Convex integration and compressible Euler system

Eduard Feireisl

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague Technische Universität Berlin

BIRS workshop Convex integration in PDE's, Banff, 12 August - 16 August 2019

Einstein Stiftung Berlin Einstein Foundation Berlin

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○ ◆

(Full) Euler system in conservative variables

Equation of continuity

 $\partial_t \varrho + \operatorname{div}_x \mathbf{m} = \mathbf{0}$

Momentum equation

$$\partial_t \mathbf{m} + \operatorname{div}_x \left(\frac{\mathbf{m} \otimes \mathbf{m}}{\varrho} \right) + \nabla_x \boldsymbol{p} = \mathbf{0}$$

Energy balance

$$\partial_t E + \operatorname{div}_x \left[(E + p) \frac{\mathbf{m}}{\varrho} \right] = 0$$

Constitutive relations

$$E = rac{1}{2} rac{|\mathbf{m}|^2}{arrho} + arrho e, \ (\gamma - 1) arrho e = p, \ \gamma > 1$$

Second law – entropy

Gibbs' relation

$$\vartheta Ds = De + pD\left(rac{1}{arrho}
ight), \ S = arrho s$$

Entropy balance

$$\partial_t S + \operatorname{div}_x(s\mathbf{m}) = 0, \ \partial_t S + \operatorname{div}_x(s\mathbf{m}) \ge 0$$

Boyle-Mariot law

$$p = \varrho \vartheta, \ e = c_v \vartheta, c_v = rac{1}{\gamma - 1}, \ s = c_v \log(\vartheta) - \log(\varrho)$$

Renormalized entropy balance

$$\partial_t s + \frac{\mathbf{m}}{\varrho} \cdot \nabla_x s = (\geq) 0, \ \partial_t G(s) + \frac{\mathbf{m}}{\varrho} \cdot \nabla_x G(s) = (\geq) 0, \ G' \geq 0$$

◆ロト ◆母ト ◆臣ト ◆臣ト 三臣 - のへで

Isentropic (barotropic) Euler system

Constant entropy

$$s = \overline{s}, \ p = \varrho \vartheta = \exp\left(\frac{\overline{s}}{c_v}\right) \varrho^{\gamma}, \ p = p(\varrho), \ p' \ge 0$$

Total energy

$$E=rac{1}{2}rac{|\mathbf{m}|^2}{arrho}+P(arrho),\,\,P'(arrho)arrho-P(arrho)=p(arrho)$$

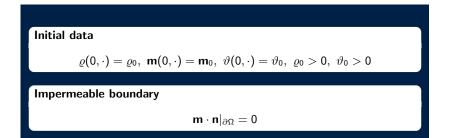
Total energy balance

$$\partial_t E + \operatorname{div}_x \left[(E + p(\varrho)) \frac{\mathbf{m}}{\varrho} \right] = (\leq) 0$$

Energetically closed system

$$\mathbf{m} \cdot \mathbf{n}|_{\partial\Omega} = 0, \ \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} E \ \mathrm{d}x = (\leq) 0$$

Data



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

First ansatz – constant thermostatic variables

Constant density, temperature (internal energy), and total energy

$$\varrho = \varrho_{\Omega} > 0, \ \vartheta = \vartheta_{\Omega} > 0 \Rightarrow S = S_{\Omega} > 0$$

$$E = \frac{1}{2} \frac{|\mathbf{m}|^2}{\varrho_{\Omega}} + \varrho_{\Omega} e(\varrho_{\Omega}, \vartheta_{\Omega}) = E_{\Omega}$$

Mass and entropy conservation

$$\partial_t \varrho + \operatorname{div}_x \mathbf{m} = \mathbf{0}, \ \partial_t S + \operatorname{div}_x (s\mathbf{m}) = \mathbf{0} \ \Rightarrow \ \operatorname{div}_x \mathbf{m} = \mathbf{0}$$

