Rigid automorphisms of linking systems

Justin Lynd

University of Louisiana lynd@louisiana.edu

August 29, 2019

Groups and Geometries BIRS

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- + G finite, p prime, S Sylow p-subgroup
- + $\alpha \in C_{Aut(G)}(S)$ of *p*-power order

+ G finite, p prime, S Sylow p-subgroup

+ $\alpha \in C_{Aut(G)}(S)$ of *p*-power order

Question 14.1 (Kourkovka Notebook, 1999) If p = 2 and $O_{2'}(G) = 1$, is α^2 inner?


```
+ G finite, p prime, S Sylow p-subgroup
```

+ $\alpha \in C_{Aut(G)}(S)$ of *p*-power order

Question 14.1 (Kourkovka Notebook, 1999) If p = 2 and $O_{2'}(G) = 1$, is α^2 inner?

```
Theorem (Glauberman, 1968) Yes.
```



```
+ G finite, p prime, S Sylow p-subgroup
```

+ $\alpha \in C_{Aut(G)}(S)$ of *p*-power order

```
Question 14.1 (Kourkovka Notebook, 1999)
If p = 2 and O_{2'}(G) = 1, is \alpha^2 inner?
```

```
Theorem (Glauberman, 1968) Yes.
```

```
Theorem (Gross, 1982)
If p odd and O_{p'}(G) = 1, then \alpha is inner, provided also O_p(G) = 1.

\rightarrow Uses CFSG.
```

*ロ * * ● * * ● * * ● * ● * ● * ●

```
+ G finite, p prime, S Sylow p-subgroup
```

+ $\alpha \in C_{Aut(G)}(S)$ of *p*-power order

```
Question 14.1 (Kourkovka Notebook, 1999)
If p = 2 and O_{2'}(G) = 1, is \alpha^2 inner?
```

```
Theorem (Glauberman, 1968) Yes.
```

Theorem (Gross, 1982) If p odd and $O_{p'}(G) = 1$, then α is inner, provided also $O_p(G) = 1$. \rightarrow Uses CFSG.

Theorem (Glauberman, Guralnick, L., Navarro, 2019) Gross's theorem true without assumption that $O_p(G) = 1$.

```
→ Uses Z_p^*-theorem, hence CFSG.
```

+ \mathcal{F} a saturated fusion system over S

+ P^{φ} for the image of a morphism $\varphi \colon P \to S$ in \mathcal{F}

- + \mathcal{F} a saturated fusion system over S
- + P^{φ} for the image of a morphism $\varphi \colon P \to S$ in \mathcal{F}
- + $P \leq S$ is \mathcal{F} -centric if $C_S(Q) = Z(Q)$ for every $Q = P^{\varphi}$.

・ロト・日本・モト・モト・モー うへぐ

- + \mathcal{F} a saturated fusion system over S
- + P^{φ} for the image of a morphism $\varphi \colon P \to S$ in \mathcal{F}
- + $P \leq S$ is \mathcal{F} -centric if $C_S(Q) = Z(Q)$ for every $Q = P^{\varphi}$.
- → $P \leq S$ is $\mathcal{F}_{S}(G)$ -centric $\iff C_{G}(P) = Z(P) \times O_{p'}(C_{G}(P))$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ </p>

- + \mathcal{F} a saturated fusion system over S
- + P^{φ} for the image of a morphism $\varphi \colon P \to S$ in \mathcal{F}
- + $P \leq S$ is \mathcal{F} -centric if $C_S(Q) = Z(Q)$ for every $Q = P^{\varphi}$.
- → $P \leq S$ is $\mathcal{F}_{S}(G)$ -centric $\iff C_{G}(P) = Z(P) \times O_{p'}(C_{G}(P))$.

Centric linking system of a finite group \rightsquigarrow abstract linking systems The centric linking system of G is the category $\mathcal{L} := \mathcal{L}_{\mathcal{S}}^{c}(G)$ with

- + objects: $\mathcal{F}_{\mathcal{S}}(G)$ -centric subgroups $P \leq S$.
- ← morphisms: $Mor_{\mathcal{L}}(P, Q) = O_{p'}(C_G(P)) \setminus N_G(P, Q)$, where $N_G(P, Q) = \{g \in G \mid P^g \leq Q\}$.

- + \mathcal{F} a saturated fusion system over S
- + P^{φ} for the image of a morphism $\varphi \colon P \to S$ in \mathcal{F}
- + $P \leq S$ is \mathcal{F} -centric if $C_S(Q) = Z(Q)$ for every $Q = P^{\varphi}$.
- → $P \leq S$ is $\mathcal{F}_{S}(G)$ -centric $\iff C_{G}(P) = Z(P) \times O_{p'}(C_{G}(P))$.

