Classifying Groups with a large Subgroup A status report

G. Stroth

Martin Luther Universität Halle Wittenberg

August 29, 2019

▲口> ▲御> ▲注> ▲注> 三注

We fix a prime p.

We will consider groups *G* with $O_p(G) = 1$, with a so called large subgroup. It is a *p*-subgroup *Q* such that

$$C_G(Q) \leq Q.$$

3 If
$$1 \neq U \leq Z(Q)$$
, then $N_G(U) \leq N_G(Q)$.

If a group G contains such a group Q, we also speak about Q-uniqueness.

Without loss we may additionally assume that

$$Q = O_p(N_G(Q)).$$

Martin Luther Universität Halle Wittenberg

G. Stroth

Definition

Let *G* be a group, *L* be a *p*-local subgroup of *G*, then *L* is called of characteristic *p* if $F^*(L) = O_p(L)$.(or $C_L(O_p(L)) \le O_p(L)$) We call *G* of local characteristic *p* if all *p*-local subgroups of *G* are of characteristic *p* We call *G* of parabolic characteristic *p* if all *p*-local subgroups *L*, which contain a Sylow *p*-subgroup of *G*, are of characteristic *p*.

Classifying Groups with a large Subgroup A status report

Definition

Let *G* be a group, *L* be a *p*-local subgroup of *G*, then *L* is called of characteristic *p* if $F^*(L) = O_p(L)$.(or $C_L(O_p(L)) \le O_p(L)$) We call *G* of local characteristic *p* if all *p*-local subgroups of *G* are of characteristic *p* We call *G* of parabolic characteristic *p* if all *p*-local subgroups *L*, which contain a Sylow *p*-subgroup of *G*, are of characteristic *p*.

A consequence of having a large subgroup is that G is of parabolic characteristic p.

Definition

Let *G* be a group, *L* be a *p*-local subgroup of *G*, then *L* is called of characteristic *p* if $F^*(L) = O_p(L)$.(or $C_L(O_p(L)) \le O_p(L)$) We call *G* of local characteristic *p* if all *p*-local subgroups of *G* are of characteristic *p* We call *G* of parabolic characteristic *p* if all *p*-local subgroups *L*, which contain a Sylow *p*-subgroup of *G*, are of characteristic *p*.

A consequence of having a large subgroup is that G is of parabolic characteristic p.

Notation

G. Stroth

Let
$$X \subseteq G$$
, then $\mathcal{L}_G(X) = \{L \leq G, X \subseteq L, O_p(L) \neq 1\}$.

Martin Luther Universität Halle Wittenberg

Further notation

We fix $S \in \text{Syl}_{\rho}(G)$, with $Q \leq S$, $Z = \Omega_1(Z(S))$ and set $C = N_G(Z)$ Further we denote by $\tilde{C} = N_G(Q)$. Then $C \leq \tilde{C}$.

ロマト語マネポマネ

Martin Luther Universität Halle Wittenberg

G. Stroth

Further notation

We fix $S \in \operatorname{Syl}_{\rho}(G)$, with $Q \leq S$, $Z = \Omega_1(Z(S))$ and set $C = N_G(Z)$ Further we denote by $\tilde{C} = N_G(Q)$. Then $C \leq \tilde{C}$.

For $L \in \mathcal{L}_G(S)$ set Y_L , the maximal *p*-reduced elementary abelian normal subgroup of *L*, i.e. $O_p(L/C_L(Y_L)) = 1$.

Martin Luther Universität Halle Wittenberg

G. Stroth

The Local Structure Theorem (U. Meierfrankenfeld, B. Stellmacher, S. 2016)

The structure theorem deals with the *p*-local subgroups of *G*, which are different from \tilde{C} . More precisely:

For $L \in \mathcal{L}_G(S)$ with $L \not\leq N_G(Q)$, the Local Structure Theorem provides information about $\tilde{L}^\circ = L^\circ/C_{L^\circ}(Y_L)$ and its action on Y_L , where $L^\circ = \langle Q^L \rangle$. Recall $L = L^\circ N_L(Q)$.

