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SOME CLASSES OF HERMITIAN METRICS

An n-dimensional Hermitian manifold (M, w) is
Kihler if dw = 0;
Balanced if d*w = 0 (<= dw""! =0);
Pluriclosed if 00w = 0;
Gauduchon if 90wt = 0;
Strongly Gauduchon if [0w" 15 = 0;
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Asteno-Kihler if 80w" 2 = 0.
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SOME CLASSES OF HERMITIAN METRICS

An n-dimensional Hermitian manifold (M, w) is
Kiihler if dw = 0;
Balanced if d*w = 0 (<= dw"~1 =0);
Pluriclosed if 90w = 0;
Gauduchon if 90wt = 0;
Strongly Gauduchon if [dw" 1|5 = 0;
Asteno-Kiihler if 90w" =2 = 0.

Main problems faced in the talk: improve a balanced metric on a fixed
cohomology class/ study the existence of different kind of special
metrics.

Approaches: use a geometric flow/ work on homogeneous spaces.



BALANCED METRICS (d*w = 0)

Some good reasons for studying balanced metrics:

o A metric is balanced if and only if Ay f = A5f = 2A,f for every
smooth map f (Gauduchon '77).

o The twistor space of an anti-self-dual, oriented 4-dimensional
Riemannian manifold always has a balanced metric (Gauduchon ’81).

e Every compact complex manifold bimeromorphic to a compact
Kahler manifold is balanced (Alessandrini-Bassanelli '93). Hence
Moishezon manifolds and complex manifolds in the Fujiki class C are
balanced.

o Any left-invariant Hermitian metric on a complex Lie group is
balanced.

e The balanced condition can be characterized in terms of currents, in
particular Calabi-Eckmann manifolds have no balanced metrics
(Michelson "82).

e On a balanced manifold w"~! is calibration.



SOME GENERALIZATIONS OF THE KAHLER-RICCI FLOW

Some geometric flows of Hermitian non-K&hler metrics in the
literature are generalizations of the Kédhler-Ricci flow:

Hermitian curvature flows (Streets,Tian, Ustinovskiy...),

Hermitian curvature flow
Owr = —S(wy) + Q(Ty, Ty) Pluriclosed flow
Ustinovskiy flow
Chern-Ricci-flow (Gill, Tosatti, Weinkove...)
Oy = —P(Wt)

Notation. Given a Hermitian manifold M, w = é ¢sdz" Ndz°,Rand T
are the curvature and the torsion of the Chern connection and

S;=8¢"Rsi, pj=8" Ris
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CALABI FLOW

In my approach I consider a generalization of the Calabi-flow
(M, [wo]) compact polarized Kdhler manifold.

Calabi functional: Ca: {Kahler forms € [w]} — RT

Ca: w»—)/siw"
M

Definition. Extremal metric: critical point of Ca.

Constant scalar curvature =— Extremal

Calabi flow (CF) Oy = i00s; ,
CF minizes Ca. (Calabi '82)

Wit=0 = “o

Theorem [Chen-He '08]. CF is well-posed. The flow is stable near CSC
Kiihler metrics and it exists as far as the Ricci curvature is bounded.
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CALABI FLOW AS A FLOW OF (n — 1,1 — 1)-FORMS
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(n—1,n — 1)-forms as
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CALABI FLOW AS A FLOW OF (n — 1,1 — 1)-FORMS
The Calabi flow can be alternatively written in terms of
(n—1,n — 1)-forms as
&wffl =100 *; (p(wi) Awy) , W)= = Wo-

This new flow moves the form ! ! in the Bott-Chern cohomology
class

g~ se = {wf T +i000 : 9 e AR € Hge =
The following decomposition holds
Q = ker AB¢ ¢ im 99 & (im §* + im 9*)

(Schweitzer '07).
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GENERALIZATIONS OF THE CALABI-FLOW

It is quite natural to consider the flow of balanced metrics

3twtn_1 =100 % (p(we) Awi), Wjt=0 = Wo-

Another flow which is natural to consider in the balanced setting is
the Laplacian-type flow

n—1 BC, n—1
Oy~ = A wy W)t=0 = Wo

which is inspired by the Laplacian flow in G,-geometry.



