Topological generation of algebraic groups

Tim Burness

Joint work with Spencer Gerhardt and Bob Guralnick

Groups and Geometries workshop
Banff International Research Station
August 27th 2019

Finite groups

- Minimal generation. $d(G)=\min \{|S|: G=\langle S\rangle\}$.

Finite groups

- Minimal generation. $d(G)=\min \{|S|: G=\langle S\rangle\}$.

■ Invariable generation. $\left\{x_{1}, \ldots, x_{t}\right\} \subseteq G$ invariably generates if

$$
G=\left\langle x_{1}^{g_{1}}, \ldots, x_{t}^{g_{t}}\right\rangle
$$

for all $g_{i} \in G$. Let $d_{l}(G)=\min \{|S|: S$ invariably generates $G\}$.

Finite groups

■ Minimal generation. $d(G)=\min \{|S|: G=\langle S\rangle\}$.
■ Invariable generation. $\left\{x_{1}, \ldots, x_{t}\right\} \subseteq G$ invariably generates if

$$
G=\left\langle x_{1}^{g_{1}}, \ldots, x_{t}^{g_{t}}\right\rangle
$$

for all $g_{i} \in G$. Let $d_{l}(G)=\min \{|S|: S$ invariably generates $G\}$.

- Random generation. Let

$$
\mathbb{P}_{t}(G)=\frac{\left|\left\{\left(x_{1}, \ldots, x_{t}\right) \in G^{t}: G=\left\langle x_{1}, \ldots, x_{t}\right\rangle\right\}\right|}{|G|^{t}}
$$

be the probability that t randomly chosen elements generate G.

Finite groups

■ Minimal generation. $d(G)=\min \{|S|: G=\langle S\rangle\}$.
■ Invariable generation. $\left\{x_{1}, \ldots, x_{t}\right\} \subseteq G$ invariably generates if

$$
G=\left\langle x_{1}^{g_{1}}, \ldots, x_{t}^{g_{t}}\right\rangle
$$

for all $g_{i} \in G$. Let $d_{l}(G)=\min \{|S|: S$ invariably generates $G\}$.

- Random generation. Let

$$
\mathbb{P}_{t}(G)=\frac{\left|\left\{\left(x_{1}, \ldots, x_{t}\right) \in G^{t}: G=\left\langle x_{1}, \ldots, x_{t}\right\rangle\right\}\right|}{|G|^{t}}
$$

be the probability that t randomly chosen elements generate G.

- Conjugate generation. If $G=\left\langle g^{G}\right\rangle$ then define

$$
\kappa(g)=\min \left\{|S|: S \subseteq g^{G}, G=\langle S\rangle\right\}
$$

Finite simple groups

Theorem. Let G be a (non-abelian) finite simple group.

Finite simple groups

Theorem. Let G be a (non-abelian) finite simple group.

- $d(G)=2$ (Steinberg, 1962)
- $d_{l}(G)=2$ (Kantor, Lubotzky \& Shalev, 2011)

Finite simple groups

Theorem. Let G be a (non-abelian) finite simple group.

- $d(G)=2$ (Steinberg, 1962)

■ $d_{l}(G)=2$ (Kantor, Lubotzky \& Shalev, 2011)
■ $\mathbb{P}_{2}(G) \rightarrow 1$ as $|G| \rightarrow \infty$ (Liebeck \& Shalev, 1995)

Finite simple groups

Theorem. Let G be a (non-abelian) finite simple group.
■ $d(G)=2$ (Steinberg, 1962)
■ $d_{l}(G)=2$ (Kantor, Lubotzky \& Shalev, 2011)
■ $\mathbb{P}_{2}(G) \rightarrow 1$ as $|G| \rightarrow \infty$ (Liebeck \& Shalev, 1995)
■ If $G=C l_{n}(q)$ is a classical group with $n \geqslant 5$, then

$$
\kappa(g) \leqslant n+1 \text { for all } 1 \neq g \in G
$$

(Guralnick \& Saxl, 2003)

Finite simple groups

Theorem. Let G be a (non-abelian) finite simple group.