Martin Luther Universität Halle Wittenberg

Example 1

(2) The symplectic case.

- (a) $\tilde{L^{\circ}} \cong \operatorname{Sp}_{2n}(q), n \ge 2$, or $\operatorname{Sp}_4(2)'$ and $[Y_L, L^{\circ}]$ is the corresponding natural module for $\tilde{L^{\circ}}$
- (b) If $Y_L \neq [Y_L, L^\circ]$, then p = 2 and $|Y_L/[Y_L, L^\circ]| \leq q$.
- (c) If $Y_L \not\leq Q$, then p = 2 and $[Y_L, L^\circ] \not\leq Q$
- (d) If L° is not maximal, then $L^{\circ} < M^{\circ}$ and one of the following holds
 - (1) p = 2, $\tilde{L^{\circ}} \cong \text{Sp}_{4}(2)'$, $Y_{L} = [Y_{L}, L^{\circ}] \leq Q$, $M^{\circ}/C_{M^{\circ}}(Y_{M}) \cong \text{Mat}(24)$ and Y_{M} is the simple Golay code module of F₂-dimension 11 for M° .
 - (2) $p = 2 \tilde{L^{\circ}} \cong \operatorname{Sp}_{4}(2), |Y_{L}/[Y_{L}, L^{\circ}]| = 2, [Y_{L}, L^{\circ}] \not\leq Q,$ $M^{\circ}/C_{M^{\circ}}(Y_{M}) \cong \operatorname{Aut}(\operatorname{Mat}(22)) \text{ and } Y_{M} \text{ is the simple Tood}$ module of F₂-dimension 10 for M° .

(4月) トイヨト イヨト

Example 2

- (8) (The exceptional case) $Y_L \not\leq Q$ and one of the following holds
 - (1) $\tilde{L}^{\circ} \cong Spin_{10}^+(q)$ and Y_L is the half-spin module
 - (2) $\tilde{L}^{\circ} \cong E_6(q)$, Y_L is one of the two GF(p)-modules of order q^{27} .

Example 2

- (8) (The exceptional case) $Y_L \not\leq Q$ and one of the following holds
 - (1) $\tilde{L}^{\circ} \cong Spin_{10}^+(q)$ and Y_L is the half-spin module
 - (2) $\tilde{L}^{\circ} \cong E_6(q)$, Y_L is one of the two GF(p)-modules of order q^{27} .
- (10) There exists some $1 \neq y \in Y_L$ such that $C_G(y)$ is not of characteristic *p*.
 - (4) p = 2, $\tilde{L} \cong O_{2n}^{\pm}(2)$, $\tilde{L^{\circ}} \cong \Omega_{2n}^{\pm}(2)$, $2n \ge 4$ and $(2n, \pm) \neq (4, +)$, $[Y_L, L]$ is the corresponding natural module and $Y_L \le Q$.

The *H*-structure Theorem (U. Meierfrankenfeld, Chr. Parker, S.), p = 2

Theorem

Suppose that G is a finite \mathcal{K}_p -group, S a Sylow p-subgroup of G and $Q \leq S$ is a large subgroup of G with $Q = O_p(N_G(Q))$. If there exists $L \in \mathcal{L}_G(S)$ with $Y_L \leq Q$, then one of the following holds:

- (1) p = 2 and one of the following holds
 - (i) $F^*(G) \cong PSL_n(q), n \ge 3, PSU_n(q), n \ge 4, \Omega_{2n}^{\pm}(q), n \ge 4, E_n(q), n = 6, 7, 8, or {}^{2}E_6(q)$ where $q = 2^{f}$ and $f \ge 1$ is arbitrary; or
 - (ii) $F^*(G) \cong G_2(3)$, PSL₄(3), PSL₂(9), PSU₄(3), P $\Omega_8^+(3)$, Mat(22), Mat(23), Mat(24), He, Suz, Co₁, Co₂, J₄, M(22), M(24)', F₂, F₁, Alt(9), or Alt(10).