Total energy balance

$$\partial_t E + \operatorname{div}_x \left[(E + p) \frac{\mathbf{m}}{\varrho} \right] = 0 \implies \overline{\operatorname{div}_x \mathbf{m} = 0}$$

Momentum balance

$$\partial_t \mathbf{m} + \operatorname{div}_x \left(\frac{\mathbf{m} \otimes \mathbf{m}}{\varrho_\Omega} \right) = \mathbf{0}$$

◆□ > ◆母 > ◆臣 > ◆臣 > ―臣 = のへで

Incompressible Euler system with constant pressure

Momentum equation

$$\partial_t \mathbf{m} + \operatorname{div}_x \left(\frac{\mathbf{m} \otimes \mathbf{m}}{\varrho_{\Omega}} - \frac{1}{N} \frac{|\mathbf{m}|^2}{\varrho_{\Omega}} \mathbb{I} \right) = \mathbf{0}, \ \operatorname{div}_x \mathbf{m} = \mathbf{0}$$

Prescribed (constant) kinetic energy energy

$$rac{1}{2}rac{|\mathbf{m}|^2}{arrho_\Omega} = -rac{N}{2}p(arrho_\Omega,artheta_\Omega) + \boxed{\Lambda(t)}$$

Weak formulation - no flux boundary conditions

$$\begin{split} \left[\int_{\Omega} \mathbf{m} \cdot \phi \, \mathrm{d}\mathbf{x}\right]_{t=0}^{t=\tau} &= \int_{0}^{\tau} \int_{\Omega} \mathbf{m} \cdot \partial_{t} \varphi + \left(\frac{\mathbf{m} \otimes \mathbf{m}}{\varrho_{\Omega}} - \frac{1}{N} \frac{|\mathbf{m}|^{2}}{\varrho_{\Omega}} \mathbb{I}\right) : \nabla_{x} \varphi \, \mathrm{d}x \mathrm{d}t = 0 \\ &\int_{0}^{T} \int_{\Omega} \mathbf{m} \cdot \nabla_{x} \varphi \, \mathrm{d}x \mathrm{d}t = 0 \\ \varphi \in C^{1}([0, T] \times \overline{\Omega}; R^{N}), \, \varphi \in C^{1}([0, T] \times \overline{\Omega}) \end{split}$$

Convex integration [DeLellis and Székelyhidi]

Relaxation – subsolutions

$$\partial_t \mathbf{m} + \operatorname{div}_{\mathbf{x}} \mathbb{V} = \mathbf{0}, \ \operatorname{div}_{\mathbf{x}} \mathbf{m} = \mathbf{0}, \ \mathbf{m}(\mathbf{0}, \cdot) = \mathbf{m}_0, \ \mathbb{V} \in C^1([\mathbf{0}, T] \times \overline{\Omega}; R_{\operatorname{sym}, \mathbf{0}}^{N \times N})$$

Convex constraint

$$\frac{1}{2}\frac{|\mathbf{m}|^2}{\varrho_{\Omega}} \leq \frac{N}{2}\lambda_{\max}\left[\frac{\mathbf{m}\otimes\mathbf{m}}{\varrho_{\Omega}} - \mathbb{V}\right] < -\frac{N}{2}p(\varrho_{\Omega},\vartheta_{\Omega}) + \Lambda(t) \equiv \overline{E}$$

Algebraic relations

$$\begin{split} (\mathbf{v},\mathbb{V}) &\mapsto \lambda_{\max} \left[\mathbf{v} \otimes \mathbf{v} - \mathbb{V} \right] \text{ convex} \\ & \frac{1}{2} |\mathbf{v}|^2 \leq \frac{N}{2} \lambda_{\max} \left[\mathbf{v} \otimes \mathbf{v} - \mathbb{V} \right] \\ & \frac{1}{2} |\mathbf{v}|^2 = \frac{N}{2} \lambda_{\max} \left[\mathbf{v} \otimes \mathbf{v} - \mathbb{V} \right] \Rightarrow \ \mathbb{V} = \mathbf{v} \otimes \mathbf{v} - \frac{1}{N} |\mathbf{v}|^2 \mathbb{I} \end{split}$$

