Topological generation of algebraic groups

Tim Burness

Joint work with Spencer Gerhardt and Bob Guralnick

Groups and Geometries workshop Banff International Research Station August 27th 2019

• Minimal generation. $d(G) = \min\{|S| : G = \langle S \rangle\}.$

- Minimal generation. $d(G) = \min\{|S| : G = \langle S \rangle\}.$
- Invariable generation. $\{x_1, ..., x_t\} \subseteq G$ invariably generates if

$$G = \langle x_1^{g_1}, \ldots, x_t^{g_t} \rangle$$

for all $g_i \in G$. Let $d_I(G) = \min\{|S| : S \text{ invariably generates } G\}$.

- Minimal generation. $d(G) = \min\{|S| : G = \langle S \rangle\}.$
- Invariable generation. $\{x_1, ..., x_t\} \subseteq G$ invariably generates if

$$G = \langle x_1^{g_1}, \ldots, x_t^{g_t} \rangle$$

for all $g_i \in G$. Let $d_I(G) = \min\{|S| : S \text{ invariably generates } G\}$.

Random generation. Let

$$\mathbb{P}_t(G) = \frac{|\{(x_1,\ldots,x_t) \in G^t : G = \langle x_1,\ldots,x_t \rangle\}|}{|G|^t}$$

be the probability that t randomly chosen elements generate G.

- Minimal generation. $d(G) = \min\{|S| : G = \langle S \rangle\}.$
- Invariable generation. $\{x_1, ..., x_t\} \subseteq G$ invariably generates if

$$G = \langle x_1^{g_1}, \ldots, x_t^{g_t} \rangle$$

for all $g_i \in G$. Let $d_I(G) = \min\{|S| : S \text{ invariably generates } G\}$.

Random generation. Let

$$\mathbb{P}_t(G) = \frac{|\{(x_1,\ldots,x_t) \in G^t : G = \langle x_1,\ldots,x_t \rangle\}|}{|G|^t}$$

be the probability that t randomly chosen elements generate G.

Conjugate generation. If $G = \langle g^G \rangle$ then define

$$\kappa(g) = \min\{|S| : S \subseteq g^G, G = \langle S \rangle\}.$$

Theorem. Let G be a (non-abelian) finite simple group.

Theorem. Let G be a (non-abelian) finite simple group.

- d(G) = 2 (Steinberg, 1962)
- $d_I(G) = 2$ (Kantor, Lubotzky & Shalev, 2011)

Theorem. Let G be a (non-abelian) finite simple group.

- d(G) = 2 (Steinberg, 1962)
- $d_I(G) = 2$ (Kantor, Lubotzky & Shalev, 2011)
- $\mathbb{P}_2(G) \to 1$ as $|G| \to \infty$ (Liebeck & Shalev, 1995)

Theorem. Let G be a (non-abelian) finite simple group.

•
$$d(G) = 2$$
 (Steinberg, 1962)

■ $d_I(G) = 2$ (Kantor, Lubotzky & Shalev, 2011)

• $\mathbb{P}_2(G) \to 1$ as $|G| \to \infty$ (Liebeck & Shalev, 1995)

Theorem. Let G be a (non-abelian) finite simple group.

•
$$d(G) = 2$$
 (Steinberg, 1962)

■ $d_I(G) = 2$ (Kantor, Lubotzky & Shalev, 2011)

• $\mathbb{P}_2(G) \to 1$ as $|G| \to \infty$ (Liebeck & Shalev, 1995)

■ If
$$G = Cl_n(q)$$
 is a classical group with $n \ge 5$, then
 $\kappa(g) \le n+1$ for all $1 \ne g \in G$
(Guralnick & Saxl, 2003)

Problem. Can we establish analogous results for algebraic groups?

Let G be a simple algebraic group over an algebraically closed field k of characteristic $p \ge 0$, e.g. $SL_n(k)$, $Sp_n(k)$, E_8 , etc.

Let G be a simple algebraic group over an algebraically closed field k of characteristic $p \ge 0$, e.g. $SL_n(k)$, $Sp_n(k)$, E_8 , etc.

■ *G* is **not** finitely generated:

$$\langle x_1,\ldots,x_t\rangle\leqslant G(F)< G$$

for some subfield $F = k_0(\lambda_1, \ldots, \lambda_m)$ of k (with k_0 the prime field).

Let G be a simple algebraic group over an algebraically closed field k of characteristic $p \ge 0$, e.g. $SL_n(k)$, $Sp_n(k)$, E_8 , etc.