Classifying Groups with a large Subgroup A status report

The *H*-structure Theorem, *p* odd

Theorem

(2) p is odd and one of the following holds

- (i) p = 3 and $F^*(G) \cong PSU_6(2)$, $\Omega_8^+(2)$, $F_4(2)$, ${}^2E_6(2)$, McL, M(22), M(24)', Co₁, Co₂, Co₃, HN, F₁; or
- (ii) F*(⟨L_G(S)⟩) is a simple group of Lie type in characteristic p and of rank at least 3. If, in addition, G is a K₂- group of local characteristic p, then
 F*(⟨L_G(S)⟩) = F*(G) ≅ PSL_n(q), n ≥ 4, PSU_n(q), n ≥ 6, PΩ[±]_n(q), n > 7, PSp_{2n}(q), n > 3, E₆(q), E₇(q), E₈(q), ²E₆(q)

or $F_4(q)$ where $q = p^f$ and $f \ge 1$ is arbitrary; or

(iii) There is a weak BN-pair (P_1, P_2) , $S \le P_1 \cap P_2$, $O_p(\langle P_1, P_2 \rangle) = 1$ such that (P_1, P_2) is of type $PSL_3(q)$, $PSU_4(q)$, $PSU_5(q)$ or $PSp_4(q)$ where $q = p^f$ and $f \ge 1$ is arbitrary.

< 17 >

An example, $G \cong Co_3$

We consider p = 3, $\tilde{L}^{\circ} \cong Mat(11)$ and Y_L the 5-dimensional module. We show

 $|Y_L \cap Q| = 3^3 \text{ and } [Q, Y_L \cap Q] = Z(S) = Z.$ Set $D = \langle Y_L^{\tilde{C}} \rangle (L \cap \tilde{C}) \text{ and } W_D = \langle (Y_L \cap Q)^D \rangle.$

Then $[W_D, W_D] \leq [W_D, Q] = [(Y_L \cap Q), Q]^D = Z.$

Hence W_D is extraspecial. Further $[O_3(L), W_D, W_D] \le Y_L$, i.e. W_D acts quadratically on $O_3(L)/Y_L$.

As Mat(11) has no quadratic modules, we get that $[\tilde{L}^{\circ}, O_3(L)] = Y_L$ and then $O_3(L) = Y_L$. Thus $|S| = 3^7$ and $W_D = Q$.

As Y_L induces a quadratically acting group of order 9 on Q and we are in $\text{Sp}_4(3)$, we see that $O^{3'}(\tilde{C}) = 3^{1+4}SL_2(9)$.

We consider the situation that $\tilde{L}^{\circ} \cong SL_2(q^2)$ and $O^{2'}(\tilde{C}/Q) \cong SL_2(q), q = 2^n > 2.$

Let $B = B_1 B_2$ be a Borel subgroup, where B_1 is one of $L^\circ S$ and B_2 one of \tilde{C} both containing S. Let Γ be the coset graph of the amalgam $(L^\circ B, O^{2'}(\tilde{C})B)$.

Let *F* be a Cartan subgroup in *B* and Γ^F be the fixed point graph of *F*.

We consider the situation that $\tilde{L}^{\circ} \cong SL_2(q^2)$ and $O^{2'}(\tilde{C}/Q) \cong SL_2(q), q = 2^n > 2.$

Let $B = B_1 B_2$ be a Borel subgroup, where B_1 is one of $L^\circ S$ and B_2 one of \tilde{C} both containing S. Let Γ be the coset graph of the amalgam $(L^\circ B, O^{2'}(\tilde{C})B)$.

Let *F* be a Cartan subgroup in *B* and Γ^F be the fixed point graph of *F*.

Step 1: Γ^F is a circuit.