Convex integration [DeLellis and Székelyhidi]

Non-empty set of subsolutions

 \overline{E} large enough \Rightarrow set of subsolutions is non–empty

$$\overline{E} - \frac{1}{2} \frac{|\mathbf{m}|^2}{\varrho_\Omega} > 0$$

Energy defect functional

$$I[\mathbf{v}] = rac{1}{2} rac{|\mathbf{m}|^2}{arrho_\Omega} - \overline{E} < 0 ext{ convex}$$

 $\textit{I}[m]=0 \ \Rightarrow \ m$ is a (weak) solution of the constant pressure Euler system

m is a point of continuity of $I \Rightarrow I[\mathbf{m}] = 0$

Convex integration [DeLellis and Székelyhidi]

Oscillatory lemma

Let

```
m with the associated flux \mathbb V
```

be a subsolution.

Then there exists a sequence $\{\mathbf{v}_n, \mathbb{U}_n\}_{n=1}^\infty$ such that

 $\mathbf{v}_{n} \in C_{c}^{\infty}((0, T) \times \Omega; \mathbb{R}^{N}), \ \mathbb{U}_{n} \in C_{c}^{\infty}((0, T) \times \Omega; \mathbb{R}_{sym,0}^{N \times N})$ $\mathbf{m} + \mathbf{v}_{n} \text{ with the associated flux } \mathbb{V} + \mathbb{U}_{n} \text{ are subsolutions}$ $\mathbf{v}_{n} \to 0 \text{ weakly in } L^{2}((0, T) \times \Omega)$ $\liminf_{n \to \infty} \int_{0}^{T} \int_{\Omega} \frac{1}{2} \frac{|\mathbf{v}_{n}|^{2}}{\varrho_{\Omega}} \ dxdt \ge c(N, \overline{E}) \int_{0}^{T} \int_{\Omega} \left(\overline{E} - \frac{1}{2} \frac{|\mathbf{m}|^{2}}{\varrho_{\Omega}}\right)^{2} \ dxdt$

Conclusion for the Euler system with constant (zero) pressure

Conclusion A

Given $\varrho_{\Omega} > 0$, $\mathbf{m}_0 \in C^1(\overline{\Omega}; \mathbb{R}^N)$, $\operatorname{div}_x \mathbf{m}_0 = 0$, $\mathbf{m} \cdot \mathbf{n}|_{\partial\Omega} = 0$, there exist (infinitely many) $\overline{E} > 0$ such that the Euler system with constant pressure admits infinitely many weak solutions. The solution may experience the initial energy "jump".

Conclusion B

Given $\rho_{\Omega} > 0$, there exist (infinitely many) \mathbf{m}_0 , $\overline{E} > 0$ such that the Euler system with constant pressure admits infinitely many weak solutions with the energy continuous at t = 0

《曰》 《圖》 《臣》 《臣》 三臣

Application to the full Euler system

Full Euler system with piece-wise constant data

Suppose that $\Omega \subset R^N$ is a bounded domain,

 $\Omega = \cup_{i>0}\overline{\Omega}_i, \ \Omega_i \text{ domains } \Omega_i \cap \Omega_j = \emptyset \text{ for } i \neq j.$

Let the initial data ρ_0 , ϑ_0 be given,

$$\varrho_0|_{\Omega_i} = \varrho_{\Omega_i} > 0, \ \vartheta_0|_{\Omega_i} = \vartheta_{\Omega_i} > 0, \ i = 1, 2, \dots$$

The there exist infinitely many $\mathbf{m}_0 \in L^{\infty}(\Omega; \mathbb{R}^N)$ such that the full Euler system supplemented with the impermeability boundary condition

$$\mathbf{m}\cdot\mathbf{n}|_{\partial\Omega}=0$$

《曰》 《圖》 《臣》 《臣》 三臣

200

admits infinitely many weak solutions satisfying the entropy (in)equality.