Centric linking system of a finite group \rightsquigarrow abstract linking systems The centric linking system of G is the category $\mathcal{L} := \mathcal{L}_{\mathcal{S}}^{c}(G)$ with

- + objects: $\mathcal{F}_{\mathcal{S}}(G)$ -centric subgroups $P \leq S$.
- ← morphisms: $Mor_{\mathcal{L}}(P, Q) = O_{p'}(C_G(P)) \setminus N_G(P, Q)$, where $N_G(P, Q) = \{g \in G \mid P^g \leq Q\}$.

→ Have exact sequences: $1 \to Z(Q) \xrightarrow{\delta_Q} \operatorname{Aut}_{\mathcal{L}}(Q) \xrightarrow{\pi_Q} \operatorname{Aut}_{\mathcal{F}}(Q) \to 1.$

- + \mathcal{F} a saturated fusion system over S
- + P^{φ} for the image of a morphism $\varphi \colon P \to S$ in \mathcal{F}
- + $P \leq S$ is \mathcal{F} -centric if $C_S(Q) = Z(Q)$ for every $Q = P^{\varphi}$.
- → $P \leq S$ is $\mathcal{F}_{S}(G)$ -centric $\iff C_{G}(P) = Z(P) \times O_{p'}(C_{G}(P))$.

Centric linking system of a finite group \rightsquigarrow abstract linking systems The centric linking system of G is the category $\mathcal{L} := \mathcal{L}_{\mathcal{S}}^{c}(G)$ with

- + objects: $\mathcal{F}_{S}(G)$ -centric subgroups $P \leq S$.
- + morphisms: Mor_L(P, Q) = $O_{p'}(C_G(P)) \setminus N_G(P, Q)$, where $N_G(P, Q) = \{g \in G \mid P^g \leq Q\}.$

→ Have exact sequences: $1 \to Z(Q) \xrightarrow{\delta_Q} \operatorname{Aut}_{\mathcal{L}}(Q) \xrightarrow{\pi_Q} \operatorname{Aut}_{\mathcal{F}}(Q) \to 1.$

Martino-Priddy Conjecture, MP 1996, Oliver 2004,2006

$$BG_p^\wedge \simeq BH_p^\wedge \iff \mathcal{F}_p(G) \cong \mathcal{F}_p(H)$$

- + \mathcal{F} a saturated fusion system over S
- + P^{φ} for the image of a morphism $\varphi \colon P \to S$ in \mathcal{F}
- + $P \leq S$ is \mathcal{F} -centric if $C_S(Q) = Z(Q)$ for every $Q = P^{\varphi}$.
- → $P \leq S$ is $\mathcal{F}_{S}(G)$ -centric $\iff C_{G}(P) = Z(P) \times O_{p'}(C_{G}(P))$.

Centric linking system of a finite group \rightsquigarrow abstract linking systems The centric linking system of G is the category $\mathcal{L} := \mathcal{L}_{\mathcal{S}}^{c}(G)$ with

- + objects: $\mathcal{F}_{\mathcal{S}}(G)$ -centric subgroups $P \leq S$.
- + morphisms: Mor_L(P, Q) = $O_{p'}(C_G(P)) \setminus N_G(P, Q)$, where $N_G(P, Q) = \{g \in G \mid P^g \leq Q\}.$

→ Have exact sequences: $1 \to Z(Q) \xrightarrow{\delta_Q} \operatorname{Aut}_{\mathcal{L}}(Q) \xrightarrow{\pi_Q} \operatorname{Aut}_{\mathcal{F}}(Q) \to 1.$

Martino-Priddy Conjecture, MP 1996, Oliver 2004,2006

$$BG_p^{\wedge} \simeq BH_p^{\wedge} \iff \mathcal{F}_p(G) \cong \mathcal{F}_p(H)$$

→ (BLO 2003) $|\mathcal{L}_{S}^{c}(G)|_{p}^{\wedge} \simeq BG_{p}^{\wedge}$ and $Out(\mathcal{L}_{S}^{c}(G)) \cong Out(BG_{p}^{\wedge})$

+ centric orbit category: $\mathcal{O} = \mathcal{O}(\mathcal{F}^c)$

- + objects: the \mathcal{F} -centric subgroups \mathcal{F}^{c}
- + morphisms: $Mor_{\mathcal{O}}(P, Q) = Hom_{\mathcal{F}}(P, Q) / Inn(Q)$

+ centric orbit category: $\mathcal{O} = \mathcal{O}(\mathcal{F}^c)$

+ objects: the \mathcal{F} -centric subgroups \mathcal{F}^{c}

+ morphisms: $Mor_{\mathcal{O}}(P, Q) = Hom_{\mathcal{F}}(P, Q) / Inn(Q)$

+ center functor: $\mathcal{Z} = \mathcal{Z}_{\mathcal{F}} \colon \mathcal{O}(\mathcal{F}^c)^{\mathrm{op}} \to \mathsf{Ab}$

+ on objects: $\mathcal{Z}(P) = Z(P)$;

+ on a morphism $P \xrightarrow{[\varphi]} Q$: the composite $Z(Q) \hookrightarrow Z(P^{\varphi}) \xrightarrow{\varphi^{-1}} Z(P)$.

ション ふぼう メリン ショーシック

+ centric orbit category: $\mathcal{O} = \mathcal{O}(\mathcal{F}^c)$

+ objects: the \mathcal{F} -centric subgroups \mathcal{F}^{c}

+ morphisms: $Mor_{\mathcal{O}}(P, Q) = Hom_{\mathcal{F}}(P, Q) / Inn(Q)$

+ center functor:
$$\mathcal{Z} = \mathcal{Z}_{\mathcal{F}} \colon \mathcal{O}(\mathcal{F}^c)^{\mathrm{op}} \to \mathsf{Ab}$$

- + on objects: $\mathcal{Z}(P) = Z(P)$;
- on a morphism $P \xrightarrow{[\varphi]} Q$: the composite $Z(Q) \hookrightarrow Z(P^{\varphi}) \xrightarrow{\varphi^{-1}} Z(P)$.

ション ふぼう メリン ショーシック

Theorem (Broto-Levi-Oliver, 2003)

Obstructions to existence and uniqueness of \mathcal{L} given \mathcal{F} lie in $\lim_{\mathcal{O}}^{3} \mathcal{Z}$ and $\lim_{\mathcal{O}}^{2} \mathcal{Z}$.

+ centric orbit category: $\mathcal{O} = \mathcal{O}(\mathcal{F}^c)$

+ objects: the \mathcal{F} -centric subgroups \mathcal{F}^{c}

+ morphisms: $Mor_{\mathcal{O}}(P, Q) = Hom_{\mathcal{F}}(P, Q) / Inn(Q)$

+ center functor:
$$\mathcal{Z} = \mathcal{Z}_{\mathcal{F}}$$
: $\mathcal{O}(\mathcal{F}^{c})^{\mathrm{op}} \rightarrow \mathsf{Ab}$

- + on objects: $\mathcal{Z}(P) = Z(P)$;
- on a morphism $P \xrightarrow{[\varphi]} Q$: the composite $Z(Q) \hookrightarrow Z(P^{\varphi}) \xrightarrow{\varphi^{-1}} Z(P)$.

Theorem (Broto-Levi-Oliver, 2003)

Obstructions to existence and uniqueness of \mathcal{L} given \mathcal{F} lie in $\lim_{\mathcal{O}}^{3} \mathcal{Z}$ and $\lim_{\mathcal{O}}^{2} \mathcal{Z}$.

Theorem (Chermak (2013), Oliver (2013), Glauberman-L. (2016)) $\lim_{\mathcal{O}}^{k} \mathcal{Z} = 0$ for all $k \ge 1$ if p odd and for all $k \ge 2$ if p = 2.

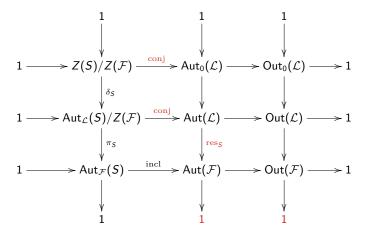
Automorphism groups of fusion and centric linking systems

- + Aut_{\mathcal{L}}(S) analogous to $N_G(S)$.
- + $\operatorname{Aut}(\mathcal{L})$ analogous to $N_{\operatorname{Aut}(G)}(S)$.
- + Aut₀(\mathcal{L}) = group of rigid automorphisms; analogous to $C_{Aut(G)}(S)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

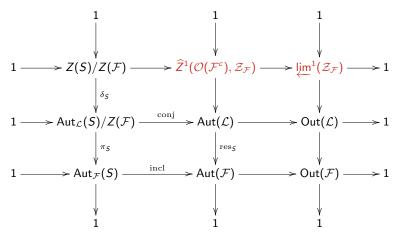
Automorphism groups of fusion and centric linking systems

