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Principles

. Different things are not equal, at best nat.
isom.

. (higher order) Arrows in a cat. context are
used to compare.

. "Doing” and then “undoing” may or may not
be the same as “not doing.”

. Simultaneity is illusory.

. Change followed by exchange is comparable to
exchange followed by change via a higher order
arrow.
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e We'll work in a multi-category

e Objects, 1-arrows, double arrows, triple arrows,
etc. n-arrows

o We'll be finicky about horizontal composition

|
Finicky: |
Gratuitous internet cat picture.
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all repr. id. on o + f5.
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Def 1-arrows, part 2

if A and B are arrows with suitable sources and
targets, then each of the diagrams here

IS an arrow.
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Before we continue with FA, in particular, note that
the previous 2 slides apply in general. So let's look
in a general context to address the lack of

simultaneity.



Exchanger axiom. Suppose that ~y & o and

¢ & B are arrows. There is a natural family X
of 2-arrows

X:(F@l)o(la®G)= (I, ©G)o (F®lg)

which are 2-isomorphisms. Here
(F®l)o(la®G)and (I, ® G) o (F ®lg) are
algebraic expressions of the graphic:
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b/c the object set N is a monoid. So we'll consider
things from a 2-cat POV.
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We also have skew compositions. So write

hp——c——( c a c a—— ¢
: - /N " ) \F/
b———d aq——ph—¢C b
and allow
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a b c d a b c d
| E o |
a b d a c d

un-directed edges are identities.
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Then the
exchanger X is a triple arrow.



Q>




Apology: I'll be bouncing b/2 descr. things as
double and triple arrows.



Apology: I'll be bouncing b/2 descr. things as
double and triple arrows. Since n-arrows form a
cat.,



Apology: I'll be bouncing b/2 descr. things as
double and triple arrows. Since n-arrows form a
cat., there are always identity (n + 1)-arrows.



Apology: I'll be bouncing b/2 descr. things as
double and triple arrows. Since n-arrows form a
cat., there are always identity (n + 1)-arrows.e.g.



Apology: I'll be bouncing b/2 descr. things as
double and triple arrows. Since n-arrows form a
cat., there are always identity (n + 1)-arrows.e.g.

Hh Hh @ﬂ HL ,,,,,,,,,
I I HD Il H'

o0 —>0



Since different things are not the same,



Since different things are not the same, we compare



Since different things are not the same, we compare
using arrows.



Since different things are not the same, we compare
using arrows.
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So, for example, the Joyal-Street axioms for
associative unital structures can be given in a
diagrammatic fashion.



So, for example, the Joyal-Street axioms for
associative unital structures can be given in a
diagrammatic fashion. Note that not all the unit
axioms have been stated here.
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Simplify and Abstract

S'pose that there are two objects t and f in a
multi-cat. S In addition, there are arrows:
f—rf

t—t

p:f—t, and

b:t —F.

In general, a non-id. arrow is a finite sequence
pbpb---b, pbpb---p, bpbp---b, or bpbp---p.
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The afore constructed 4-cat § is the 4-cat of isotopy
classes properly embedded surfaces in 3-space.
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e to, = p,b,, and
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Inductive Step

T = €pep_r...€1; €, € {0,1}, for j € {1,...,

Ob.] : t.’)ﬁu I:L'

Generating 1-arrows: p, : £, — ty; by 1ty — £
Inductively define
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The b's and p's are all critical points or IOW
handle attachments.

Cusps correspond to critical (handle)
cancelations.

Swallow-tails and horizontal cusps are always
interesting. Last picture.

The construction grows exponentially.

I'll skip a step and go to the highest level that
we have computed.
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Epilogue

There is more glyphography to come.

Components of glyphs are vertices types of
edges & serifs.

bookmarks can be associated to serifs and
vertices that indicate composability.

That's my story and I'm sticking to it.
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