Application to stochastically driven Euler system

Euler system with Stratonowich intergral

$$d\varrho + \operatorname{div}_{x} \mathbf{m} dt = 0$$
$$d\mathbf{m} + \operatorname{div}_{x} \left(\frac{\mathbf{m} \otimes \mathbf{m}}{\varrho} \right) dt + \nabla_{x} \rho dt = -\frac{1}{2} \mathbf{m} \circ dW$$
$$dE + \operatorname{div}_{x} \left((E + \rho) \frac{\mathbf{m}}{\varrho} \right) dt = -E \circ dW,$$

Entropy inequality

$$\mathrm{d}(\varrho s) + \mathrm{div}_x(sm)\mathrm{d}t \geq -c_v \varrho \circ \mathrm{d}W.$$

Impermeability condition

$$\mathbf{m} \cdot \mathbf{n}|_{\partial\Omega} = 0$$

Second ansatz – barotropic Euler system

Equation of continuity

$$\mathbf{m} = \mathbf{v} + \nabla_x \Phi, \ \operatorname{div}_x \mathbf{v} = \mathbf{0}, \ \Delta_x \Phi = \operatorname{div}_x \mathbf{m}, \ (\nabla_x \Phi - \mathbf{m}) \cdot \mathbf{n}|_{\partial \Omega} = \mathbf{0}$$

$$\partial_t \varrho + \Delta_x \Phi = 0$$

Momentum equation

$$\partial_{t}\mathbf{v} + \operatorname{div}_{x}\left(\frac{(\mathbf{v} + \nabla_{x}\Phi) \otimes (\mathbf{v} + \nabla_{x}\Phi)}{\varrho} + \partial_{t}\Phi\mathbb{I} + p(\varrho)\mathbb{I}\right) = 0$$
$$\partial_{t}\mathbf{v} + \operatorname{div}_{x}\left(\frac{(\mathbf{v} + \nabla_{x}\Phi) \otimes (\mathbf{v} + \nabla_{x}\Phi)}{\varrho} - \frac{1}{N}\frac{|\mathbf{v} + \nabla_{x}\Phi|^{2}}{\varrho}\mathbb{I}\right) = 0$$

Kinetic energy

$$rac{1}{2}rac{|\mathbf{v}+
abla_{x}\mathbf{\Phi}|^{2}}{arrho}=-rac{N}{2}\left(\mathbf{p}(arrho)+\partial_{t}\mathbf{\Phi}
ight)+\Lambda(t)$$

Theorem

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain, N = 2, 3. Let \mathcal{R} denotes the set of all functions bounded and continuous in $\overline{\Omega}$ with the exception of a set of Lebesgue measure zero. Let ϱ_0 , \mathbf{m}_0 be given such that

$$\varrho_0 \in \mathcal{R}, \ 0 \leq \underline{\varrho} \leq \varrho_0 \leq \overline{\varrho},$$

$$\textbf{m}_0 \in \mathcal{R}, \ {\rm div}_{x}\textbf{m}_0 \in \mathcal{R}, \ \textbf{m}_0 \cdot \textbf{n}|_{\partial\Omega} = \textbf{0}.$$

Let $\{\tau_i\}_{i=1}^{\infty} \subset (0, T)$ be an arbitrary (countable dense) set of times. Then the Euler problem admits infinitely many weak solutions ϱ , **m** with a strictly decreasing total energy profile such that

$$\varrho \in C_{\mathrm{weak}}([0, T]; L^q(\Omega)), \ \mathbf{m} \in C_{\mathrm{weak}}([0, T]; L^q(\Omega; R^N)), \ q > 1,$$

but

$$t \mapsto [\varrho(t, \cdot), \mathbf{m}(t, \cdot)]$$
 is not strongly continuous at any $\tau_i, i = 1, 2, \dots$