- $d(G)=2$ (Steinberg, 1962)

■ $d_{l}(G)=2$ (Kantor, Lubotzky \& Shalev, 2011)
■ $\mathbb{P}_{2}(G) \rightarrow 1$ as $|G| \rightarrow \infty$ (Liebeck \& Shalev, 1995)
■ If $G=C I_{n}(q)$ is a classical group with $n \geqslant 5$, then

$$
\kappa(g) \leqslant n+1 \text { for all } 1 \neq g \in G
$$

(Guralnick \& Saxl, 2003)

Problem. Can we establish analogous results for algebraic groups?

First observations

Let G be a simple algebraic group over an algebraically closed field k of characteristic $p \geqslant 0$, e.g. $\mathrm{SL}_{n}(k), \mathrm{Sp}_{n}(k), E_{8}$, etc.

First observations

Let G be a simple algebraic group over an algebraically closed field k of characteristic $p \geqslant 0$, e.g. $\mathrm{SL}_{n}(k), \mathrm{Sp}_{n}(k), E_{8}$, etc.

- G is not finitely generated:

$$
\left\langle x_{1}, \ldots, x_{t}\right\rangle \leqslant G(F)<G
$$

for some subfield $F=k_{0}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ of k (with k_{0} the prime field).

First observations

Let G be a simple algebraic group over an algebraically closed field k of characteristic $p \geqslant 0$, e.g. $\mathrm{SL}_{n}(k), \mathrm{Sp}_{n}(k), E_{8}$, etc.

■ G is not finitely generated:

$$
\left\langle x_{1}, \ldots, x_{t}\right\rangle \leqslant G(F)<G
$$

for some subfield $F=k_{0}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ of k (with k_{0} the prime field).
■ $S \subseteq G$ is a topological generating set if $\langle S\rangle$ is (Zariski-)dense in G.

First observations

Let G be a simple algebraic group over an algebraically closed field k of characteristic $p \geqslant 0$, e.g. $\mathrm{SL}_{n}(k), \mathrm{Sp}_{n}(k), E_{8}$, etc.

■ G is not finitely generated:

$$
\left\langle x_{1}, \ldots, x_{t}\right\rangle \leqslant G(F)<G
$$

for some subfield $F=k_{0}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ of k (with k_{0} the prime field).

■ $S \subseteq G$ is a topological generating set if $\langle S\rangle$ is (Zariski-)dense in G.
■ If k is algebraic over a finite field, then G is locally finite.

We will always assume that k is not algebraic over a finite field.

Topological 2-generation

Theorem (Guralnick, 1998).
If $p=0$, then $\Delta:=\left\{(g, h) \in G^{2}: G=\overline{\langle g, h\rangle}\right\}$ is dense in G^{2}.

Topological 2-generation

Theorem (Guralnick, 1998).
If $p=0$, then $\Delta:=\left\{(g, h) \in G^{2}: G=\overline{\langle g, h\rangle}\right\}$ is dense in G^{2}.

- If V is a finite dimensional $k G$-module, then
$\left\{(g, h) \in G^{2}: \overline{\langle g, h\rangle}\right.$ acts irreducibly on $\left.V\right\}$ is open in G^{2}

Topological 2-generation

Theorem (Guralnick, 1998).
If $p=0$, then $\Delta:=\left\{(g, h) \in G^{2}: G=\overline{\langle g, h\rangle}\right\}$ is dense in G^{2}.

- If V is a finite dimensional $k G$-module, then
$\left\{(g, h) \in G^{2}: \overline{\langle g, h\rangle}\right.$ acts irreducibly on $\left.V\right\}$ is open in G^{2}
■ Let V_{1} be the adjoint module for G and V_{2} an irreducible $k G$-module such that every finite subgroup of G is reducible.

Topological 2-generation

Theorem (Guralnick, 1998).
If $p=0$, then $\Delta:=\left\{(g, h) \in G^{2}: G=\overline{\langle g, h\rangle}\right\}$ is dense in G^{2}.

