xΦ = 0

Momentum equation

∂tv + divx

(
(v +∇xΦ)⊗ (v +∇xΦ)

%
+ ∂tΦI + p(%)I

)
= 0

∂tv + divx

(
(v +∇xΦ)⊗ (v +∇xΦ)

%
− 1

N

|v +∇xΦ|2

%
I
)

= 0

Kinetic energy

1

2

|v +∇xΦ|2

%
= −N

2
(p(%) + ∂tΦ) + Λ(t)



Ill posedness for barotropic Euler system

Theorem

Let Ω ⊂ RN be a bounded domain, N = 2, 3. Let R denotes the set of all
functions bounded and continuous in Ω with the exception of a set of
Lebesgue measure zero. Let %0, m0 be given such that

%0 ∈ R, 0 ≤ % ≤ %0 ≤ %,

m0 ∈ R, divxm0 ∈ R, m0 · n|∂Ω = 0.

Let {τi}∞i=1 ⊂ (0,T ) be an arbitrary (countable dense) set of times.
Then the Euler problem admits infinitely many weak solutions %, m with a
strictly decreasing total energy profile such that

% ∈ Cweak([0,T ]; Lq(Ω)), m ∈ Cweak([0,T ]; Lq(Ω;RN)), q > 1,

but

t 7→ [%(t, ·),m(t, ·)] is not strongly continuous at any τi , i = 1, 2, . . . .



General “Euler” system

Incompressibility constraint, initial data

divxv = 0, v(0, ·) = v0

Momentum equation

∂tv + divx

(
(v + b[v])⊗ (v + b[v])

r [v]
− 1

N

|v + b[v]|2

r [b]
I + M[v]

)
= 0

Total energy

1

2

|v + b[v]|2

r [v]
= E [v]

Abstract operators

v 7→ [b, r ,M,E ][v]

continuous from L∞weak−(∗) to BC (bounded continuous)



Conclusion for the general “Euler” system

Result A

Ω ⊂ RN a bounded domain, N = 2, 3. If the set of subsolutions is
non–empty, there exists infinitely many weak solutions. They may
experience the initial energy jump.

Result B

Ω ⊂ RN a bounded domain, N = 2, 3. If the set of subsolutions is
non–empty, there exist infinitely may initial data v0 ∈ L∞(Ω;RN) such
that the problem admits infinitely many weak solutions with the total
energy continous at t = 0.



Example: Euler-Fourier system

Mass conservation

∂t%+ divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u) +∇x(%ϑ) = 0

Internal energy balance

3

2

[
∂t(%ϑ) + divx(%ϑu)

]
−∆ϑ = −%ϑdivxu



Third ansatz – 1D Riemann problem

Riemann problem in 1D

∂t%+ ∂x1 (%u) = 0, ∂t(%u) + ∂x1 (%u2) + ∂x1%
γ = 0

%0 = %(x1) =


%L for x1 < 0,

%R for x1 ≥ 0

%(0, ·) = %0, u(0, ·) = u0

u0 = u(x1) =


uL for x1 < 0,

uR for x1 ≥ 0

Extension to multi-D

%(x1, ·) = %(x1), u(x1, ·) = [u(x1), 0, . . . , 0]

+periodic boundary conditions



Results for the Riemann data - [Chiodaroli, DeLellis, Kreml,
Markfelder,...]

A “generic” result for shocks

The extended problem in 2 and 3D admits infinitely many weak solutions
satisfying the energy inequality whenever the 1D data give rise to a shock
wave

Corollary

Given T > 0, there exist Lipschitz initial data such that the isentropic
Euler system admits infinitely many admissible weak solutions in (0,T ).
Similar results hold also for the complete Euler system

Smooth initial data [Chiodaroli, Kreml, Mácha, Schwarzacher]

There exist smooth initial data and T > 0 such that the isentropic Euler
system admits infinitely many admissible weak solutions in (0,T ).