LAPLACIAN FLOW IN G,-GEOMETRY

A Gy-structure on a 7-dimensional manifold is a section ¢ of an open
subbundle A3 C A%,

¢ determines a metric g, and an orientation.

p is torsion-free if dp = d*p = 0.

The Laplacian flow (LF) is the geometric flow
Orpr = Dyypr,  dpr =0.

(Byant "05)
Theorem [Bryant-Xu "11]. LF is well-posed.



LAPLACIAN FLOW IN G,-GEOMETRY

Pg)=A
A2 4 A3 A3 N [gg] ———25 A3
J{A T%er
A2 T p3

4
p(o) =d*po + Ay tdo0
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LAPLACIAN FLOW IN G,-GEOMETRY

A2 1 A3 Aiﬂ[%] M A3

J{A T‘Poer Td
ax p(o)

A2 —— A8 AL CAN2 —— A?

plo) =d oo+ Ayytioo. If
P*w :L<p7 P+|o :ZO'

—L,, —1, are not elliptic, but there exists V: A3 — I'(M) such that

if P(p)=App+Lypp, @€ Np]

then P,,od=-A,od+lot, p.,=-A,+Llot.

The well-posedness of the LF follows via a DeTurck trick.



THE BALANCED FLOW

Ar2n=2 190 pnetn AL e P gt
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THE BALANCED FLOW

An—2.1-2 i00 An—Ln—1 Ai—l,n—l N [wn—l]Bc L An—1n-1
lAA lABC Tw3_1+i85
An—Z,n—2 i09 An—l,n—l
If

Aij:Z,an p
p

An—Z,n—Z
*|p :LL,D7 P+|o :la
L,, -1, are not elliptic for both the balanced flows introduced, but if

P(w" 1) = 00 ., (p(w) Aw) + (n — 1)ABC 1
then

P, 0i00 = —(n —1)AP 0idd +Llo.t., p.,=—(n—1)A%+1lo.t.




WELL-POSEDNESS OF THE BALANCED FLOW

Theorem [Bedulli-V."18]. Let (M, wy) be a compact balanced manifold.
The geometric flow (BF)

O™t =000 % (p(wr) Awr) + (n — 1)ABC =1

dw' 1 =0, Wit=0 = Wo

is well-posed. The solution w; satisfies, w!' ™' € [wi~'|pc and if wy is Kilher

it reduces to the Calabi flow.

Remark. The short-time existence is not free since flow is parabolic
“only along 00-exact forms”.

In general (BF) cannot be reduced to a scalar flow and Tpax < o0.

Open problem. Study the short-time existence of

Oy = 100 *; (p(wi) A wy) &wffl = A?Cw,’f*l



STABILITY OF THE BALANCED FLOW

Theorem. [Bedulli-V.]. Let (M, @) be a compact Ricci-flat Kihler
manifold. Then there exists 6 > 0 such that if wy is a balanced metric on M
satisfying ||wo — @||ce < 6, then (BC) starting from wy exists for all

t € [0,00) and as t — oo it converges in C*> topology to a balanced form w

satisfying
(1) i00 % (pAw)+(n—1)AFCxw =0
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STABILITY OF THE BALANCED FLOW

Theorem. [Bedulli-V.]. Let (M, @) be a compact Ricci-flat Kihler
manifold. Then there exists 6 > 0 such that if wy is a balanced metric on M
satisfying ||wo — @||ce < 6, then (BC) starting from wy exists for all

t € [0,00) and as t — oo it converges in C*> topology to a balanced form w

satisfying
(1) i00 % (pAw)+(n—1)AFCxw =0

Related Problems. The result is similar to the stability of the
Laplacian flow in Gy-geometry (Lotay-Wei) and suggest that w;
should converge to @.