■ *G* is **not** finitely generated:

$$\langle x_1,\ldots,x_t\rangle\leqslant G(F)< G$$

for some subfield $F = k_0(\lambda_1, \ldots, \lambda_m)$ of k (with k_0 the prime field).

• $S \subseteq G$ is a **topological generating set** if $\langle S \rangle$ is (Zariski-)dense in G.

Let G be a simple algebraic group over an algebraically closed field k of characteristic $p \ge 0$, e.g. $SL_n(k)$, $Sp_n(k)$, E_8 , etc.

■ *G* is **not** finitely generated:

$$\langle x_1,\ldots,x_t\rangle \leqslant G(F) < G$$

for some subfield $F = k_0(\lambda_1, \ldots, \lambda_m)$ of k (with k_0 the prime field).

- $S \subseteq G$ is a **topological generating set** if $\langle S \rangle$ is (Zariski-)dense in G.
- If k is algebraic over a finite field, then G is locally finite.

We will always assume that k is not algebraic over a finite field.

Theorem (Guralnick, 1998).

If p = 0, then $\Delta := \{(g, h) \in G^2 : G = \overline{\langle g, h \rangle}\}$ is dense in G^2 .

Theorem (Guralnick, 1998). If p = 0, then $\Delta := \{(g, h) \in G^2 : G = \overline{\langle g, h \rangle}\}$ is dense in G^2 .

• If V is a finite dimensional kG-module, then

 $\{(g,h)\in G^2\,:\,\overline{\langle g,h
angle}\,$ acts irreducibly on $V\}$ is open in G^2

Theorem (Guralnick, 1998). If p = 0, then $\Delta := \{(g, h) \in G^2 : G = \overline{\langle g, h \rangle}\}$ is dense in G^2 .

• If V is a finite dimensional kG-module, then

 $\{(g,h)\in G^2\,:\,\overline{\langle g,h
angle} ext{ acts irreducibly on }V\}$ is open in G^2

• Let V_1 be the adjoint module for G and V_2 an irreducible kG-module such that every finite subgroup of G is reducible.

Theorem (Guralnick, 1998). If p = 0, then $\Delta := \{(g, h) \in G^2 : G = \overline{\langle g, h \rangle}\}$ is dense in G^2 .

• If V is a finite dimensional kG-module, then

 $\{(g,h)\in G^2: \overline{\langle g,h
angle} \text{ acts irreducibly on } V\}$ is open in G^2

• Let V_1 be the adjoint module for G and V_2 an irreducible kG-module such that every finite subgroup of G is reducible. Then

 $\{(g,h)\in G^2\,:\,\overline{\langle g,h
angle}\,$ is irreducible on V_1 and $V_2\}$ is open

Theorem (Guralnick, 1998). If p = 0, then $\Delta := \{(g, h) \in G^2 : G = \overline{\langle g, h \rangle}\}$ is dense in G^2 .

• If V is a finite dimensional kG-module, then

 $\{(g,h)\in G^2: \overline{\langle g,h
angle} \text{ acts irreducibly on } V\}$ is open in G^2

• Let V_1 be the adjoint module for G and V_2 an irreducible kG-module such that every finite subgroup of G is reducible. Then

 $\Delta = \{(g, h) \in G^2 : \overline{\langle g, h \rangle} \text{ is irreducible on } V_1 \text{ and } V_2\} \text{ is open}$

Theorem (Guralnick, 1998). If p = 0, then $\Delta := \{(g, h) \in G^2 : G = \overline{\langle g, h \rangle}\}$ is dense in G^2 .

• If V is a finite dimensional kG-module, then

 $\{(g,h)\in G^2\,:\,\overline{\langle g,h
angle} ext{ acts irreducibly on }V\}$ is open in G^2

• Let V_1 be the adjoint module for G and V_2 an irreducible kG-module such that every finite subgroup of G is reducible. Then

 $\Delta = \{(g, h) \in G^2 : \overline{\langle g, h \rangle} \text{ is irreducible on } V_1 \text{ and } V_2\} \text{ is open}$

If g ∈ G is non-central and h ∈ G is a regular semisimple element such that (h) is a maximal torus, then G = (g, h^a) for some a ∈ G. Therefore, Δ is non-empty and thus dense.

Notation. Let Ω be a (locally closed) irreducible subset of G^t , e.g.