- If V is a finite dimensional $k G$-module, then

$$
\left\{(g, h) \in G^{2}: \overline{\langle g, h\rangle} \text { acts irreducibly on } V\right\} \text { is open in } G^{2}
$$

- Let V_{1} be the adjoint module for G and V_{2} an irreducible $k G$-module such that every finite subgroup of G is reducible. Then

$$
\left\{(g, h) \in G^{2}: \overline{\langle g, h\rangle} \text { is irreducible on } V_{1} \text { and } V_{2}\right\} \text { is open }
$$

Topological 2-generation

Theorem (Guralnick, 1998).
If $p=0$, then $\Delta:=\left\{(g, h) \in G^{2}: G=\overline{\langle g, h\rangle}\right\}$ is dense in G^{2}.

- If V is a finite dimensional $k G$-module, then
$\left\{(g, h) \in G^{2}: \overline{\langle g, h\rangle}\right.$ acts irreducibly on $\left.V\right\}$ is open in G^{2}
- Let V_{1} be the adjoint module for G and V_{2} an irreducible $k G$-module such that every finite subgroup of G is reducible. Then

$$
\Delta=\left\{(g, h) \in G^{2}: \overline{\langle g, h\rangle} \text { is irreducible on } V_{1} \text { and } V_{2}\right\} \text { is open }
$$

Topological 2-generation

Theorem (Guralnick, 1998).

If $p=0$, then $\Delta:=\left\{(g, h) \in G^{2}: G=\overline{\langle g, h\rangle}\right\}$ is dense in G^{2}.

- If V is a finite dimensional $k G$-module, then

$$
\left\{(g, h) \in G^{2}: \overline{\langle g, h\rangle} \text { acts irreducibly on } V\right\} \text { is open in } G^{2}
$$

- Let V_{1} be the adjoint module for G and V_{2} an irreducible $k G$-module such that every finite subgroup of G is reducible. Then

$$
\Delta=\left\{(g, h) \in G^{2}: \overline{\langle g, h\rangle} \text { is irreducible on } V_{1} \text { and } V_{2}\right\} \text { is open }
$$

- If $g \in G$ is non-central and $h \in G$ is a regular semisimple element such that $\overline{\langle h\rangle}$ is a maximal torus, then $G=\overline{\left\langle g, h^{a}\right\rangle}$ for some $a \in G$.

Therefore, Δ is non-empty and thus dense.

A generalisation

Notation. Let Ω be a (locally closed) irreducible subset of G^{t}, e.g.

$$
G^{t},\{g\} \times G^{t-1} \text { or } C_{1} \times \cdots \times C_{t}, \text { with } C_{i}=g_{i}^{G}
$$

A generalisation

Notation. Let Ω be a (locally closed) irreducible subset of G^{t}, e.g.

$$
G^{t},\{g\} \times G^{t-1} \text { or } C_{1} \times \cdots \times C_{t}, \text { with } C_{i}=g_{i}^{G}
$$

For $x=\left(x_{1}, \ldots, x_{t}\right) \in \Omega$, set $G(x)=\overline{\left\langle x_{1}, \ldots, x_{t}\right\rangle}$ and define

$$
\Delta=\{x \in \Omega: G(x)=G\} .
$$

A generalisation

Notation. Let Ω be a (locally closed) irreducible subset of G^{t}, e.g.

$$
G^{t},\{g\} \times G^{t-1} \text { or } C_{1} \times \cdots \times C_{t}, \text { with } C_{i}=g_{i}^{G}
$$

For $x=\left(x_{1}, \ldots, x_{t}\right) \in \Omega$, set $G(x)=\overline{\left\langle x_{1}, \ldots, x_{t}\right\rangle}$ and define

$$
\Delta=\{x \in \Omega: G(x)=G\} .
$$

Theorem (BGG, 2019). If Δ is non-empty, then Δ is dense in Ω.