- + Aut_{\mathcal{L}}(S) analogous to $N_G(S)$.
- + $\operatorname{Aut}(\mathcal{L})$ analogous to $N_{\operatorname{Aut}(G)}(S)$.
- + Aut₀(\mathcal{L}) = group of rigid automorphisms; analogous to $C_{Aut(G)}(S)$



Automorphism groups of fusion and centric linking systems

- + Aut_{\mathcal{L}}(S) analogous to $N_G(S)$.
- + $Aut(\mathcal{L})$ analogous to $N_{Aut(G)}(S)$.
- + Aut₀(\mathcal{L}) = group of rigid automorphisms; analogous to $C_{Aut(G)}(S)$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

→ (*) Recall $Out_0(\mathcal{L}) = \lim_{\mathcal{O}}^1 \mathcal{Z}_F = 1$ for *p* odd.

→ (*) Recall Out₀(
$$\mathcal{L}$$
) = lim¹_O $\mathcal{Z}_{\mathcal{F}}$ = 1 for *p* odd.
→ *p* = 2: Out₀(\mathcal{L}) \cong *C*₂ for
 $\mathcal{F} = \mathcal{F}_2(A_{4n+2}) = \mathcal{F}_2(A_{4n+3}),$
 $\mathcal{F} = \mathcal{F}_2(PSL_2(q)), q \equiv \pm 1 \pmod{8}, \text{ ETC}$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ りへぐ

→ (*) Recall
$$\operatorname{Out}_0(\mathcal{L}) = \lim_{\mathcal{O}}^{\mathcal{O}} \mathcal{Z}_{\mathcal{F}} = 1$$
 for p odd.
→ $p = 2$: $\operatorname{Out}_0(\mathcal{L}) \cong C_2$ for
 $\mathcal{F} = \mathcal{F}_2(A_{4n+2}) = \mathcal{F}_2(A_{4n+3}),$
 $\mathcal{F} = \mathcal{F}_2(PSL_2(q)), q \equiv \pm 1 \pmod{8}, \text{ ETC}$
→ (Oliver) $\operatorname{Out}_0(\mathcal{L}) = 1$ for $\mathcal{L} = \mathcal{L}_S^c(G)$ where G is simply connected

→ (Oliver) Out₀(L) = 1 for L = L^c_S(G) where G is simply connected of Lie type.

→ (*) Recall Out₀(
$$\mathcal{L}$$
) = lim¹_O Z_F = 1 for p odd.
→ p = 2: Out₀(\mathcal{L}) \cong C₂ for
$$\mathcal{F} = \mathcal{F}_2(A_{4n+2}) = \mathcal{F}_2(A_{4n+3}),$$

$$\mathcal{F} = \mathcal{F}_2(PSL_2(q)), q \equiv \pm 1 \pmod{8}, \text{ ETC}$$
→ (Oliver) Out₀(\mathcal{L}) = 1 for $\mathcal{L} = \mathcal{L}_S^c(G)$ where G is simply connected of Lie

type.

Theorem (Glauberman-L.)

 $\mathsf{Out}_0(\mathcal{L})$ is an elementary abelian 2-group for any saturated 2-fusion system $\mathcal{F}.$ Moreover, the exact sequence

$$1 o Z(\mathcal{S})/Z(\mathcal{F}) \xrightarrow{\operatorname{conj}} \operatorname{Aut}_0(\mathcal{L}) o \operatorname{Out}_0(\mathcal{L}) o 1$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

splits.

→ (*) Recall Out₀(
$$\mathcal{L}$$
) = lim¹_O Z_F = 1 for p odd.
→ p = 2: Out₀(\mathcal{L}) \cong C₂ for
$$\mathcal{F} = \mathcal{F}_2(A_{4n+2}) = \mathcal{F}_2(A_{4n+3}),$$

$$\mathcal{F} = \mathcal{F}_2(PSL_2(q)), q \equiv \pm 1 \pmod{8}, \text{ ETC}$$
→ (Oliver) Out₀(\mathcal{L}) = 1 for $\mathcal{L} = \mathcal{L}_5^c(G)$ where G is simply connected of Lie

type.

Theorem (Glauberman-L.)

 $\mathsf{Out}_0(\mathcal{L})$ is an elementary abelian 2-group for any saturated 2-fusion system $\mathcal{F}.$ Moreover, the exact sequence

$$1 \to Z(\mathcal{S})/Z(\mathcal{F}) \xrightarrow{\operatorname{conj}} \mathsf{Aut}_0(\mathcal{L}) \to \mathsf{Out}_0(\mathcal{L}) \to 1$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

splits.