 G^t , $\{g\} \times G^{t-1}$ or $C_1 \times \cdots \times C_t$, with $C_i = g_i^G$

Notation. Let Ω be a (locally closed) irreducible subset of G^t , e.g.

$$G^t$$
, $\{g\} \times G^{t-1}$ or $C_1 \times \cdots \times C_t$, with $C_i = g_i^G$

For $x = (x_1, \dots, x_t) \in \Omega$, set $G(x) = \overline{\langle x_1, \dots, x_t \rangle}$ and define $\Delta = \{ x \in \Omega \ : \ G(x) = G \}.$

Notation. Let Ω be a (locally closed) irreducible subset of G^t , e.g.

$$G^t$$
, $\{g\} \times G^{t-1}$ or $C_1 \times \cdots \times C_t$, with $C_i = g_i^G$

For
$$x = (x_1, \dots, x_t) \in \Omega$$
, set $G(x) = \overline{\langle x_1, \dots, x_t \rangle}$ and define $\Delta = \{x \in \Omega : G(x) = G\}.$

Theorem (BGG, 2019). If Δ is non-empty, then Δ is dense in Ω .

Notation. Let Ω be a (locally closed) irreducible subset of G^t , e.g.

$$G^t$$
, $\{g\} \times G^{t-1}$ or $C_1 \times \cdots \times C_t$, with $C_i = g_i^G$

For
$$x = (x_1, \dots, x_t) \in \Omega$$
, set $G(x) = \overline{\langle x_1, \dots, x_t \rangle}$ and define $\Delta = \{x \in \Omega \ : \ G(x) = G\}.$

Theorem (BGG, 2019). If Δ is non-empty, then Δ is dense in Ω .

• As a special case, $\{x \in G^2 : G(x) = G\}$ is dense in G^2 for all $p \ge 0$.

Notation. Let Ω be a (locally closed) irreducible subset of G^t , e.g.

$$G^t$$
, $\{g\} \times G^{t-1}$ or $C_1 \times \cdots \times C_t$, with $C_i = g_i^G$

For
$$x = (x_1, \dots, x_t) \in \Omega$$
, set $G(x) = \overline{\langle x_1, \dots, x_t \rangle}$ and define $\Delta = \{x \in \Omega : G(x) = G\}.$

Theorem (BGG, 2019). If Δ is non-empty, then Δ is dense in Ω .

- As a special case, $\{x \in G^2 : G(x) = G\}$ is dense in G^2 for all $p \ge 0$.
- By considering Ω = C₁ × ··· × C_t, it follows that all topological generating sets for G are "almost invariable".

Theorem (BGG, 2019). If Δ is non-empty, then Δ is dense in Ω .

Theorem (BGG, 2019). If Δ is non-empty, then Δ is dense in Ω .

• Assume $\Delta \neq \emptyset$ and write $\Delta = \Delta^+ \cap \Lambda$, where

$$\Delta^+ = \{x \in \Omega : \dim G(x) > 0\}$$

 $\Lambda = \{x \in \Omega : G(x) \leqslant H ext{ for any } H \in \mathcal{M}\}$

and \mathcal{M} is the set of maximal closed pos. diml. subgroups of G.

Theorem (BGG, 2019). If Δ is non-empty, then Δ is dense in Ω .

• Assume $\Delta \neq \emptyset$ and write $\Delta = \Delta^+ \cap \Lambda$, where

$$\Delta^+ = \{x \in \Omega : \dim G(x) > 0\}$$

 $\Lambda = \{x \in \Omega : G(x) \leqslant H ext{ for any } H \in \mathcal{M}\}$

and \mathcal{M} is the set of maximal closed pos. diml. subgroups of G.

By considering a finite collection of irreducible kG-modules, we can construct an open subset Γ of Ω with Δ ⊆ Γ ⊆ Λ.

Theorem (BGG, 2019). If Δ is non-empty, then Δ is dense in Ω .

• Assume $\Delta \neq \emptyset$ and write $\Delta = \Delta^+ \cap \Lambda$, where

$$\Delta^+ = \{x \in \Omega : \dim G(x) > 0\}$$

 $\Lambda = \{x \in \Omega : G(x) \leqslant H ext{ for any } H \in \mathcal{M}\}$

and \mathcal{M} is the set of maximal closed pos. diml. subgroups of G.

- By considering a finite collection of irreducible kG-modules, we can construct an open subset Γ of Ω with Δ ⊆ Γ ⊆ Λ.
- **Key step:** $\Delta^+ \neq \emptyset \implies \Delta^+$ is dense in Ω .

• Then
$$\Delta = \Delta^+ \cap \Lambda = \Delta^+ \cap \Gamma$$
 is dense in Ω .

Theorem (BGG, 2019).

Let G be an exceptional group and set N = 4 if $G = G_2$, otherwise N = 5. Let $\Omega = C_1 \times \cdots \times C_t$, where $t \ge N$ and each $C_i = g_i^G$ is non-central.

Theorem (BGG, 2019).

Let *G* be an exceptional group and set N = 4 if $G = G_2$, otherwise N = 5. Let $\Omega = C_1 \times \cdots \times C_t$, where $t \ge N$ and each $C_i = g_i^G$ is non-central. Then Δ is dense in Ω .

Exceptional algebraic groups

Theorem (BGG, 2019).

Let G be an exceptional group and set N = 4 if $G = G_2$, otherwise N = 5. Let $\Omega = C_1 \times \cdots \times C_t$, where $t \ge N$ and each $C_i = g_i^G$ is non-central. Then Δ is dense in Ω .

The bound t ≥ N is best possible in all cases.
e.g. if G = E₈ and C = g^G is the class of long root elements, then dim C_V(g) = 190 on the adjoint module V, so Δ = Ø if Ω = C⁴.

Exceptional algebraic groups

Theorem (BGG, 2019).

Let *G* be an exceptional group and set N = 4 if $G = G_2$, otherwise N = 5. Let $\Omega = C_1 \times \cdots \times C_t$, where $t \ge N$ and each $C_i = g_i^G$ is non-central. Then Δ is dense in Ω .

- The bound t ≥ N is best possible in all cases.
 e.g. if G = E₈ and C = g^G is the class of long root elements, then dim C_V(g) = 190 on the adjoint module V, so Δ = Ø if Ω = C⁴.
- Excluding a handful of classes, we can show that Δ is dense if $t \ge 3$.

Theorem (BGG, 2019).

Let G be an exceptional group and set N = 4 if $G = G_2$, otherwise N = 5. Let $\Omega = C_1 \times \cdots \times C_t$, where $t \ge N$ and each $C_i = g_i^G$ is non-central. Then Δ is dense in Ω .

- The bound t ≥ N is best possible in all cases.
 e.g. if G = E₈ and C = g^G is the class of long root elements, then dim C_V(g) = 190 on the adjoint module V, so Δ = Ø if Ω = C⁴.
- Excluding a handful of classes, we can show that Δ is dense if $t \ge 3$.
- We expect the same bounds are best possible for the corresponding finite exceptional groups.

Here [GS, 2003] gives $\kappa(g) \leq \operatorname{rank}(G) + 4$ for all $1 \neq g \in G(q)$.

Key lemma

For $H \leqslant G$ and $g \in G$, set

$$X = G/H, \ X(g) = \{x \in X : x^g = x\}, \ \alpha(G, H, g) = \frac{\dim X(g)}{\dim X}$$

Key lemma

For $H \leq G$ and $g \in G$, set

$$X = G/H, \ X(g) = \{x \in X \ : \ x^g = x\}, \ lpha(G, H, g) = rac{\dim X(g)}{\dim X}$$

Lemma. Let G be a simple algebraic group and set $\Omega = C_1 \times \cdots \times C_t$, where $t \ge 3$ and each $C_i = g_i^G$ is non-central.

Key lemma

For $H \leq G$ and $g \in G$, set

$$X = G/H, \ X(g) = \{x \in X \ : \ x^g = x\}, \ lpha(G, H, g) = rac{\dim X(g)}{\dim X}$$

Lemma. Let G be a simple algebraic group and set $\Omega = C_1 \times \cdots \times C_t$, where $t \ge 3$ and each $C_i = g_i^G$ is non-central. Then Δ is dense if

$$\sum_{i=1}^{t} \alpha(G, H, g_i) < t - 1 \tag{(\star)}$$

for all $H \in \mathcal{M}$.

This relies on the fact that G has only finitely many classes of positive dimensional maximal closed subgroups (Liebeck & Seitz, 2004).

Lemma. Let G be an exceptional group and set

 $\beta(G) = \max\{\alpha(G, H, g) : g \in G \text{ non-central, } H \in \mathcal{M}\}.$

Lemma. Let G be an exceptional group and set

 $\beta(G) = \max\{\alpha(G, H, g) : g \in G \text{ non-central, } H \in \mathcal{M}\}.$

• Then $\beta(G) < 1 - \frac{1}{N}$, where N = 4 if $G = G_2$, otherwise N = 5.

Lemma. Let G be an exceptional group and set

 $\beta(G) = \max\{\alpha(G, H, g) : g \in G \text{ non-central, } H \in \mathcal{M}\}.$

• Then $\beta(G) < 1 - \frac{1}{N}$, where N = 4 if $G = G_2$, otherwise N = 5.

More precisely:

Corollary. If $\Omega = C_1 \times \cdots \times C_t$ with $t \ge N$ and $C_i = g_i^G$, then

$$\sum_{i=1}^{t} \alpha(G, H, g_i) \leq t \cdot \beta(G) < t \left(1 - \frac{1}{N}\right) \leq t - 1$$

for all $H \in \mathcal{M}$, so (*) holds and Δ is dense.

Lemma (Lawther, Liebeck & Seitz, 2002). If $g \in H$, then

 $\dim X(g) = \dim X - \dim g^{G} + \dim (g^{G} \cap H).$

Lemma (Lawther, Liebeck & Seitz, 2002). If $g \in H$, then

$$\dim X(g) = \dim X - \dim g^{G} + \dim (g^{G} \cap H).$$

Example (LLS). Let $G = E_8$, $H = P_8$, $g \in G$ a long root element.

Lemma (Lawther, Liebeck & Seitz, 2002). If $g \in H$, then

 $\dim X(g) = \dim X - \dim g^{G} + \dim(g^{G} \cap H).$

Example (LLS). Let $G = E_8$, $H = P_8$, $g \in G$ a long root element.

• We may assume $g \in L'$, where $L = T_1 E_7$ is a Levi factor. Then

$$\dim(g^{G} \cap H) = \frac{1}{2}(\dim g^{G} + \dim g^{L'}) = \frac{1}{2}(58 + 34) = 46$$

Lemma (Lawther, Liebeck & Seitz, 2002). If $g \in H$, then

$$\dim X(g) = \dim X - \dim g^{G} + \dim (g^{G} \cap H).$$

Example (LLS). Let $G = E_8$, $H = P_8$, $g \in G$ a long root element.

• We may assume $g \in L'$, where $L = T_1 E_7$ is a Levi factor. Then

$$\dim(g^{G} \cap H) = \frac{1}{2}(\dim g^{G} + \dim g^{L'}) = \frac{1}{2}(58 + 34) = 46$$

• The lemma now gives dim X(g) = 57 - 58 + 46 = 45, so

$$\alpha(G, H, g) = \frac{\dim X(g)}{\dim X} = \frac{45}{57} = \frac{15}{19} = \beta(G)$$

Let L be a finite group and let r, s be primes dividing |L|.

Write $\mathbb{P}_{r,s}(L)$ for the probability that L is generated by a randomly chosen element of order r and a random element of order s.

Let L be a finite group and let r, s be primes dividing |L|.

Write $\mathbb{P}_{r,s}(L)$ for the probability that L is generated by a randomly chosen element of order r and a random element of order s.

Theorem. Let r, s be primes with $(r, s) \neq (2, 2)$ and let G_i be a sequence of finite simple exceptional groups such that $|G_i| \rightarrow \infty$ and r, s divide $|G_i|$ for all i.

Let *L* be a finite group and let r, s be primes dividing |L|.

Write $\mathbb{P}_{r,s}(L)$ for the probability that L is generated by a randomly chosen element of order r and a random element of order s.

Theorem. Let r, s be primes with $(r, s) \neq (2, 2)$ and let G_i be a sequence of finite simple exceptional groups such that $|G_i| \rightarrow \infty$ and r, s divide $|G_i|$ for all i.

■ Guralnick, Liebeck, Lübeck & Shalev, 2019.

If (r, s) = (2, 3), then $\mathbb{P}_{r,s}(G_i) \to 1$ as $i \to \infty$.

Let L be a finite group and let r, s be primes dividing |L|.

Write $\mathbb{P}_{r,s}(L)$ for the probability that L is generated by a randomly chosen element of order r and a random element of order s.

Theorem. Let r, s be primes with $(r, s) \neq (2, 2)$ and let G_i be a sequence of finite simple exceptional groups such that $|G_i| \rightarrow \infty$ and r, s divide $|G_i|$ for all i.

■ Guralnick, Liebeck, Lübeck & Shalev, 2019.