A generalisation

Notation. Let Ω be a (locally closed) irreducible subset of G^{t}, e.g.

$$
G^{t},\{g\} \times G^{t-1} \text { or } C_{1} \times \cdots \times C_{t}, \text { with } C_{i}=g_{i}^{G}
$$

For $x=\left(x_{1}, \ldots, x_{t}\right) \in \Omega$, set $G(x)=\overline{\left\langle x_{1}, \ldots, x_{t}\right\rangle}$ and define

$$
\Delta=\{x \in \Omega: G(x)=G\} .
$$

Theorem (BGG, 2019). If Δ is non-empty, then Δ is dense in Ω.

■ As a special case, $\left\{x \in G^{2}: G(x)=G\right\}$ is dense in G^{2} for all $p \geqslant 0$.

A generalisation

Notation. Let Ω be a (locally closed) irreducible subset of G^{t}, e.g.

$$
G^{t},\{g\} \times G^{t-1} \text { or } C_{1} \times \cdots \times C_{t}, \text { with } C_{i}=g_{i}^{G}
$$

For $x=\left(x_{1}, \ldots, x_{t}\right) \in \Omega$, set $G(x)=\overline{\left\langle x_{1}, \ldots, x_{t}\right\rangle}$ and define

$$
\Delta=\{x \in \Omega: G(x)=G\} .
$$

Theorem (BGG, 2019). If Δ is non-empty, then Δ is dense in Ω.

■ As a special case, $\left\{x \in G^{2}: G(x)=G\right\}$ is dense in G^{2} for all $p \geqslant 0$.
■ By considering $\Omega=C_{1} \times \cdots \times C_{t}$, it follows that all topological generating sets for G are "almost invariable".

Comments on the proof

Theorem (BGG, 2019). If Δ is non-empty, then Δ is dense in Ω.

Comments on the proof

Theorem (BGG, 2019). If Δ is non-empty, then Δ is dense in Ω.

■ Assume $\Delta \neq \emptyset$ and write $\Delta=\Delta^{+} \cap \wedge$, where

$$
\begin{aligned}
\Delta^{+} & =\{x \in \Omega: \operatorname{dim} G(x)>0\} \\
\Lambda & =\{x \in \Omega: G(x) \nless H \text { for any } H \in \mathcal{M}\}
\end{aligned}
$$

and \mathcal{M} is the set of maximal closed pos. diml. subgroups of G.

Comments on the proof

Theorem (BGG, 2019). If Δ is non-empty, then Δ is dense in Ω.

■ Assume $\Delta \neq \emptyset$ and write $\Delta=\Delta^{+} \cap \wedge$, where

$$
\begin{aligned}
\Delta^{+} & =\{x \in \Omega: \operatorname{dim} G(x)>0\} \\
\Lambda & =\{x \in \Omega: G(x) \nless H \text { for any } H \in \mathcal{M}\}
\end{aligned}
$$

and \mathcal{M} is the set of maximal closed pos. diml. subgroups of G.

- By considering a finite collection of irreducible $k G$-modules, we can construct an open subset Γ of Ω with $\Delta \subseteq \Gamma \subseteq \Lambda$.

Comments on the proof

Theorem (BGG, 2019). If Δ is non-empty, then Δ is dense in Ω.

■ Assume $\Delta \neq \emptyset$ and write $\Delta=\Delta^{+} \cap \wedge$, where

$$
\begin{aligned}
\Delta^{+} & =\{x \in \Omega: \operatorname{dim} G(x)>0\} \\
\Lambda & =\{x \in \Omega: G(x) \nless H \text { for any } H \in \mathcal{M}\}
\end{aligned}
$$

and \mathcal{M} is the set of maximal closed pos. diml. subgroups of G.

- By considering a finite collection of irreducible $k G$-modules, we can construct an open subset Γ of Ω with $\Delta \subseteq \Gamma \subseteq \Lambda$.

■ Key step: $\Delta^{+} \neq \emptyset \Longrightarrow \Delta^{+}$is dense in Ω.
■ Then $\Delta=\Delta^{+} \cap \Lambda=\Delta^{+} \cap \Gamma$ is dense in Ω.

Exceptional algebraic groups

Theorem (BGG, 2019).
Let G be an exceptional group and set $N=4$ if $G=G_{2}$, otherwise $N=5$. Let $\Omega=C_{1} \times \cdots \times C_{t}$, where $t \geqslant N$ and each $C_{i}=g_{i}^{G}$ is non-central.

Exceptional algebraic groups

Theorem (BGG, 2019).
Let G be an exceptional group and set $N=4$ if $G=G_{2}$, otherwise $N=5$. Let $\Omega=C_{1} \times \cdots \times C_{t}$, where $t \geqslant N$ and each $C_{i}=g_{i}^{G}$ is non-central. Then Δ is dense in Ω.

Exceptional algebraic groups

Theorem (BGG, 2019).

Let G be an exceptional group and set $N=4$ if $G=G_{2}$, otherwise $N=5$. Let $\Omega=C_{1} \times \cdots \times C_{t}$, where $t \geqslant N$ and each $C_{i}=g_{i}^{G}$ is non-central. Then Δ is dense in Ω.

- The bound $t \geqslant N$ is best possible in all cases.
e.g. if $G=E_{8}$ and $C=g^{G}$ is the class of long root elements, then $\operatorname{dim} C_{V}(g)=190$ on the adjoint module V, so $\Delta=\emptyset$ if $\Omega=C^{4}$.

Exceptional algebraic groups

Theorem (BGG, 2019).

Let G be an exceptional group and set $N=4$ if $G=G_{2}$, otherwise $N=5$. Let $\Omega=C_{1} \times \cdots \times C_{t}$, where $t \geqslant N$ and each $C_{i}=g_{i}^{G}$ is non-central. Then Δ is dense in Ω.

- The bound $t \geqslant N$ is best possible in all cases.
e.g. if $G=E_{8}$ and $C=g^{G}$ is the class of long root elements, then $\operatorname{dim} C_{V}(g)=190$ on the adjoint module V, so $\Delta=\emptyset$ if $\Omega=C^{4}$.
- Excluding a handful of classes, we can show that Δ is dense if $t \geqslant 3$.

Exceptional algebraic groups

Theorem (BGG, 2019).

Let G be an exceptional group and set $N=4$ if $G=G_{2}$, otherwise $N=5$. Let $\Omega=C_{1} \times \cdots \times C_{t}$, where $t \geqslant N$ and each $C_{i}=g_{i}^{G}$ is non-central. Then Δ is dense in Ω.

- The bound $t \geqslant N$ is best possible in all cases.
e.g. if $G=E_{8}$ and $C=g^{G}$ is the class of long root elements, then $\operatorname{dim} C_{V}(g)=190$ on the adjoint module V, so $\Delta=\emptyset$ if $\Omega=C^{4}$.
- Excluding a handful of classes, we can show that Δ is dense if $t \geqslant 3$.
- We expect the same bounds are best possible for the corresponding finite exceptional groups.

Here [GS, 2003] gives $\kappa(g) \leqslant \operatorname{rank}(G)+4$ for all $1 \neq g \in G(q)$.

Key lemma

For $H \leqslant G$ and $g \in G$, set

$$
X=G / H, X(g)=\left\{x \in X: x^{g}=x\right\}, \alpha(G, H, g)=\frac{\operatorname{dim} X(g)}{\operatorname{dim} X}
$$

Key lemma

For $H \leqslant G$ and $g \in G$, set

$$
X=G / H, X(g)=\left\{x \in X: x^{g}=x\right\}, \alpha(G, H, g)=\frac{\operatorname{dim} X(g)}{\operatorname{dim} X}
$$

Lemma. Let G be a simple algebraic group and set $\Omega=C_{1} \times \cdots \times C_{t}$, where $t \geqslant 3$ and each $C_{i}=g_{i}^{G}$ is non-central.

Key lemma

For $H \leqslant G$ and $g \in G$, set

$$
X=G / H, X(g)=\left\{x \in X: x^{g}=x\right\}, \alpha(G, H, g)=\frac{\operatorname{dim} X(g)}{\operatorname{dim} X}
$$

Lemma. Let G be a simple algebraic group and set $\Omega=C_{1} \times \cdots \times C_{t}$, where $t \geqslant 3$ and each $C_{i}=g_{i}^{G}$ is non-central. Then Δ is dense if

$$
\sum_{i=1}^{t} \alpha\left(G, H, g_{i}\right)<t-1
$$

for all $H \in \mathcal{M}$.