General "Euler" system

Incompressibility constraint, initial data

$$\operatorname{div}_{x} \mathbf{v} = \mathbf{0}, \ \mathbf{v}(\mathbf{0}, \cdot) = \mathbf{v}_{\mathbf{0}}$$

Momentum equation

$$\partial_t \mathbf{v} + \operatorname{div}_{\mathsf{x}} \left(\frac{(\mathbf{v} + \mathbf{b}[\mathbf{v}]) \otimes (\mathbf{v} + \mathbf{b}[\mathbf{v}])}{r[\mathbf{v}]} - \frac{1}{N} \frac{|\mathbf{v} + \mathbf{b}[\mathbf{v}]|^2}{r[\mathbf{b}]} \mathbb{I} + \mathbb{M}[\mathbf{v}] \right) = 0$$

Total energy

$$\frac{1}{2}\frac{|\mathbf{v}+b[\mathbf{v}]|^2}{r[\mathbf{v}]} = E[\mathbf{v}]$$

Abstract operators

$$\mathbf{v} \mapsto [\mathbf{b}, r, \mathbb{M}, E][\mathbf{v}]$$

continuous from $L^\infty_{\mathrm{weak}-(*)}$ to *BC* (bounded continuous)

Conclusion for the general "Euler" system

Result A

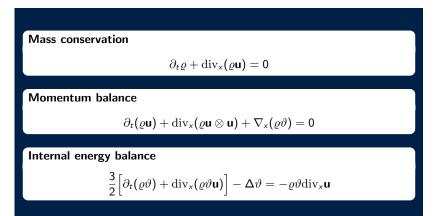
 $\Omega \subset R^N$ a bounded domain, N = 2, 3. If the set of subsolutions is non-empty, there exists infinitely many weak solutions. They may experience the initial energy jump.

Result B

 $\Omega \subset \mathbb{R}^N$ a bounded domain, N = 2, 3. If the set of subsolutions is non-empty, there exist infinitely may initial data $\mathbf{v}_0 \in L^{\infty}(\Omega; \mathbb{R}^N)$ such that the problem admits infinitely many weak solutions with the total energy continous at t = 0.

《口》 《聞》 《臣》 《臣》 三臣

Example: Euler-Fourier system



◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆○ > ◆

Third ansatz – 1D Riemann problem

Riemann problem in 1D

$$\partial_t \varrho + \partial_{x_1}(\varrho u) = 0, \ \partial_t(\varrho u) + \partial_{x_1}(\varrho u^2) + \partial_{x_1}\varrho^{\gamma} = 0$$
 $\varrho_0 = \varrho(x_1) = \begin{cases}
\varrho_L \text{ for } x_1 < 0, \\
\varrho_R \text{ for } x_1 \ge 0 \\
\varrho(0, \cdot) = \varrho_0, \ u(0, \cdot) = u_0
\end{cases}$
 $u_0 = u(x_1) = \begin{cases}
u_L \text{ for } x_1 < 0, \\
u_R \text{ for } x_1 \ge 0
\end{cases}$

Extension to multi-D

$$\varrho(x_1, \cdot) = \varrho(x_1), \ \mathbf{u}(x_1, \cdot) = [u(x_1), 0, \dots, 0]$$

+periodic boundary conditions

Results for the Riemann data - [Chiodaroli, DeLellis, Kreml, Markfelder,...]

A "generic" result for shocks

The extended problem in 2 and 3D admits infinitely many weak solutions satisfying the energy inequality whenever the 1D data give rise to a shock wave

Corollary

Given T > 0, there exist Lipschitz initial data such that the isentropic Euler system admits infinitely many admissible weak solutions in (0, T). Similar results hold also for the complete Euler system

Smooth initial data [Chiodaroli, Kreml, Mácha, Schwarzacher]

There exist smooth initial data and T > 0 such that the isentropic Euler system admits infinitely many admissible weak solutions in (0, T).