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The word and conjugacy problems in Coxeter groups
Throughout this talk, (W ,S) denotes a Coxeter system:

W = 〈s ∈ S | s2 = 1 = (st)mst for all s, t ∈ S with s 6= t〉

for some mst ∈ N≥2 ∪ {∞};

W =
⋃

n∈N Sn is the monoid of words on the alphabet S;
` = `S : W → N is the word length on W .

Solution to the word problem in W (Tits, Matsumoto, 1960’s)
Assume that w ,w ′ ∈W represent the same element of W , and that w ′ is
reduced. Then w ′ can be obtained from w by a (finite) sequence of
elementary operations of the form

Braid relations: stst . . .︸ ︷︷ ︸
mst letters

7→ tsts . . .︸ ︷︷ ︸
mst letters

for distinct s, t ∈ S with mst <∞.

ss-cancellations: ss 7→ ∅ for s ∈ S.
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The word and conjugacy problems in Coxeter groups

Solution to the conjugacy problem in W (Krammer, 1994)
There is a polynomial time algorithm determining whether two words
w ,w ′ ∈W represent conjugate elements of W .

Question
Is there a “nicer” algorithm for the conjugacy problem in W , with
“natural” elementary operations as in Matsumoto’s Theorem?

Call w ′ ∈W a cyclic shift of w ∈W if there is a reduced expression
w = s1 . . . sk of w such that w ′ = s2 . . . sks1 or w ′ = sks1 . . . sk−1.
w ′ cyclic shift of w ⇔ w ′ = sws for some s ∈ S with `(sws) ≤ `(w).
In that case, we write w s→ w ′.
Write w → w ′ if w = w0

s1→ w1 · · ·
sk→ wk = w ′ for some wi , si .

Call w ∈W cyclically reduced if `(w ′) = `(w) for every w → w ′.
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The word and conjugacy problems in Coxeter groups

A. Cohen, Recent results on Coxeter groups (1994)
in NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.
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The word and conjugacy problems in Coxeter groups

Call w ′ ∈W a cyclic shift of w ∈W if there is a reduced expression
w = s1 . . . sk of w such that w ′ = s2 . . . sks1 or w ′ = sks1 . . . sk−1.
w ′ cyclic shift of w ⇔ w ′ = sws for some s ∈ S with `(sws) ≤ `(w).
In that case, we write w s→ w ′.
Write w → w ′ if w = w0

s1→ w1 · · ·
sk→ wk = w ′ for some wi , si .

Call w ∈W cyclically reduced if `(w ′) = `(w) for every w → w ′.

Conjecture (A. Cohen, 1994)
An element w ∈W is cyclically reduced if and only if it is of minimal
length in its conjugacy class.

Example: W = 〈s, t | s2 = t2 = (st)3 = 1〉 = D6

The elements s and t are conjugate but s 6→ t.
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Previous works
Two elements w ,w ′ ∈W are elementarily strongly conjugate if

I `(w ′) = `(w) and
I there exists x ∈W with w ′ = x−1wx such that either
`(x−1w) = `(x) + `(w) or `(wx) = `(w) + `(x).

We then write w x∼ w ′.

Call w ,w ′ ∈W strongly conjugate if w = w0
x1∼ w1 · · ·

xk∼ wk = w ′
for some wi , xi ∈W .

Example: W = 〈s, t | s2 = t2 = (st)3 = 1〉 = D6

s ts∼ t because t = st · s · ts and `(st · s) = `(ts) + `(s).

Theorem
Assume that W is . Let O be a conjugacy class in W . Then:

1 For every w ∈ O there exists w ′ of minimal length in O with w → w ′.
2 If w ,w ′ are of minimal length in O, they are strongly conjugate.
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Theorem (He–Nie, 2014)
Assume that W is affine. Let O be a twisted conjugacy class in W . Then:

1 For every w ∈ O there exists w ′ of minimal length in O with w → w ′.
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Main result
Theorem (M., 2018)
Let (W , S) be a Coxeter system. Let O be a conjugacy class in W . Then:

1 For every w ∈ O there exists w ′ of minimal length in O with w → w ′.
2 If w ,w ′ are of minimal length in O, they are tightly conjugate.

Corollary (M., 2018)
An element w ∈W is cyclically reduced if and only if it is of minimal
length in its conjugacy class.

Call w ,w ′ ∈W elem. tightly conjugate if `(w ′) = `(w) and either
I w ′ is a cyclic shift of w , or
I there exist I ⊆ S spherical (i.e. WI := 〈I〉 ⊆W is finite) such that

w ∈ NW (WI), and some x ∈WI such that w x∼ w ′.
Call w ,w ′ ∈W tightly conjugate if w ′ can be obtained from w by a
sequence of elem. tight conjugations. We then write w ≈ w ′.
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Proof idea — The Coxeter complex Σ of (W , S)
Ex: W = 〈s, t, u | s2 = t2 = u2 = (st)3 = (su)3 = (tu)3 = 1〉 = Ã2

s
t u

s

u t

C0

W y Σ simplicial complex

wC0

chambers = max simplices
Ch(Σ) = {wC0 | w ∈W }

walls = reflection hyperplanes

dCh chamber distance on Ch(Σ)
dCh(C0,wC0) = `(w)

galleries from C0 ↔ W
Γ = (C0, . . . ,wC0) 7→ type(Γ)

(|Σ|CAT(0), d) Davis complex

residue Rx = {chambers 3 x}
StabW (Rx ) spherical parabolic
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Proof idea — A geometric solution to the word problem
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Proof idea — Minimal displacement sets
Fix w ∈W , and let

Ow = {v−1wv | v ∈W } and Omin
w = {u ∈ Ow | `(u) minimal}.

Γ gallery from vC0 to wvC0 ⇒ type(Γ) expression for v−1wv .
Define π : Ch(Σ)� Ow : vC0 7→ v−1wv .
The (combinatorial) minimal displacement set of w is

CombiMin(w) = {D ∈ Ch(Σ) | dCh(D,wD) minimal}
= {vC0 ∈ Ch(Σ) | `(v−1wv) minimal}

= π−1(Omin
w ).

Note that w ∈ Omin
w if and only if C0 ∈ CombiMin(w).

Obs: If Γ ⊆ CombiMin(w) gallery from D to E , then π(D)→ π(E ).

Proof: WLOG, D = vC0 and E = vsC0 adjacent (v ∈W , s ∈ S).
=⇒ `(v−1wv) = `(Omin

w ) = `(sv−1wvs)
=⇒ π(D) = v−1wv s→ sv−1wvs = π(E ).

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 9 / 11



Proof idea — Minimal displacement sets
Fix w ∈W , and let

Ow = {v−1wv | v ∈W } and Omin
w = {u ∈ Ow | `(u) minimal}.

Γ gallery from vC0 to wvC0 ⇒ type(Γ) expression for v−1wv .

Define π : Ch(Σ)� Ow : vC0 7→ v−1wv .
The (combinatorial) minimal displacement set of w is

CombiMin(w) = {D ∈ Ch(Σ) | dCh(D,wD) minimal}
= {vC0 ∈ Ch(Σ) | `(v−1wv) minimal}

= π−1(Omin
w ).

Note that w ∈ Omin
w if and only if C0 ∈ CombiMin(w).

Obs: If Γ ⊆ CombiMin(w) gallery from D to E , then π(D)→ π(E ).

Proof: WLOG, D = vC0 and E = vsC0 adjacent (v ∈W , s ∈ S).
=⇒ `(v−1wv) = `(Omin

w ) = `(sv−1wvs)
=⇒ π(D) = v−1wv s→ sv−1wvs = π(E ).

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 9 / 11



Proof idea — Minimal displacement sets

C0

vC0

wvC0

Γ

t s t s

t s t s

u

u

st

st

st

u u

u u

u u

u t

u t

u t

u t

s

s

s

s

s

s

s

s

s u

s u

s u

s u

t

t

t

t

t

t

t

t

x

Rx

CombiMin(s) in Rx

tC0

tsC0

s  tst  ststs = t

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 9 / 11



Proof idea — Minimal displacement sets

C0

vC0

wvC0

v−1wvC0

Γ

v−1Γ

v−1.

t s t s

t s t s

u

u

st

st

st

u u

u u

u u

u t

u t

u t

u t

s

s

s

s

s

s

s

s

s u

s u

s u

s u

t

t

t

t

t

t

t

t

x

Rx

CombiMin(s) in Rx

tC0

tsC0

s  tst  ststs = t

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 9 / 11



Proof idea — Minimal displacement sets
Fix w ∈W , and let

Ow = {v−1wv | v ∈W } and Omin
w = {u ∈ Ow | `(u) minimal}.

Γ gallery from vC0 to wvC0 ⇒ type(Γ) expression for v−1wv .

Define π : Ch(Σ)� Ow : vC0 7→ v−1wv .
The (combinatorial) minimal displacement set of w is

CombiMin(w) = {D ∈ Ch(Σ) | dCh(D,wD) minimal}
= {vC0 ∈ Ch(Σ) | `(v−1wv) minimal}

= π−1(Omin
w ).

Note that w ∈ Omin
w if and only if C0 ∈ CombiMin(w).

Obs: If Γ ⊆ CombiMin(w) gallery from D to E , then π(D)→ π(E ).

Proof: WLOG, D = vC0 and E = vsC0 adjacent (v ∈W , s ∈ S).
=⇒ `(v−1wv) = `(Omin

w ) = `(sv−1wvs)
=⇒ π(D) = v−1wv s→ sv−1wvs = π(E ).

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 9 / 11



Proof idea — Minimal displacement sets
Fix w ∈W , and let

Ow = {v−1wv | v ∈W } and Omin
w = {u ∈ Ow | `(u) minimal}.

Γ gallery from vC0 to wvC0 ⇒ type(Γ) expression for v−1wv .
Define π : Ch(Σ)� Ow : vC0 7→ v−1wv .

The (combinatorial) minimal displacement set of w is

CombiMin(w) = {D ∈ Ch(Σ) | dCh(D,wD) minimal}
= {vC0 ∈ Ch(Σ) | `(v−1wv) minimal}

= π−1(Omin
w ).

Note that w ∈ Omin
w if and only if C0 ∈ CombiMin(w).

Obs: If Γ ⊆ CombiMin(w) gallery from D to E , then π(D)→ π(E ).

Proof: WLOG, D = vC0 and E = vsC0 adjacent (v ∈W , s ∈ S).
=⇒ `(v−1wv) = `(Omin

w ) = `(sv−1wvs)
=⇒ π(D) = v−1wv s→ sv−1wvs = π(E ).

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 9 / 11



Proof idea — Minimal displacement sets
Fix w ∈W , and let

Ow = {v−1wv | v ∈W } and Omin
w = {u ∈ Ow | `(u) minimal}.

Γ gallery from vC0 to wvC0 ⇒ type(Γ) expression for v−1wv .
Define π : Ch(Σ)� Ow : vC0 7→ v−1wv .
The (combinatorial) minimal displacement set of w is

CombiMin(w) = {D ∈ Ch(Σ) | dCh(D,wD) minimal}
= {vC0 ∈ Ch(Σ) | `(v−1wv) minimal}

= π−1(Omin
w ).

Note that w ∈ Omin
w if and only if C0 ∈ CombiMin(w).

Obs: If Γ ⊆ CombiMin(w) gallery from D to E , then π(D)→ π(E ).

Proof: WLOG, D = vC0 and E = vsC0 adjacent (v ∈W , s ∈ S).
=⇒ `(v−1wv) = `(Omin

w ) = `(sv−1wvs)
=⇒ π(D) = v−1wv s→ sv−1wvs = π(E ).

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 9 / 11



Proof idea — Minimal displacement sets
Fix w ∈W , and let

Ow = {v−1wv | v ∈W } and Omin
w = {u ∈ Ow | `(u) minimal}.

Γ gallery from vC0 to wvC0 ⇒ type(Γ) expression for v−1wv .
Define π : Ch(Σ)� Ow : vC0 7→ v−1wv .
The (combinatorial) minimal displacement set of w is

CombiMin(w) = {D ∈ Ch(Σ) | dCh(D,wD) minimal}
= {vC0 ∈ Ch(Σ) | `(v−1wv) minimal} = π−1(Omin

w ).

Note that w ∈ Omin
w if and only if C0 ∈ CombiMin(w).

Obs: If Γ ⊆ CombiMin(w) gallery from D to E , then π(D)→ π(E ).

Proof: WLOG, D = vC0 and E = vsC0 adjacent (v ∈W , s ∈ S).
=⇒ `(v−1wv) = `(Omin

w ) = `(sv−1wvs)
=⇒ π(D) = v−1wv s→ sv−1wvs = π(E ).

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 9 / 11



Proof idea — Minimal displacement sets
Fix w ∈W , and let

Ow = {v−1wv | v ∈W } and Omin
w = {u ∈ Ow | `(u) minimal}.

Γ gallery from vC0 to wvC0 ⇒ type(Γ) expression for v−1wv .
Define π : Ch(Σ)� Ow : vC0 7→ v−1wv .
The (combinatorial) minimal displacement set of w is

CombiMin(w) = {D ∈ Ch(Σ) | dCh(D,wD) minimal}
= {vC0 ∈ Ch(Σ) | `(v−1wv) minimal} = π−1(Omin

w ).

Note that w ∈ Omin
w if and only if C0 ∈ CombiMin(w).

Obs: If Γ ⊆ CombiMin(w) gallery from D to E , then π(D)→ π(E ).

Proof: WLOG, D = vC0 and E = vsC0 adjacent (v ∈W , s ∈ S).
=⇒ `(v−1wv) = `(Omin

w ) = `(sv−1wvs)
=⇒ π(D) = v−1wv s→ sv−1wvs = π(E ).

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 9 / 11



Proof idea — Minimal displacement sets
Fix w ∈W , and let

Ow = {v−1wv | v ∈W } and Omin
w = {u ∈ Ow | `(u) minimal}.

Γ gallery from vC0 to wvC0 ⇒ type(Γ) expression for v−1wv .
Define π : Ch(Σ)� Ow : vC0 7→ v−1wv .
The (combinatorial) minimal displacement set of w is

CombiMin(w) = {D ∈ Ch(Σ) | dCh(D,wD) minimal}
= {vC0 ∈ Ch(Σ) | `(v−1wv) minimal} = π−1(Omin

w ).

Note that w ∈ Omin
w if and only if C0 ∈ CombiMin(w).

Obs: If Γ ⊆ CombiMin(w) gallery from D to E , then π(D)→ π(E ).

Proof: WLOG, D = vC0 and E = vsC0 adjacent (v ∈W , s ∈ S).
=⇒ `(v−1wv) = `(Omin

w ) = `(sv−1wvs)
=⇒ π(D) = v−1wv s→ sv−1wvs = π(E ).

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 9 / 11



Proof idea — Minimal displacement sets
Fix w ∈W , and let

Ow = {v−1wv | v ∈W } and Omin
w = {u ∈ Ow | `(u) minimal}.

Γ gallery from vC0 to wvC0 ⇒ type(Γ) expression for v−1wv .
Define π : Ch(Σ)� Ow : vC0 7→ v−1wv .
The (combinatorial) minimal displacement set of w is

CombiMin(w) = {D ∈ Ch(Σ) | dCh(D,wD) minimal}
= {vC0 ∈ Ch(Σ) | `(v−1wv) minimal} = π−1(Omin

w ).

Note that w ∈ Omin
w if and only if C0 ∈ CombiMin(w).

Obs: If Γ ⊆ CombiMin(w) gallery from D to E , then π(D)→ π(E ).
Proof: WLOG, D = vC0 and E = vsC0 adjacent (v ∈W , s ∈ S).
=⇒ `(v−1wv) = `(Omin

w ) = `(sv−1wvs)
=⇒ π(D) = v−1wv s→ sv−1wvs = π(E ).

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 9 / 11



Proof idea — Minimal displacement sets
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Proof idea — The complex Cw

Let Cw be the smallest chamber subcomplex A of Σ such that
1 C0 ∈ Ch(A);
2 If C ∈ Ch(A) and Γ minimal gallery from C to w±1C , then Γ ⊆ A;
3 Let R be a (spherical) residue such that w normalises StabW (R).

If C ,D ∈ R and C ∈ Ch(A) and D ∈ CombiMin(w), then D ∈ Ch(A).

Write w →≈ w ′ if there exists w ′′ ∈W with w → w ′′ ≈ w ′.

Obs: If vC0 ∈ Cw then w →≈ v−1wv .

Proof: This is equivalent to: If C ∈ Ch(Cw ), then π(C0)→≈ π(C).
(1) If D is on a minimal gallery Γ from C to wC , then π(C)→ π(D).
(2) If C ,D ∈ R and D ∈ CombiMin(w), then π(C)→≈ π(D).
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(1) If D is on a minimal gallery Γ from C to wC , then π(C)→ π(D).
(2) If C ,D ∈ R and D ∈ CombiMin(w), then π(C)→≈ π(D).

To simplify notations, say C = C0. For (1), see picture; for (2), see below.

Hyp: C0,D ∈ R and w normalises StabW (R) = WI with I ⊆ S spherical.
Lem (Lusztig ‘77): NW (WI) = WI o NI where NI = {w ∈W | w .I = I},

and `(wInI) = `(wI) + `(nI) for all wI ∈WI and nI ∈ NI .
Write w = wInI with wI ∈WI and nI ∈ NI .
Note that δ : WI →WI : x 7→ nIxn−1

I is a diagram automorphism.
As D ∈ R, we have D = vC0 for some v ∈WI .
To prove:

wI · nI =

w →≈ v−1wv = v−1wInIv · n−1
I nI = v−1wIδ(v) · nI .

By [GKP00] or [HN12] in WI , we have wI →δ≈δ v−1wIδ(v) in WI ,
and hence wI · nI →≈ v−1wIδ(v) · nI , as desired.
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Proof idea — The complex Cw

Write w →≈ w ′ if there exists w ′′ ∈W with w → w ′′ ≈ w ′.

Obs: If vC0 ∈ Cw then w →≈ v−1wv .
Proof: This is equivalent to: If C ∈ Ch(Cw ), then π(C0)→≈ π(C).
(1) If D is on a minimal gallery Γ from C to wC , then π(C)→ π(D).
(2) If C ,D ∈ R and D ∈ CombiMin(w), then π(C)→≈ π(D).
To simplify notations, say C = C0. For (1), see picture; for (2), see below.

Hyp: C0,D ∈ R and w normalises StabW (R) = WI with I ⊆ S spherical.
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and `(wInI) = `(wI) + `(nI) for all wI ∈WI and nI ∈ NI .
Write w = wInI with wI ∈WI and nI ∈ NI .
Note that δ : WI →WI : x 7→ nIxn−1

I is a diagram automorphism.
As D ∈ R, we have D = vC0 for some v ∈WI .
To prove: wI · nI = w →≈ v−1wv = v−1wInIv · n−1

I nI = v−1wIδ(v) · nI .
By [GKP00] or [HN12] in WI , we have wI →δ≈δ v−1wIδ(v) in WI ,
and hence wI · nI →≈ v−1wIδ(v) · nI , as desired.
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Proof idea — Here we go

Recall we have a CAT(0) metric d on X := |Σ|CAT(0).
The minimal displacement set of w is

Min(w) = {x ∈ X | d(x ,wx) is minimal}.

If w has infinite order, then Min(w) is the closed convex subset of X which
is the union of all w-axes, i.e. of all geodesic lines L stabilised by w .

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.
Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).
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Example:

w = sut

Min(w) = L

Min(w2) = |Σ|CAT(0)

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 11 / 11



Proof idea — Here we go

Recall we have a CAT(0) metric d on X := |Σ|CAT(0).
The minimal displacement set of w is

Min(w) = {x ∈ X | d(x ,wx) is minimal}.

If w has infinite order, then Min(w) is the closed convex subset of X which
is the union of all w-axes, i.e. of all geodesic lines L stabilised by w .

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.
Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 11 / 11



Proof idea — Here we go

Recall we have a CAT(0) metric d on X := |Σ|CAT(0).
The minimal displacement set of w is

Min(w) = {x ∈ X | d(x ,wx) is minimal}.

If w has infinite order, then Min(w) is the closed convex subset of X which
is the union of all w-axes, i.e. of all geodesic lines L stabilised by w .

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.
Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 11 / 11



Proof idea — Here we go

Recall we have a CAT(0) metric d on X := |Σ|CAT(0).
The minimal displacement set of w is

Min(w) = {x ∈ X | d(x ,wx) is minimal}.

If w has infinite order, then Min(w) is the closed convex subset of X which
is the union of all w-axes, i.e. of all geodesic lines L stabilised by w .

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.

Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 11 / 11



Proof idea — Here we go

Recall we have a CAT(0) metric d on X := |Σ|CAT(0).
The minimal displacement set of w is

Min(w) = {x ∈ X | d(x ,wx) is minimal}.

If w has infinite order, then Min(w) is the closed convex subset of X which
is the union of all w-axes, i.e. of all geodesic lines L stabilised by w .

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.
Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).
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Proof idea — Here we go

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.
Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).

xw

vxw ′

C0

vC0

C
D

m

x L wC

Let xw ∈ Min(w) and xw ′ ∈ Min(w ′).
⇒ vxw ′ ∈ Min(vw ′v−1) = Min(w)
⇒ [xw , vxw ′ ] ⊆ Min(w)
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Proof idea — Here we go

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.
Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).
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Let xw ∈ Min(w) and xw ′ ∈ Min(w ′).
⇒ vxw ′ ∈ Min(vw ′v−1) = Min(w)
⇒ [xw , vxw ′ ] ⊆ Min(w)
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Proof idea — Here we go

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.
Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).

xw

vxw ′

C0

vC0

C
D

m

x L wC

Let xw ∈ Min(w) and xw ′ ∈ Min(w ′).
⇒ vxw ′ ∈ Min(vw ′v−1) = Min(w)
⇒ [xw , vxw ′ ] ⊆ Min(w)

Let Γ = (C0, . . . ,C ,D, . . . , vC0) be a
minimal gallery containing [xw , vxw ′ ].
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Proof idea — Here we go

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.
Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).
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vxw ′
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vC0
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L wC

Let xw ∈ Min(w) and xw ′ ∈ Min(w ′).
⇒ vxw ′ ∈ Min(vw ′v−1) = Min(w)
⇒ [xw , vxw ′ ] ⊆ Min(w)

Let Γ = (C0, . . . ,C ,D, . . . , vC0) be a
minimal gallery containing [xw , vxw ′ ].
Let m be the wall between C and D.
Let L be a w -axis through x ∈ C ∩ D.
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Proof idea — Here we go

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.
Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).

xw

vxw ′

C0

vC0

C
D

m

x L

wC

Let xw ∈ Min(w) and xw ′ ∈ Min(w ′).
⇒ vxw ′ ∈ Min(vw ′v−1) = Min(w)
⇒ [xw , vxw ′ ] ⊆ Min(w)

Let Γ = (C0, . . . ,C ,D, . . . , vC0) be a
minimal gallery containing [xw , vxw ′ ].
Let m be the wall between C and D.
Let L be a w -axis through x ∈ C ∩ D.

Case 1: L ∩m = {∗}.
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Proof idea — Here we go

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.
Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).

xw

vxw ′

C0

vC0

C
D

m

x L wC

Let xw ∈ Min(w) and xw ′ ∈ Min(w ′).
⇒ vxw ′ ∈ Min(vw ′v−1) = Min(w)
⇒ [xw , vxw ′ ] ⊆ Min(w)

Let Γ = (C0, . . . ,C ,D, . . . , vC0) be a
minimal gallery containing [xw , vxw ′ ].
Let m be the wall between C and D.
Let L be a w -axis through x ∈ C ∩ D.

Case 1: L ∩m = {∗}. Then C ∈ Cw ⇒ D ∈ Cw .
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Proof idea — Here we go

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.
Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).

xw

vxw ′

C0

vC0
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D

m

x

L

Rx E = projRx (vC0)

Let xw ∈ Min(w) and xw ′ ