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Outline

1. Introduction to some Optimal Control Ideas

2. River Model
with collaborator, Rebecca Pettit (Dept. of Defense)

3. Black Sea Fishery Model
with collaborator, Mahir Demir (Michigan State U, postdoc in
fishery group)
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Basic Idea behind Optimal Control

System of ODEs or PDEs (or discrete or integrodifference)
Decide on how to manage this system
—by choosing format and bounds on the controls

Design an appropriate GOAL, objective functional
—balancing opposing factors in functional
—include (or not) terms at the final time

Derive necessary conditions for the optimal control
Compute the optimal control numerically
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Optimal Control and Pontryagin’s Maximum Principle

Pontryagin and his collaborators developed optimal control
theory for ODEs about 1950.

Pontryagin’s key idea was the introduction of the adjoint
variables to attach the differential equations to the objective
functional (like a Lagrange multiplier attaching a constraint to
an optimization of a function).

Instead of finding an optimal control to maximize the objective
functional subject to dynamic equations, they maximize the
Hamiltonian with respect to the control at each time.
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Introduction to Optimal Control of PDEs

After setting up a PDE with a control in a specifed set and an
objective functional, proving existence of an optimal control in an
appropriate weak solution space is a first step.

To derive the necessary conditions , we need to differentiate the
map

control → objective functional

Note that the state contributes to the objective functional, so we
also must differentiate the map

control → state

The “sensitivity” is the derivative of the control-to-state map. The
sensitivity solves a PDE, which is linearized version of the state
PDE.
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How to find and use the adjoint function

The formal adjoint of the operator in the sensitivity PDE is found.

Transversality Condition: final time condition λ = 0 at t = T

nonhomogeneous term

∂( integrand of J )

∂state

Differentiate the objective functional J(control) with respect to
the control.

Use the adjoint problem and the sensitivity problem to simplify and
obtain the explicit characterization of an optimal control.
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First Example: Introduction to River Model

Model adapted from - Jin, Hilker, Steffler, and Lewis (2014)
SIAP

Seasonal invasion dynamics in a spatially heterogeneous river
with fluctuation flows
PDE reaction-diffusion model
Incorporates both river and population dynamics
Use the water discharge flow to control the species
Goal: Use flow control in our model to keep the invasive
species downstream and prevent the population from moving
upstream
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Problem Formulation

STATE PDE: N(x , t) population density in the river at location x and time t

Nt = −At(x , t)
N

A(x , t)
+

1

A(x , t)
(D(x , t)A(x , t)Nx)x −

Q(t)

A(x , t)
Nx + rN

(
1− N

K

)
N(0, t) = 0 on (0,T ), x = 0, (upstream)

Nx(L, t) = 0 on (0,T ), x = L, (downstream)

N(x , 0) = N0(x) on (0, L), t = 0

in weak solution space L2((0,T ); H1
{0} (0, L)) with time

A(x , t) cross-sectional area of river
Q(t) water discharge rate, CONTROL
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Optimal Control Problem Formulation and Analysis

Our control set is

U = {Q ∈ L∞(0,T ) |m ≤ Q(t) ≤ M}

with 0 ≤ m < M.
Our objective functional to minimize

J(Q) =

∫ T

0

∫ L

0
W (x)N(x , t)dxdt +

∫ T

0
εQ2(t)dt

where ε > 0 is small.

The weight W (x) is large near x = 0 to emphasize keeping the
population low upstream.
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Optimal Control Problem Formulation and Analysis

1 Differentiate the control-to-state map as a directional
derivative, sensitivity PDE

2 Find our adjoint PDE from the sensitivity PDE

3 Characterize the Optimal Control by differentiate the map
from control-to-J (goal)

4 Numerical simulation of state and adjoint system with optimal
control

Mostly just showing a few results here
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The Adjoint PDE and Optimal Control Characterization

− λt −
(

DA

(
λ

A

)
x

)
x

− Q

(
λ

A

)
x

+
Atλ

A
− rλ+ 2

rλ

K
N∗ = W (x)

λ(x ,T ) = 0 on (0, L), t = T ,

λ(0, t) = 0 on (0,T ), x = 0,

D(L, t)A(L, t)

(
λ(L, t)

A(L, t)

)
x

+ Q(t)
λ(L, t)

A(L, t)
= 0 on (0,T ), x = L

Optimal control characterization

Q∗(t) = min

(
M,max

(
1

2ε

∫ L

0

λ

A
N∗x (x , t)dx ,m

))
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Initial Condition and Weight Function

(a) Initial Condition (b) Weight Function
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Cross-sectional Area is Constant, Population, Control

(c) No Control (d) Optimal Control

Figure: Population plots for the no control population and the optimal
control population. The parameter values are T = 10, L = 10, r = 0.6,

K = 200, D = 0.1, A = 20, ε = 0.05, and 0 ≤ Q(t) ≤ 10.
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Cross-sectional Area is Constant, Downstrean

Figure: The upstream location of the constant control population with
Q = 10 (solid blue line), no control population (red dashed line), and the

optimal control population (magenta dotted line).

Detection level greater than 0.5
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Cross-sectional Area is Constant - Varying the Final Time

(a) T=5 (b) T=15

Figure: The upstream location of constant control population (solid blue
line), no control population (red dashed line), and optimal control

population (magenta dotted line).
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Cross-sectional Area is Constant

Table: The objective functional outputs for the cases tested where we changed
parameter values for K and r (given below) with T = 10.

Base Case K = 150 K = 250 r = 0.3

No Control 239.52 204.28 269.14 55.18

Constant Control 56.63 56.16 56.97 52.44

Optimal Control 40.12 37.96 41.13 20.29

OC Improv. on CC 29% 32% 28% 61%
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Cross-sectional Area is Constant, vary D and T

(a) Varying D (b) Varying T

Figure: The optimal control plots for varying of the parameters D and
T . The base case (red dotted line), the increased value (dashed blue

line), and the decreased value (solid magenta line).
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Cross-sectional Area is Not Constant -
A(x , t) = (0.5x + 25) + (0.2t (10− t))

(a) A(x , t) (b) A = 20

Figure: The upstream location of the constant control population
(solid), no control population (red dashed), and the optimal control

population (magenta) with T = 10.

J values ar 66 and 40 respectively.
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Approximation of an Optimal Control

Figure: Comparing the optimal control and
the approximate control case when A = 20

J(approximate control) is 6% higher than J(Q∗)
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Conclusions and Future Work

Conclusions

Successful in illustrating pushing an invasive species
downstream compared to the no control case

Various results with varying parameters, initial conditions,
weight function, and the cross-sectional area

Future Work

Want to use a more realistic A(x , t)

Find data for an invasive species moving upstream

Restrict flow to certain seasons in a year
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Second Example: Some Background about the Black Sea
Anchovy

Figure 1: Location of the Black Sea

The Anchovy family contributes to the global fisheries over 10 % of landing.

The European anchovy is the third most widely harvested species of the
Anchovy family, and about 40% comes from the Black Sea.

Fishery Season is open on the Turkish Coast of the Black Sea between
September 1 and April 14, but for the commercial fishery of anchovy, the fishing
season is about 3 months.

Anchovy plays a crucial role in the Black Sea pelagic food web as a prey and
predator of many species. It is also an important consumer of zooplanktons in
the Black Sea.
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Main goal of our study:

The main goal is to investigate ecosystem-based optimal fishery
management strategies for the anchovy fishing on the southern part of
the Black Sea.

Tools:

We built a food chain model with three trophic levels and with
seasonal fishery to track the effects of the fishery on the Black
Sea food web, and see the effect of predator-prey relations on the
anchovy fishery, especially effect of the invasive Jellyfish.

Use OC tools to find the optimal harvesting strategy that maximizes
the discounted net value of the anchovy population with seasonal
harvesting.
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Flow Diagram of Consumption in the System

Figure 3: The flow diagram of consumption in our food chain model.

A(t): Anchovy biomass.

P(t): Predator biomass of anchovy (jellyfish).

Z(t): Zooplankton biomass.
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Our Food Chain Model with Seasonal Harvesting

dA

dt
= r1A(1− A

K1
) + m0AZ −m1PA− hA

dP

dt
= r2P(1− P

K2
) + m2PA + m3PZ −m6P

dZ

dt
= r3Z (1− Z

K3
)−m4AZ −m5PZ

with the initial conditions:

A(0) = A0, P(0) = P0, Z (0) = Z0

h(t): Harvest rate (effort), OUR CONTROL,
h = 0 in the offseason.

m0,m1,m2, m3, m4, and m5 are predation rates.

m6 denotes the predation rate on the jellyfish, P, from other
predators
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Objective Functional

J(h) =

∫ T

0
e−αt(hA− µ1h − µ2h2)dt =

∫
Ω

e−αt(hA−µ1h − µ2h2)dt

Ω = ∪Ti=1[ai , bi ] time intervals for seasonal harvesting.