Martin Luther Universität Halle Wittenberg

We consider the situation that $\tilde{L}^{\circ} \cong SL_2(q^2)$ and $O^{2'}(\tilde{C}/Q) \cong SL_2(q), q = 2^n > 2.$

Let $B = B_1 B_2$ be a Borel subgroup, where B_1 is one of $L^\circ S$ and B_2 one of \tilde{C} both containing S. Let Γ be the coset graph of the amalgam $(L^\circ B, O^{2'}(\tilde{C})B)$.

Let *F* be a Cartan subgroup in *B* and Γ^F be the fixed point graph of *F*.

Step 1: Γ^F is a circuit.

We can choose an involution $z \in \tilde{C}$ which normalizes F and acts as a reflection on Γ^{F} . Let 1 be the vertex in Γ , which corresponds to \tilde{C} .

We consider the situation that $\tilde{L}^{\circ} \cong SL_2(q^2)$ and $O^{2'}(\tilde{C}/Q) \cong SL_2(q), q = 2^n > 2.$

Let $B = B_1 B_2$ be a Borel subgroup, where B_1 is one of $L^\circ S$ and B_2 one of \tilde{C} both containing S. Let Γ be the coset graph of the amalgam $(L^\circ B, O^{2'}(\tilde{C})B)$.

Let *F* be a Cartan subgroup in *B* and Γ^F be the fixed point graph of *F*.

Step 1: Γ^F is a circuit.

We can choose an involution $z \in \tilde{C}$ which normalizes F and acts as a reflection on Γ^{F} . Let 1 be the vertex in Γ , which corresponds to \tilde{C} .

Step 2: z fixes a vertex $\alpha \in \Gamma^F$ opposite to $1 \to \langle \sigma \rangle$ and $z \to \langle z \rangle$ and $\alpha \in \Gamma^F$ opposite to $1 \to \langle \sigma \rangle$.

We show that there is a vertex β of distance two of 1 such that $z \in Z(Q_{\beta})$. Let us assume that α is of type 1. Then we have symmetry. We show that there is a vertex δ of distance two of α with $z \in Z(Q_{\delta})$.

Classifying Groups with a large Subgroup A status report

We show that there is a vertex β of distance two of 1 such that $z \in Z(Q_{\beta})$. Let us assume that α is of type 1. Then we have symmetry. We show that there is a vertex δ of distance two of α with $z \in Z(Q_{\delta})$. As Z(Q) is a TI-set we get

Step 3: $Z(Q_{\beta}) = Z(Q_{\delta})$.

Martin Luther Universität Halle Wittenberg

Classifying Groups with a large Subgroup A status report

We show that there is a vertex β of distance two of 1 such that $z \in Z(Q_{\beta})$. Let us assume that α is of type 1. Then we have symmetry. We show that there is a vertex δ of distance two of α with $z \in Z(Q_{\delta})$. As Z(Q) is a TI-set we get

Step 3: $Z(Q_{\beta}) = Z(Q_{\delta})$.

Step 4: As Q is large we get $Q_{\beta} = Q_{\delta}$, so $\beta = \delta$.

Martin Luther Universität Halle Wittenberg

G. Stroth

We show that there is a vertex β of distance two of 1 such that $z \in Z(Q_{\beta})$.

Let us assume that α is of type 1. Then we have symmetry. We show that there is a vertex δ of distance two of α with

 $z \in Z(Q_{\delta})$. As Z(Q) is a TI-set we get

Step 3:
$$Z(Q_{\beta}) = Z(Q_{\delta})$$
.

Step 4: As *Q* is large we get $Q_{\beta} = Q_{\delta}$, so $\beta = \delta$.

Now we see that $d(1, \alpha) = 4$. We act with *F* on the path from 1 to α , which gives a second path of length 4 and so an 8-circuit. By arc-transitive action of *G*, we get that Γ is the incidence graph of a generalized 4-gon.

We show that there is a vertex β of distance two of 1 such that $z \in Z(Q_{\beta})$.