This relies on the fact that G has only finitely many classes of positive dimensional maximal closed subgroups (Liebeck \& Seitz, 2004).

Fixed point spaces for exceptional groups

Lemma. Let G be an exceptional group and set

$$
\beta(G)=\max \{\alpha(G, H, g): g \in G \text { non-central, } H \in \mathcal{M}\} .
$$

Fixed point spaces for exceptional groups

Lemma. Let G be an exceptional group and set

$$
\beta(G)=\max \{\alpha(G, H, g): g \in G \text { non-central, } H \in \mathcal{M}\}
$$

■ Then $\beta(G)<1-\frac{1}{N}$, where $N=4$ if $G=G_{2}$, otherwise $N=5$.

Fixed point spaces for exceptional groups

Lemma. Let G be an exceptional group and set

$$
\beta(G)=\max \{\alpha(G, H, g): g \in G \text { non-central, } H \in \mathcal{M}\}
$$

- Then $\beta(G)<1-\frac{1}{N}$, where $N=4$ if $G=G_{2}$, otherwise $N=5$.

■ More precisely:

G	E_{8}	E_{7}	E_{6}	F_{4}	G_{2}
$\beta(G)$	$15 / 19$	$7 / 9$	$10 / 13$	$3 / 4$	$2 / 3$

Fixed point spaces for exceptional groups

Lemma. Let G be an exceptional group and set

$$
\beta(G)=\max \{\alpha(G, H, g): g \in G \text { non-central, } H \in \mathcal{M}\}
$$

■ Then $\beta(G)<1-\frac{1}{N}$, where $N=4$ if $G=G_{2}$, otherwise $N=5$.
■ More precisely:

G	E_{8}	E_{7}	E_{6}	F_{4}	G_{2}
$\beta(G)$	$15 / 19$	$7 / 9$	$10 / 13$	$3 / 4$	$2 / 3$

Corollary. If $\Omega=C_{1} \times \cdots \times C_{t}$ with $t \geqslant N$ and $C_{i}=g_{i}^{G}$, then

$$
\sum_{i=1}^{t} \alpha\left(G, H, g_{i}\right) \leqslant t \cdot \beta(G)<t\left(1-\frac{1}{N}\right) \leqslant t-1
$$

for all $H \in \mathcal{M}$, so (\star) holds and Δ is dense.

Computing dimensions

Lemma (Lawther, Liebeck \& Seitz, 2002). If $g \in H$, then $\operatorname{dim} X(g)=\operatorname{dim} X-\operatorname{dim} g^{G}+\operatorname{dim}\left(g^{G} \cap H\right)$.

Computing dimensions

Lemma (Lawther, Liebeck \& Seitz, 2002). If $g \in H$, then

$$
\operatorname{dim} X(g)=\operatorname{dim} X-\operatorname{dim} g^{G}+\operatorname{dim}\left(g^{G} \cap H\right) .
$$

Example (LLS). Let $G=E_{8}, H=P_{8}, g \in G$ a long root element.

Computing dimensions

Lemma (Lawther, Liebeck \& Seitz, 2002). If $g \in H$, then

$$
\operatorname{dim} X(g)=\operatorname{dim} X-\operatorname{dim} g^{G}+\operatorname{dim}\left(g^{G} \cap H\right) .
$$

Example (LLS). Let $G=E_{8}, H=P_{8}, g \in G$ a long root element.

■ We may assume $g \in L^{\prime}$, where $L=T_{1} E_{7}$ is a Levi factor. Then

$$
\operatorname{dim}\left(g^{G} \cap H\right)=\frac{1}{2}\left(\operatorname{dim} g^{G}+\operatorname{dim} g^{L^{\prime}}\right)=\frac{1}{2}(58+34)=46
$$

Computing dimensions

Lemma (Lawther, Liebeck \& Seitz, 2002). If $g \in H$, then

$$
\operatorname{dim} X(g)=\operatorname{dim} X-\operatorname{dim} g^{G}+\operatorname{dim}\left(g^{G} \cap H\right) .
$$

Example (LLS). Let $G=E_{8}, H=P_{8}, g \in G$ a long root element.