[ai , bi ] represents the fishery seasons for i = 1, 2, ...,T

e−αt is the discount rate

hA is the yield of the fishery

µ1h + µ2h2 denotes the cost of the harvest on Ω, and h = 0
on [0,T ] \ Ω

Find an optimal control, h∗ in A such that

J(h∗) = sup
h∈A

J(h)

A = {h : [0,T ] −→ [0,M] | h=0 on [0,T ] \ Ω and h Leb. meas.}
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Use Pontryagin’s Maximum Principle and Hamiltonian

H = e−αt(hA− µ1h − µ2h
2) + λA

[
r1A−

r1

K1
A2 + m0AZ −m1PA− hA

]
+ λP

[
r2P −

r2

K2
P2 + m2PA + m3PZ −m6P

]
+ λZ

[
r3Z −

r3

K3
Z2 −m4AZ −m5PZ

]

dλA

dt
= −

∂H

∂A
dλ2

dt
= −

∂H

∂P
dλZ

dt
= −

∂H

∂Z

together with the transversality conditions, λ1(T ) = λ2(T ) = λ3(T ) = 0.

h∗(t) = min

{
M,max

{
0,

A∗(1− eαtλ∗A)− µ1

2µ2

}}
on [0,T ]
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Numerical Methods and Parameter Estimation

Using the annual landing and fleets data of the anchovy
population on the southern part of Black Sea, 2003-2016,
from
obtained by the Scientific, Technical and Economic
Committee for Fisheries (STECF),
we estimated the parameters with constant h, and then did
optimal control problem.

Estimated Parameters are r1, r2, r3 (intrinsic growth rates),
mi for i = 0, 1, .., 6 (interaction coefficients) with h constant.
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Optimal Control Case

Figure 4: LHS: Landing of the Black Sea anchovy with OC case, hmax = 0.4. RHS: Biomass of the Black Sea

anchovy (blue), Jellyfish (red), and Zooplankton (green) with OC case.
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Optimal Control Rates and their Approximation

Figure 5: Left: The harvesting effort in OC case, hmax = 0.4. Right:
The approximate harvesting effort with the first half of the fishing
season, h = 0.335

J(approximate) is 3% less than J(h∗)
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Estimation of fishing fleets (Effort ≈ h)

Figure 5: Non-linear regression between CPUE and the landing of
the anchovy population depending on the data.

The number of fishing fleets (Effort) is estimated as

Effort∗ =
Landing∗

CPUE ∗
,

where, Landing∗ is our optimal landing, and CPUE ∗ is our
approximate CPUE obtained from non-linear regression model.
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Compare with single DE case with only Anchovy

dA

dt
= r1A(1− A

K1
)− hA

We found the parameters to this model by fitting to the landing
data and used the same objective functional.

We found optimal harvest for this model.
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Comparison of two models in optimal control case

(***) : We implemented the harvesting strategy of the anchovy equation
in our food chain model.

Table 2: Comparison of two models under assumption of about 50% net
profit (µ1 = 30700, and µ2 = 0.1)

We got much more profit by using the anchovy equation than by using
our food chain model, but it is not realistic. Actual profit would be lower
if we took account of biological interactions of the ecosystem .
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Conclusions for ODE part

It is better to reduce harvesting effort to optimal level to
obtain more profit and to help the anchovy population to
reproduce more new individuals for next fishery seasons.

Taking into account of the food web for the Black Sea
anchovy gives more reliable management information
than only using the anchovy equation.

Optimal controls with too much variation may be difficult to
implement and an approximation of an optimal control may
be chosen and implemented effectively.
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Ideas for Discussion

Some actions do not happen continuously and one may need
to do impulse actions.

Other approaches: Viability modeling work of Luc Doyen and
Pedro Gajardo, (state constraints)

Economic-ecology work of Jim Sanchirico, Mike Springborn

Adaptive management and learning, Paul Fackler, Jim
Nichols, Michael Runge.

NIMBioS Ecosystem Federalism working group
studying two patches with external ‘federal’ control and local
control

THANKS
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