Let us assume that α is of type 1. Then we have symmetry. We show that there is a vertex δ of distance two of α with

 $z \in Z(Q_{\delta})$. As Z(Q) is a TI-set we get

Step 3:
$$Z(Q_{\beta}) = Z(Q_{\delta})$$
.

Step 4: As *Q* is large we get $Q_{\beta} = Q_{\delta}$, so $\beta = \delta$.

Now we see that $d(1, \alpha) = 4$. We act with *F* on the path from 1 to α , which gives a second path of length 4 and so an 8-circuit. By arc-transitive action of *G*, we get that Γ is the incidence graph of a generalized 4-gon.

Step 5: Γ is Moufang

We show that there is a vertex β of distance two of 1 such that $z \in Z(Q_{\beta})$.

Let us assume that α is of type 1. Then we have symmetry. We show that there is a vertex δ of distance two of α with

 $z \in Z(Q_{\delta})$. As Z(Q) is a TI-set we get

Step 3:
$$Z(Q_{\beta}) = Z(Q_{\delta})$$
.

Step 4: As *Q* is large we get $Q_{\beta} = Q_{\delta}$, so $\beta = \delta$.

Now we see that $d(1, \alpha) = 4$. We act with *F* on the path from 1 to α , which gives a second path of length 4 and so an 8-circuit. By arc-transitive action of *G*, we get that Γ is the incidence graph of a generalized 4-gon.

Step 5: Γ is Moufang

By Tits-Weiss we receive $G \cong PSU_4(q)$.

Theorem (The structure theorem for local characteristic p)

Let G be a \mathcal{K}_p -group of local characteristic p and $S \in \operatorname{Syl}_p(G)$. For any $L \in \mathcal{L}_G(S)$ we have that $Y_L \leq Q$. Then for $\tilde{L^{\circ}}$ one of the following holds:

(1)
$$F^*(\tilde{L^{\circ}}) \cong SL_n(p^m)$$
, $n \ge 2$, $Sp_{2n}(p^m)$, $n \ge 2$, or $Sp_4(2)'$ (and $p = 2$) and $[Y_L, L^{\circ}]$ is the natural module. Moreover
(i) $Y_L = [Y_L, L^{\circ}]$ or $p = 2$ and $\tilde{L^{\circ}} \cong Sp_{2n}(q)$, and
(ii) either $C_{L^{\circ}}(Y_L) = O_2(L^{\circ})$ or $p = 2$ and $L^{\circ}/O_2(L^{\circ}) \cong 3Sp_4(2)'$.

(2) We have the wreath product case.

Martin Luther Universität Halle Wittenberg

Classifying Groups with a large Subgroup A status report

The wreath product case

There exists a unique \tilde{L} -invariant set \mathcal{K} , $|\mathcal{K}| > 1$, of subgroups of \tilde{L} such that $Y_L = [Y_L, L^\circ]$ is a natural $SL_2(q)$ -wreath product module for \tilde{L} with respect to \mathcal{K} .

Moreover $\tilde{\mathcal{L}^{\circ}} = O^{p}(\langle \mathcal{K} \rangle \tilde{Q} \text{ and } Q \text{ acts transitively on } \mathcal{K}.$

ロトス団とスヨシスヨシーヨーのへで

Martin Luther Universität Halle Wittenberg

G. Stroth

The wreath product case

There exists a unique \tilde{L} -invariant set \mathcal{K} , $|\mathcal{K}| > 1$, of subgroups of \tilde{L} such that $Y_L = [Y_L, L^\circ]$ is a natural $SL_2(q)$ -wreath product module for \tilde{L} with respect to \mathcal{K} .

Moreover $\tilde{L^{\circ}} = O^{p}(\langle \mathcal{K} \rangle \tilde{Q} \text{ and } Q \text{ acts transitively on } \mathcal{K}.$

Natural wreath product module

A natural $SL_2(q)$ -wreath product module V with respect to \mathcal{K} is as follows:

$$V = \bigoplus_{K \in \mathcal{K}} [V, K] \text{ and } \langle \mathcal{K} \rangle = \times_{K \in \mathcal{K}} K,$$

and for each $K \in \mathcal{K}$, $K \cong SL_2(q)$ and [V, K] is the natural $SL_2(q)$ -module for K.