■ We may assume $g \in L^{\prime}$, where $L=T_{1} E_{7}$ is a Levi factor. Then

$$
\operatorname{dim}\left(g^{G} \cap H\right)=\frac{1}{2}\left(\operatorname{dim} g^{G}+\operatorname{dim} g^{L^{\prime}}\right)=\frac{1}{2}(58+34)=46
$$

■ The lemma now gives $\operatorname{dim} X(g)=57-58+46=45$, so

$$
\alpha(G, H, g)=\frac{\operatorname{dim} X(g)}{\operatorname{dim} X}=\frac{45}{57}=\frac{15}{19}=\beta(G)
$$

An application to random generation

Let L be a finite group and let r, s be primes dividing $|L|$.
Write $\mathbb{P}_{r, s}(L)$ for the probability that L is generated by a randomly chosen element of order r and a random element of order s.

An application to random generation

Let L be a finite group and let r, s be primes dividing $|L|$.
Write $\mathbb{P}_{r, s}(L)$ for the probability that L is generated by a randomly chosen element of order r and a random element of order s.

Theorem. Let r, s be primes with $(r, s) \neq(2,2)$ and let G_{i} be a sequence of finite simple exceptional groups such that $\left|G_{i}\right| \rightarrow \infty$ and r, s divide $\left|G_{i}\right|$ for all i.

An application to random generation

Let L be a finite group and let r, s be primes dividing $|L|$.
Write $\mathbb{P}_{r, s}(L)$ for the probability that L is generated by a randomly chosen element of order r and a random element of order s.

Theorem. Let r, s be primes with $(r, s) \neq(2,2)$ and let G_{i} be a sequence of finite simple exceptional groups such that $\left|G_{i}\right| \rightarrow \infty$ and r, s divide $\left|G_{i}\right|$ for all i.

■ Guralnick, Liebeck, Lübeck \& Shalev, 2019.

$$
\text { If }(r, s)=(2,3) \text {, then } \mathbb{P}_{r, s}\left(G_{i}\right) \rightarrow 1 \text { as } i \rightarrow \infty
$$

An application to random generation

Let L be a finite group and let r, s be primes dividing $|L|$.
Write $\mathbb{P}_{r, s}(L)$ for the probability that L is generated by a randomly chosen element of order r and a random element of order s.

Theorem. Let r, s be primes with $(r, s) \neq(2,2)$ and let G_{i} be a sequence of finite simple exceptional groups such that $\left|G_{i}\right| \rightarrow \infty$ and r, s divide $\left|G_{i}\right|$ for all i.

■ Guralnick, Liebeck, Lübeck \& Shalev, 2019. If $(r, s)=(2,3)$, then $\mathbb{P}_{r, s}\left(G_{i}\right) \rightarrow 1$ as $i \rightarrow \infty$.

■ BGG, 2019. The same conclusion holds for all r and s.

Another key lemma

Let $G(q)=G_{\sigma}$ be a finite quasisimple exceptional group of Lie type over \mathbb{F}_{q}, where σ is a suitable Steinberg endomorphism of G.

Another key lemma

Let $G(q)=G_{\sigma}$ be a finite quasisimple exceptional group of Lie type over \mathbb{F}_{q}, where σ is a suitable Steinberg endomorphism of G.

Let r, s be prime divisors of $|G(q) / Z(G(q))|$ with $(r, s) \neq(2,2)$ and define

$$
\mathcal{C}(G, r, q)=\max \left\{\operatorname{dim} g^{G}: g \in G(q) \text { has order } r \text { modulo } Z(G)\right\}
$$

e.g. if $G=E_{8}$ and $r=3$, then $\mathcal{C}(G, r, q)=168$ for all q.

Another key lemma

Let $G(q)=G_{\sigma}$ be a finite quasisimple exceptional group of Lie type over \mathbb{F}_{q}, where σ is a suitable Steinberg endomorphism of G.