→ This is best possible: e.g. p = 2 and $G = A_6 \times \cdots \times A_6$.

→ (*) Recall Out₀(L) = lim¹_O Z_F = 1 for p odd.
→ p = 2: Out₀(L) ≅ C₂ for
$$\mathcal{F} = \mathcal{F}_2(A_{4n+2}) = \mathcal{F}_2(A_{4n+3}),$$

$$\mathcal{F} = \mathcal{F}_2(PSL_2(q)), q \equiv \pm 1 \pmod{8}, \text{ETC}$$
→ (Oliver) Out₀(L) = 1 for L = L^c_S(G) where G is simply connected of Lie

type.

Theorem (Glauberman-L.)

 $\mathsf{Out}_0(\mathcal{L})$ is an elementary abelian 2-group for any saturated 2-fusion system $\mathcal{F}.$ Moreover, the exact sequence

$$1 \to Z(\mathcal{S})/Z(\mathcal{F}) \xrightarrow{\operatorname{conj}} \mathsf{Aut}_0(\mathcal{L}) \to \mathsf{Out}_0(\mathcal{L}) \to 1$$

splits.

- → This is best possible: e.g. p = 2 and $G = A_6 \times \cdots \times A_6$.
- → Similar argument for p odd gives simpler proof of (*).

→ (*) Recall Out₀(
$$\mathcal{L}$$
) = lim¹_O Z_F = 1 for p odd.
→ p = 2: Out₀(\mathcal{L}) \cong C₂ for
$$\mathcal{F} = \mathcal{F}_2(A_{4n+2}) = \mathcal{F}_2(A_{4n+3}),$$

$$\mathcal{F} = \mathcal{F}_2(PSL_2(q)), q \equiv \pm 1 \pmod{8}, \text{ ETC}$$
→ (Oliver) Out₀(\mathcal{L}) = 1 for $\mathcal{L} = \mathcal{L}_5^c(G)$ where G is simply connected of Lie

type.

Theorem (Glauberman-L.)

 $\mathsf{Out}_0(\mathcal{L})$ is an elementary abelian 2-group for any saturated 2-fusion system $\mathcal{F}.$ Moreover, the exact sequence

$$1 \to Z(\mathcal{S})/Z(\mathcal{F}) \xrightarrow{\operatorname{conj}} \mathsf{Aut}_0(\mathcal{L}) \to \mathsf{Out}_0(\mathcal{L}) \to 1$$

splits.

- → This is best possible: e.g. p = 2 and $G = A_6 \times \cdots \times A_6$.
- → Similar argument for p odd gives simpler proof of (*).
- → More generally, this holds for \mathcal{L} any linking locality/proper locality.

Take $\mathcal{L} = \mathcal{L}_{S}^{c}(G)$.

κ̃_G: N_{Aut(G)}(S) → Aut(L) is given by "restriction to *p*-local subgroups modulo O_p".

+ $\kappa_G : \operatorname{Out}(G) \to \operatorname{Out}(\mathcal{L})$ the induced map

Take $\mathcal{L} = \mathcal{L}_{S}^{c}(G)$.

+ $\tilde{\kappa}_G$: $N_{Aut(G)}(S)$ → Aut(\mathcal{L}) is given by "restriction to *p*-local subgroups modulo $O_{p'}$ ".

+ κ_{G} : $\mathsf{Out}(G) \to \mathsf{Out}(\mathcal{L})$ the induced map

Theorem (Glauberman-L.) If $O_{p'}(G) = 1$, then ker(κ_G) is a p'-group. \rightarrow Depends on the Z_p^* -theorem

Take $\mathcal{L} = \mathcal{L}_{S}^{c}(G)$.

- + $\tilde{\kappa}_G$: $N_{Aut(G)}(S)$ → Aut(\mathcal{L}) is given by "restriction to *p*-local subgroups modulo $O_{p'}$ ".
- + $\kappa_G : \operatorname{Out}(G) \to \operatorname{Out}(\mathcal{L})$ the induced map

Theorem (Glauberman-L.)

If $O_{p'}(G) = 1$, then ker (κ_G) is a p'-group.

- → Depends on the Z_p^* -theorem
- → Reinterprets Glauberman's work on Schreier conjecture (1966)

Take $\mathcal{L} = \mathcal{L}_{S}^{c}(G)$.