Martin Luther Universität Halle Wittenberg

$Y_L \leq Q$ for all $L \in \mathcal{L}_G(S)$, the *P*!-Theorem (Chr. Parker, G. Parmeggiani, B.Stellmacher 2003), p = 2

Let $S \leq P$. We call P a minimal parabolic subgroup if S is not normal in P and S is contained in a unique maximal subgroup of P We denote by $\mathcal{P}_G(S) = \{P \in \mathcal{L}_G(S), P \text{ a minimal parabolic subgroup}\}$

Theorem

Let G be of local characteristic 2. Assume there is $P \in \mathcal{P}_G(S)$ with $P \not\leq \tilde{C}$. Then

(i) $P^{\circ}/O_2(P^{\circ}) \cong SL_2(2^n)$ and Y_P is the natural module.

(ii) P is uniquely determined.

G. Stroth

Martin Luther Universität Halle Wittenberg

・ 同 ト ・ ヨ ト ・ ヨ

 $Y_L \leq Q$ for all $L \in \mathcal{L}_G(S)$, the \tilde{P} !-Theorem (M. Mainardis, U. Meierfrankenfeld, G. Parmeggiani, B. Stellmacher 2005), p = 2

Theorem

Let G be of local characteristic 2. Suppose that there exists $P \in \mathcal{P}_G(S)$ such that $P \nleq \tilde{C}$.

Then there exists at most one $\tilde{P} \in \mathcal{P}_G(S)$ such that $\tilde{P} \leq N_G(P^\circ)$ and $\langle P, \tilde{P} \rangle \in \mathcal{L}_G(S)$.

Moreover, if such \tilde{P} exists and $M_1 := \langle P, \tilde{P} \rangle^{\circ} C_S(Y_P)$, then $M_1/C_{M_1}(Y_{M_1}) \cong SL_3(2^n)$ or $Sp_4(2^n)'$, and $[Y_{M_1}, M_1]$ is the corresponding natural module for $M_1/C_{M_1}(Y_{M_1})$.

Martin Luther Universität Halle Wittenberg

< (1) > < (2) > <

G. Stroth

Theorem (The structure theorem for $Y_L \leq Q$)

Let G be a \mathcal{K}_p -group and $S \in \operatorname{Syl}_p(G)$. For any $L \in \mathcal{L}_G(S)$ we have that $Y_L \leq Q$. Then for $\tilde{L^{\circ}}$ one of the following holds:

- (1) $F^*(\tilde{L^{\circ}}) \cong SL_n(p^m)$, $n \ge 2$, $Sp_{2n}(p^m)'$ and $[Y_L, L^{\circ}]$ is the natural module. Moreover either $C_{L^{\circ}}(Y_L) = O_2(L^{\circ})$ or $L^{\circ}/O_2(L^{\circ}) \cong 3Sp_4(2)'$.
- (2) We have the wreath product case.
- (3) $\tilde{L^{\circ}} \cong \Omega_{2n}^{\pm}(2)$, $2n \ge 6$, not $\Omega_{4}^{+}(2)$, and $[Y_L, L^{\circ}]$ is the corresponding natural module and $Y_L \le Q$.
- (4) Y_L is tall and asymmetric in G, but Y_L is not char p-tall in G.

A (10) × (10) × (10)

Y_L is tall if for $T \in Syl_p(C_L(Y_L))$ there is a *p*-local subgroup *R*, $T \leq R$ with $Y_L \not\leq O_p(R)$

ロト・日本・モト・モー かんの

Martin Luther Universität Halle Wittenberg

G. Stroth

 Y_L is tall if for $T \in Syl_p(C_L(Y_L))$ there is a *p*-local subgroup *R*, $T \leq R$ with $Y_L \not\leq O_p(R)$

 Y_L is characteristic *p*-tall, if there is such an *R* above with $C_R(O_p(R)) \leq O_p(R)$.