Describe balanced metrics satisfying (1).

Improve the result.
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A REMARK ON EXTREMAL BALANCED METRICS
Balanced metrics satisfying
i00* (pAw)+(n—-1Axw=0

can be seen as a generalization of extremal Kédhler metrics to the
balanced frameworks.

Another generalization was proposed by Teng Fei who introduced
extremal balanced metrics as critical points of the Calabi functional

w

Ca: Wi peNATY T SRy, Ca(w'?) = / s2 W'
M

In this way
w extremal <= 2(n — 1)idds A p = i0I((2As + s*)w)

Problem. Study the interplay between the two notions of extremal balanced
metrics
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BALANCED FLOW: A DIFFERENT APPROACH
Let (M, w) be a Hermitian manifold and

CrM)={veC®M) : wi ' =w""1+i00(vw""?) > 0}

which is open in C*°(M).
w balanced — w, balanced
w Gauduchon — w, Gauduchon

w Strongly Gauduchon — w, Strongly Gauduchon
{wi=1} < AT A WY pe. We introduce

atwf” = i@é(swtwn_2) y Wit=0 = Wo (= {wv}

which is inspired by the (n — 1)-plurisubharmonic flow

O™ = —(n—Dp(we) Aw"™2,  wjj—g = wp.



BALANCED FLOW: A DIFFERENT APPROACH

Theorem [Bedulli-V.]. The flow

3twf_1 = i@é(swtwn_2) ;W= = wo € {wy}

always has a unique short-time solution {wt}ic(o,1,,,)- {w:} is balanced for
every t. If further c1(M) < 0, w is Kihler-Einstein and wy is close enough to

w in C>°-topology, then {w;} is defined for any positive t and converges in
C*-topology to w.




BALANCED FLOW: A DIFFERENT APPROACH

Theorem [Bedulli-V.]. The flow
atw?_l = iaé(swtwn_2) y Wi=0 = Wo € {Wv}

always has a unique short-time solution {wt}ic(o,1,,,)- {w:} is balanced for
every t. If further c1(M) < 0, w is Kihler-Einstein and wy is close enough to
w in C>°-topology, then {w;} is defined for any positive t and converges in
C*-topology to w.

Ot =i00(s,,w" %) isequivalentto Qi = sy,

which is elliptic in very strong sense (Whisken-Polden,
Mantegazza-Martinazzi) = short-time existence.
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AN OPEN CONJECTURE

Conjecture [Fino-V.]. Every compact complex manifold admitting a
pluriclosed and a balanced metric is Kihler.

Some evidences

e Every metric which is simultaneously pluriclosed and balanced
is necessary Kéahler.

e Verbitsky proved that the twistor space of a compact,
anti-self-dual Riemannian manifold has no pluriclosed metrics
unless it is Kdhler.

e Chiose proved that a compact complex manifold of in the Fujiki
class C has a pluriclosed metric if and only if it is Kéhler.

e Li, Fu and Yau found a new class of non-Kéihler balanced
manifolds by using conifold transactions. Such examples
include the connected sums M, of k-copies of 3 x S3, k > 1. M
has no pluriclosed metrics.
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AN OPEN CONJECTURE

e Chiose, Rasdeaconu, Suvaina proved that the conjecture is true
on compact 3-folds such that for every Gauduchon metric w

Hi’z > [w?]4 contains a balanced metric

Theorem [Fino-V.]. The conjecture is true in 2-step nilmanifolds with
invariant complex structures and on 3-dimensional solvmanifolds with
invariant complex structures and holomorphically trivial canonical bundle.

Theorem [Grantcharov-Fino-V.]. The conjecture is true in compact
semisimple Lie groups with the Samelson complex structure.

It is quite natural to consider the same problem for other classes of
Hermitian metrics

Theorem [Grantcharov-Fino-V.]. The homogeneous space SU(5)/T?
simply connected and has an invariant complex structure which admits both
balanced and astheno-Kihler metrics, but does not admit any pluriclosed
metric.



Thank you!