- + $\tilde{\kappa}_G$: $N_{Aut(G)}(S)$ → Aut(\mathcal{L}) is given by "restriction to *p*-local subgroups modulo $O_{p'}$ ".
- + $\kappa_G : \operatorname{Out}(G) \to \operatorname{Out}(\mathcal{L})$ the induced map

Theorem (Glauberman-L.)

If $O_{p'}(G) = 1$, then ker (κ_G) is a p'-group.

- → Depends on the Z_p^* -theorem
- → Reinterprets Glauberman's work on Schreier conjecture (1966)

→ Consequences for the definition of a "tame fusion system" (Andersen-Oliver-Ventura)

Centralizer $C_{\mathcal{F}}(X)$ of a subgroup $X \leq S$

+ objects:
$$Q \leq C_S(X)$$
;

• morphisms: $\varphi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$ which extend to $\tilde{\varphi} \colon XQ \to XR$ with $\tilde{\varphi}|_X = \operatorname{id}_X$.

・ロト・日本・ヨト・ヨト・ヨー つくぐ

Centralizer $C_{\mathcal{F}}(X)$ of a subgroup $X \leq S$

+ objects:
$$Q \leq C_S(X)$$
;

• morphisms: $\varphi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$ which extend to $\tilde{\varphi} \colon XQ \to XR$ with $\tilde{\varphi}|_X = \operatorname{id}_X$.

・ロト・日本・ヨト・ヨト・ヨー つくぐ

Centralizer $C_{\mathcal{F}}(X)$ of a subgroup $X \leq S$

+ objects:
$$Q \leq C_S(X)$$
;

+ morphisms: $\varphi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$ which extend to $\tilde{\varphi} \colon XQ \to XR$ with $\tilde{\varphi}|_X = \operatorname{id}_X$.

Problem: Construct " $C_{\mathcal{F}}(\mathcal{E})$ " on " $C_{\mathcal{S}}(\mathcal{E})$ " for a subsystem \mathcal{E} on $T \leq S$?

Centralizer $C_{\mathcal{F}}(X)$ of a subgroup $X \leq S$

- + objects: $Q \leq C_S(X)$;
- + morphisms: $\varphi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$ which extend to $\tilde{\varphi} \colon XQ \to XR$ with $\tilde{\varphi}|_X = \operatorname{id}_X$.

Problem: Construct " $C_{\mathcal{F}}(\mathcal{E})$ " on " $C_{\mathcal{S}}(\mathcal{E})$ " for a subsystem \mathcal{E} on $T \leq S$?

- \checkmark (Aschbacher, Henke, Semeraro) if \mathcal{E} is normal in \mathcal{F} ,
- \checkmark (Aschbacher) if \mathcal{E} is a component of \mathcal{F} ,
- ✓ (Aschbacher, in restrictive cases) if \mathcal{E} is a component in $C_{\mathcal{F}}(t)$ for some involution t.

Centralizer $C_{\mathcal{F}}(X)$ of a subgroup $X \leq S$

- + objects: $Q \leq C_S(X)$;
- + morphisms: $\varphi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$ which extend to $\tilde{\varphi} \colon XQ \to XR$ with $\tilde{\varphi}|_X = \operatorname{id}_X$.

Problem: Construct " $C_{\mathcal{F}}(\mathcal{E})$ " on " $C_{\mathcal{S}}(\mathcal{E})$ " for a subsystem \mathcal{E} on $T \leq S$?

- ✓ (Aschbacher, Henke, Semeraro) if \mathcal{E} is normal in \mathcal{F} ,
- ✓ (Aschbacher) if \mathcal{E} is a component of \mathcal{F} ,
- ✓ (Aschbacher, in restrictive cases) if \mathcal{E} is a component in $C_{\mathcal{F}}(t)$ for some involution t.

? Applications to combinatorially describing $[BH_p^{\wedge}, BG_p^{\wedge}]$???

? First Step: Need to locate the Sylow group " $C_S(\mathcal{E})$ " $\leq C_S(\mathcal{T})$ of $C_{\mathcal{F}}(\mathcal{E})$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

? First Step: Need to locate the Sylow group " $C_{\mathcal{S}}(\mathcal{E})$ " $\leq C_{\mathcal{S}}(\mathcal{T})$ of $C_{\mathcal{F}}(\mathcal{E})$.

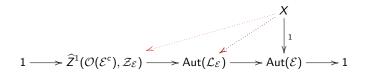
・ロト・日本・モト・モト・モー うへぐ

 \checkmark $C_{S}(\mathcal{E})$ behaves like the centralizer of a linking system $\mathcal{L}_{\mathcal{E}}$ for \mathcal{E} .

- ? First Step: Need to locate the Sylow group " $C_{\mathcal{S}}(\mathcal{E})$ " $\leq C_{\mathcal{S}}(\mathcal{T})$ of $C_{\mathcal{F}}(\mathcal{E})$.
- \checkmark $C_{S}(\mathcal{E})$ behaves like the centralizer of a linking system $\mathcal{L}_{\mathcal{E}}$ for \mathcal{E} .

Problem

How to tell whether a subgroup $X \leq C_S(T)$ "acts uniquely" on $\mathcal{L}_{\mathcal{E}}$, respecting $\mathcal{E} \hookrightarrow \mathcal{F}$?



ション ふぼう メリン ショーシック

- **?** First Step: Need to locate the Sylow group " $C_{\mathcal{S}}(\mathcal{E})$ " $\leq C_{\mathcal{S}}(\mathcal{T})$ of $C_{\mathcal{F}}(\mathcal{E})$.
- \checkmark $C_{S}(\mathcal{E})$ behaves like the centralizer of a linking system $\mathcal{L}_{\mathcal{E}}$ for \mathcal{E} .

Problem

How to tell whether a subgroup $X \leq C_{\mathcal{S}}(\mathcal{T})$ "acts uniquely" on $\mathcal{L}_{\mathcal{E}}$, respecting $\mathcal{E} \hookrightarrow \mathcal{F}$?

$$1 \longrightarrow \widehat{Z}^{1}(\mathcal{O}(\mathcal{E}^{c}), \mathcal{Z}_{\mathcal{E}}) \longrightarrow \operatorname{Aut}(\mathcal{L}_{\mathcal{E}}) \longrightarrow \operatorname{Aut}(\mathcal{E}) \longrightarrow 1$$

Definition

A section is a family σ of extensions $\sigma(\varphi) \colon XP \to XQ$, for each $P \xrightarrow{\varphi} Q$ in $Mor(\mathcal{E}^c)$ satisfying the following conditions

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

$$m o$$
 [X, σ(φ)] ≤ Z(P^φ) for each φ,

+
$$\sigma(\varphi \circ c_t) = \sigma(\varphi) \circ c_t$$
 for each φ and each $t \in T$.

Write $\Gamma(X, \mathcal{E})$ for the collection of sections.

Definition

A rigid action of X on $\mathcal{L}_{\mathcal{E}}$ (respecting $\mathcal{E} \hookrightarrow \mathcal{F}$) is a group homomorphism

 $\rho\colon X\to \widehat{Z}^1(\mathcal{O}(\mathcal{E}^c),\mathcal{Z}_{\mathcal{E}})$

for which there is a section $\sigma \in \Gamma(X, \mathcal{E})$ such that

 $\rho(\mathbf{x})([\varphi]) = [\mathbf{x}, \sigma(\varphi)]^{\varphi^{-1}}.$

for each morphism $[\varphi]$ in the orbit category $\mathcal{O}(\mathcal{E}^c)$.

Definition

A rigid action of X on $\mathcal{L}_{\mathcal{E}}$ (respecting $\mathcal{E} \hookrightarrow \mathcal{F}$) is a group homomorphism

 $\rho\colon X\to \widehat{Z}^1(\mathcal{O}(\mathcal{E}^c),\mathcal{Z}_{\mathcal{E}})$

for which there is a section $\sigma \in \Gamma(X, \mathcal{E})$ such that

 $\rho(\mathbf{x})([\varphi]) = [\mathbf{x}, \sigma(\varphi)]^{\varphi^{-1}}.$

for each morphism $[\varphi]$ in the orbit category $\mathcal{O}(\mathcal{E}^c)$.

Definition

For a fixed section $\sigma \in \Gamma(X, \mathcal{E})$, define a functor

Definition

A rigid action of X on $\mathcal{L}_{\mathcal{E}}$ (respecting $\mathcal{E} \hookrightarrow \mathcal{F}$) is a group homomorphism

 $\rho \colon X \to \widehat{Z}^1(\mathcal{O}(\mathcal{E}^c), \mathcal{Z}_{\mathcal{E}})$

for which there is a section $\sigma \in \Gamma(X, \mathcal{E})$ such that

 $\rho(\mathbf{x})([\varphi]) = [\mathbf{x}, \sigma(\varphi)]^{\varphi^{-1}}.$

for each morphism $[\varphi]$ in the orbit category $\mathcal{O}(\mathcal{E}^c)$.

Definition

For a fixed section $\sigma \in \Gamma(X, \mathcal{E})$, define a functor

 ${}^{{{\textit{\rm K}}}_{{\textit{\rm X}},{\mathcal F}}}\colon {\mathcal O}({\mathcal E}^c)^{\rm op}\to {\sf Ab}$

by, on objects:

$$\mathcal{K}_{X,\mathcal{F}}(\mathcal{P}) = \{ \alpha \in \mathsf{Aut}_{\mathcal{F}}(\mathcal{XP}) \mid \alpha|_{\mathcal{P}} = \mathrm{id}_{\mathcal{P}} \text{ and } [X,\alpha] \leq Z(\mathcal{P}) \}$$

Definition

A rigid action of X on $\mathcal{L}_{\mathcal{E}}$ (respecting $\mathcal{E} \hookrightarrow \mathcal{F}$) is a group homomorphism

 $\rho\colon X\to \widehat{Z}^1(\mathcal{O}(\mathcal{E}^c),\mathcal{Z}_{\mathcal{E}})$

for which there is a section $\sigma \in \Gamma(X, \mathcal{E})$ such that

 $\rho(\mathbf{x})([\varphi]) = [\mathbf{x}, \sigma(\varphi)]^{\varphi^{-1}}.$

for each morphism $[\varphi]$ in the orbit category $\mathcal{O}(\mathcal{E}^c)$.

Definition

For a fixed section $\sigma \in \Gamma(X, \mathcal{E})$, define a functor

$$\mathsf{K}_{\mathsf{X},\mathcal{F}} \colon \mathcal{O}(\mathcal{E}^c)^{\mathrm{op}} \to \mathsf{Ab}$$

by, on objects:

$$\mathcal{K}_{X,\mathcal{F}}(\mathcal{P}) = \{ \alpha \in \operatorname{Aut}_{\mathcal{F}}(\mathcal{X}\mathcal{P}) \mid \alpha|_{\mathcal{P}} = \operatorname{id}_{\mathcal{P}} \text{ and } [X, \alpha] \leq Z(\mathcal{P}) \},\$$

and, on morphisms by sending $P \xrightarrow{[arphi]} Q$ to the composite

$$\mathcal{K}_{X,\mathcal{F}}(Q) \xrightarrow{\operatorname{res}} \mathcal{K}_{X,\mathcal{F}}(P^{\varphi}) \xrightarrow{c_{\sigma(\varphi)}^{-1}} \mathcal{K}_{X,\mathcal{F}}(P).$$

Obstructions to rigid actions on linking systems

Theorem (L.)

Let $\mathcal{E} \leq \mathcal{F}$ be a subsystem on $T \leq S$, and fix $X \leq C_S(T)$. Assume that $\Gamma(X, \mathcal{E})$ is nonempty. Then

- (1) there is a class $[\tau] \in \lim_{\mathcal{O}(\mathcal{E}^c)}^2 K_{X,\mathcal{F}}$ such that X has a rigid action on $\mathcal{L}_{\mathcal{E}}$ if and only if $[\tau] = 0$;
- (2) the group $\widehat{Z}^1(\mathcal{O}(\mathcal{E}^c), K_{X,\mathcal{F}})$ acts freely and transitively on the set of rigid actions when that set is nonempty.

Obstructions to rigid actions on linking systems

Theorem (L.)

Let $\mathcal{E} \leq \mathcal{F}$ be a subsystem on $T \leq S$, and fix $X \leq C_S(T)$. Assume that $\Gamma(X, \mathcal{E})$ is nonempty. Then

- (1) there is a class $[\tau] \in \lim_{\mathcal{O}(\mathcal{E}^c)}^2 K_{X,\mathcal{F}}$ such that X has a rigid action on $\mathcal{L}_{\mathcal{E}}$ if and only if $[\tau] = 0$;
- (2) the group $\widehat{Z}^1(\mathcal{O}(\mathcal{E}^c), K_{X,\mathcal{F}})$ acts freely and transitively on the set of rigid actions when that set is nonempty.

Example

For $\mathcal{F} = \mathcal{F}_2(A_6 \wr X)$ with $X = \langle x \rangle$ of order 2 and $\mathcal{E} = \mathcal{F}_2(\Delta(A_6))$, one has

$$\lim_{\mathcal{O}(\mathcal{E}^c)}^{1} K_{X,\mathcal{F}} \cong \lim_{\mathcal{O}(\mathcal{E}^c)}^{1} \Omega_1 \mathcal{Z}_{\mathcal{E}} \cong C_2.$$