Martin Luther Universität Halle Wittenberg

 Y_L is tall if for $T \in Syl_p(C_L(Y_L))$ there is a *p*-local subgroup *R*, $T \leq R$ with $Y_L \not\leq O_p(R)$

 Y_L is characteristic *p*-tall, if there is such an *R* above with $C_R(O_p(R)) \leq O_p(R)$.

 Y_L is asymmetric if for all $g \in G$ with $[Y_L, Y_L^g] \leq Y_L \cap Y_L^g$ it follows $[Y_L, Y_L^g] = 1$.

Theorem (The structure theorem for Baumann characteristic 2)

Let G be a \mathcal{K}_2 -group of Baumann characteristic 2 and $S \in Syl_2(G)$. For any $L \in \mathcal{L}_G(S)$ we have that $Y_L \leq Q$. Then for $\tilde{L^{\circ}}$ one of the following holds:

- (1) $F^*(\tilde{L^\circ}) \cong \operatorname{SL}_n(2^m)$, $n \ge 2$, $\operatorname{Sp}_{2n}(2^m)'$ and $[Y_L, L^\circ]$ is the natural module. Moreover either $C_{L^\circ}(Y_L) = O_2(L^\circ)$ or $L^\circ/O_2(L^\circ) \cong 3\operatorname{Sp}_4(2)'$.
- (2) We have the wreath product case.
- (3) $\tilde{L^{\circ}} \cong \Omega_{2n}^{\pm}(2)$, $2n \ge 6$ and $[Y_L, L^{\circ}]$ is the corresponding natural module and $Y_L \le Q$.

(4) Y_L is tall and asymmetric in G, but Y_L is not char 2-tall in G.

Theorem (The structure theorem for Baumann characteristic 2)

Let G be a \mathcal{K}_2 -group of Baumann characteristic 2 and $S \in Syl_2(G)$. For any $L \in \mathcal{L}_G(S)$ we have that $Y_L \leq Q$. Then for $\tilde{L^{\circ}}$ one of the following holds:

- (1) $F^*(\tilde{L^{\circ}}) \cong \operatorname{SL}_n(2^m)$, $n \ge 2$, $\operatorname{Sp}_{2n}(2^m)'$ and $[Y_L, L^{\circ}]$ is the natural module. Moreover either $C_{L^{\circ}}(Y_L) = O_2(L^{\circ})$ or $L^{\circ}/O_2(L^{\circ}) \cong 3\operatorname{Sp}_4(2)'$.
- (2) We have the wreath product case.

(3) $\tilde{L^{\circ}} \cong \Omega_{2n}^{\pm}(2)$, $2n \ge 6$ and $[Y_L, L^{\circ}]$ is the corresponding natural module and $Y_L \le Q$.

Martin Luther Universität Halle Wittenberg

Theorem (The structure theorem for Baumann characteristic 2)

Let G be a \mathcal{K}_2 -group of Baumann characteristic 2 and $S \in Syl_2(G)$. For any $L \in \mathcal{L}_G(S)$ we have that $Y_L \leq Q$. Then for $\tilde{L^{\circ}}$ one of the following holds:

(1) $F^*(\tilde{L^{\circ}}) \cong \operatorname{SL}_n(2^m)$, $n \ge 2$, $\operatorname{Sp}_{2n}(2^m)'$ and $[Y_L, L^{\circ}]$ is the natural module. Moreover either $C_{L^{\circ}}(Y_L) = O_2(L^{\circ})$ or $L^{\circ}/O_2(L^{\circ}) \cong 3\operatorname{Sp}_4(2)'$.

(2) We have the wreath product case.

Martin Luther Universität Halle Wittenberg

Theorem (P!-Theorem)

Let G be of Baumann characteristic 2. Assume there is $P \in \mathcal{P}_G(S)$ with $P \nleq \tilde{C}$. Then

(i) $P^{\circ}/O_2(P^{\circ}) \cong SL_2(2^n)$ and Y_P is the natural module.