If (r, s) = (2, 3), then $\mathbb{P}_{r,s}(G_i) \to 1$ as $i \to \infty$.

BGG, 2019. The same conclusion holds for all *r* and *s*.

Another key lemma

Let $G(q) = G_{\sigma}$ be a finite quasisimple exceptional group of Lie type over \mathbb{F}_q , where σ is a suitable Steinberg endomorphism of G.

Another key lemma

Let $G(q) = G_{\sigma}$ be a finite quasisimple exceptional group of Lie type over \mathbb{F}_q , where σ is a suitable Steinberg endomorphism of G.

Let r, s be prime divisors of |G(q)/Z(G(q))| with $(r, s) \neq (2, 2)$ and define

 $\mathcal{C}(G, r, q) = \max\{\dim g^G : g \in G(q) \text{ has order } r \text{ modulo } Z(G)\}.$

e.g. if $G = E_8$ and r = 3, then $\mathcal{C}(G, r, q) = 168$ for all q.

Another key lemma

Let $G(q) = G_{\sigma}$ be a finite quasisimple exceptional group of Lie type over \mathbb{F}_q , where σ is a suitable Steinberg endomorphism of G.

Let r, s be prime divisors of |G(q)/Z(G(q))| with $(r, s) \neq (2, 2)$ and define

 $\mathcal{C}(G, r, q) = \max\{\dim g^G : g \in G(q) \text{ has order } r \text{ modulo } Z(G)\}.$

e.g. if $G = E_8$ and r = 3, then $\mathcal{C}(G, r, q) = 168$ for all q.

Lemma. Let $g_r \in G$ be any element of order r modulo Z(G) with dim $g_r^G = \mathcal{C}(G, r, q)$ and define $g_s \in G$ similarly. Then

 $\alpha(G, H, g_r) + \alpha(G, H, g_s) < 1$

for all positive dimensional maximal closed subgroups H of G.

• Set $\Omega = C_1 \times C_2$, where $C_1 = g_r^G$ and $C_2 = g_s^G$ as before, with $C_i(q) := C_i \cap G(q) \neq \emptyset$ for i = 1, 2.

- Set $\Omega = C_1 \times C_2$, where $C_1 = g_r^G$ and $C_2 = g_s^G$ as before, with $C_i(q) := C_i \cap G(q) \neq \emptyset$ for i = 1, 2.
- From the lemma, we deduce that

$$\Delta = \{(g, h) \in \Omega : G = \overline{\langle g, h \rangle}\}$$
 is dense in Ω

and then a general theorem [GLLS, 2019] implies that the proportion of pairs in $C_r(q) \times C_s(q)$ generating G(q) tends to 1 as $q \to \infty$.

- Set $\Omega = C_1 \times C_2$, where $C_1 = g_r^G$ and $C_2 = g_s^G$ as before, with $C_i(q) := C_i \cap G(q) \neq \emptyset$ for i = 1, 2.
- From the lemma, we deduce that

$$\Delta = \{(g, h) \in \Omega : G = \overline{\langle g, h \rangle}\}$$
 is dense in Ω

and then a general theorem [GLLS, 2019] implies that the proportion of pairs in $C_r(q) \times C_s(q)$ generating G(q) tends to 1 as $q \to \infty$.

But almost all pairs of elements of order r and s (modulo Z(G)) in G(q) are contained in $C_r(q) \times C_s(q)$ for such classes C_r and C_s .

- Set $\Omega = C_1 \times C_2$, where $C_1 = g_r^G$ and $C_2 = g_s^G$ as before, with $C_i(q) := C_i \cap G(q) \neq \emptyset$ for i = 1, 2.
- From the lemma, we deduce that

$$\Delta = \{(g, h) \in \Omega : G = \overline{\langle g, h \rangle}\}$$
 is dense in Ω

and then a general theorem [GLLS, 2019] implies that the proportion of pairs in $C_r(q) \times C_s(q)$ generating G(q) tends to 1 as $q \to \infty$.

But almost all pairs of elements of order r and s (modulo Z(G)) in G(q) are contained in $C_r(q) \times C_s(q)$ for such classes C_r and C_s .

Conjecture (GLLS, 2019). Let r, s be primes with $\{r, s\} \not\subseteq \{2, 3\}$ and let G_i be a sequence of finite simple groups such that $|G_i| \to \infty$ and r, s divide $|G_i|$ for all i. Then $\mathbb{P}_{r,s}(G_i) \to 1$ as $i \to \infty$.