Let r, s be prime divisors of $|G(q) / Z(G(q))|$ with $(r, s) \neq(2,2)$ and define

$$
\mathcal{C}(G, r, q)=\max \left\{\operatorname{dim} g^{G}: g \in G(q) \text { has order } r \text { modulo } Z(G)\right\}
$$

e.g. if $G=E_{8}$ and $r=3$, then $\mathcal{C}(G, r, q)=168$ for all q.

Lemma. Let $g_{r} \in G$ be any element of order r modulo $Z(G)$ with $\operatorname{dim} g_{r}^{G}=\mathcal{C}(G, r, q)$ and define $g_{s} \in G$ similarly. Then

$$
\alpha\left(G, H, g_{r}\right)+\alpha\left(G, H, g_{s}\right)<1
$$

for all positive dimensional maximal closed subgroups H of G.

Some comments on the proof

■ Set $\Omega=C_{1} \times C_{2}$, where $C_{1}=g_{r}^{G}$ and $C_{2}=g_{s}^{G}$ as before, with

$$
C_{i}(q):=C_{i} \cap G(q) \neq \emptyset \text { for } i=1,2
$$

Some comments on the proof

■ Set $\Omega=C_{1} \times C_{2}$, where $C_{1}=g_{r}^{G}$ and $C_{2}=g_{s}^{G}$ as before, with $C_{i}(q):=C_{i} \cap G(q) \neq \emptyset$ for $i=1,2$.

- From the lemma, we deduce that

$$
\Delta=\{(g, h) \in \Omega: G=\overline{\langle g, h\rangle}\} \text { is dense in } \Omega
$$

and then a general theorem [GLLS, 2019] implies that the proportion of pairs in $C_{r}(q) \times C_{s}(q)$ generating $G(q)$ tends to 1 as $q \rightarrow \infty$.

Some comments on the proof

■ Set $\Omega=C_{1} \times C_{2}$, where $C_{1}=g_{r}^{G}$ and $C_{2}=g_{s}^{G}$ as before, with $C_{i}(q):=C_{i} \cap G(q) \neq \emptyset$ for $i=1,2$.

- From the lemma, we deduce that

$$
\Delta=\{(g, h) \in \Omega: G=\overline{\langle g, h\rangle}\} \text { is dense in } \Omega
$$

and then a general theorem [GLLS, 2019] implies that the proportion of pairs in $C_{r}(q) \times C_{s}(q)$ generating $G(q)$ tends to 1 as $q \rightarrow \infty$.

- But almost all pairs of elements of order r and s (modulo $Z(G))$ in $G(q)$ are contained in $C_{r}(q) \times C_{s}(q)$ for such classes C_{r} and C_{s}.

Some comments on the proof

■ Set $\Omega=C_{1} \times C_{2}$, where $C_{1}=g_{r}^{G}$ and $C_{2}=g_{s}^{G}$ as before, with $C_{i}(q):=C_{i} \cap G(q) \neq \emptyset$ for $i=1,2$.

■ From the lemma, we deduce that

$$
\Delta=\{(g, h) \in \Omega: G=\overline{\langle g, h\rangle}\} \text { is dense in } \Omega
$$

and then a general theorem [GLLS, 2019] implies that the proportion of pairs in $C_{r}(q) \times C_{s}(q)$ generating $G(q)$ tends to 1 as $q \rightarrow \infty$.

- But almost all pairs of elements of order r and s (modulo $Z(G))$ in $G(q)$ are contained in $C_{r}(q) \times C_{s}(q)$ for such classes C_{r} and C_{s}.

Conjecture (GLLS, 2019). Let r, s be primes with $\{r, s\} \nsubseteq\{2,3\}$ and let G_{i} be a sequence of finite simple groups such that $\left|G_{i}\right| \rightarrow \infty$ and r, s divide $\left|G_{i}\right|$ for all i. Then $\mathbb{P}_{r, s}\left(G_{i}\right) \rightarrow 1$ as $i \rightarrow \infty$.