(ii) P is uniquely determined.

Theorem (*P*́!-Theorem)

Let G be of Baumann characteristic 2. Suppose that there exists $P \in \mathcal{P}_G(S)$ such that $P \not\leq \tilde{C}$. Then there exists at most one $\tilde{P} \in \mathcal{P}_G(S)$ such that $\tilde{P} \not\leq N_G(P^\circ)$ and $\langle P, \tilde{P} \rangle \in \mathcal{L}_G(S)$.

Moreover, if such \tilde{P} exists and $M_1 := \langle P, \tilde{P} \rangle^{\circ} C_S(Y_P)$, then $M_1/C_{M_1}(Y_{M_1}) \cong SL_3(2^n)$ or $Sp_4(2^n)'$, and $[Y_{M_1}, M_1]$ is the corresponding natural module for $M_1/C_{M_1}(Y_{M_1})$.

90

Martin Luther Universität Halle Wittenberg

Small World Theorem, version p = 2, $Y_L \le Q$ for all $L \in \mathcal{L}(S)$.(U.Meierfrankenfeld, B. Stellmacher)

Theorem (Baumann characteristic 2?)

One of the following holds:

- We have non E-uniqueness
- For all $P \in \mathcal{P}_G(S)$ we have that $O^2(P) = q^2 L_2(q)'$, $q = 2^n$.
- There exists a unique P ∈ P_G(S) with P° ≤ C̃, and a unique P̃ ∈ P_G(S) with P̃ ≤ N_G(P°) and O_p(⟨P, P̃⟩) ≠ 1. Moreover,
 - Let $R \in \mathcal{L}_G(P)$. Then Y_R is a natural $SL_n(q)$ -module for R° , where $n \ge 2$.
- There exist $P_1, P_2 \in \mathcal{P}_G(S)$ such that $P_2 \leq ES$ and $O_p(\langle P_1, P_2 \rangle) = 1$.

Martin Luther Universität Halle Wittenberg

G. Stroth

Let $P_1, P_2 \in \mathcal{P}_G(S), P_1 \not\leq \tilde{C}, P_2 \leq \tilde{C} \text{ and } O_2(\langle P_1, P_2 \rangle) = 1.$ $P_1^{\circ}/O_2(P_1^{\circ}) \cong L_2(q), q = 2^n$, and Y_{P_1} the natural module. $C_{Y_{P_1}}(S \cap P_1^{\circ})$ normal in P_2 .

Martin Luther Universität Halle Wittenberg

A (10) × (10) × (10) ×

Let $P_1, P_2 \in \mathcal{P}_G(S)$, $P_1 \not\leq \tilde{C}$, $P_2 \leq \tilde{C}$ and $O_2(\langle P_1, P_2 \rangle) = 1$. $P_1^{\circ}/O_2(P_1^{\circ}) \cong L_2(q)$, $q = 2^n$, and Y_{P_1} the natural module. $C_{Y_{P_1}}(S \cap P_1^{\circ})$ normal in P_2 . If b > 3 (A. Chermak) ($F^*(G) = {}^2F_4(q)'$, Ru)

Martin Luther Universität Halle Wittenberg

A (10) × (10) × (10) ×

Let $P_1, P_2 \in \mathcal{P}_G(S)$, $P_1 \not\leq \tilde{C}$, $P_2 \leq \tilde{C}$ and $O_2(\langle P_1, P_2 \rangle) = 1$. $P_1^{\circ}/O_2(P_1^{\circ}) \cong L_2(q)$, $q = 2^n$, and Y_{P_1} the natural module. $C_{Y_{P_1}}(S \cap P_1^{\circ})$ normal in P_2 . If $b \geq 3$ (A. Chermak) ($F^*(G) = {}^2F_4(q)'$, Ru) b = 2 open.

Martin Luther Universität Halle Wittenberg

A (10) × (10) × (10) ×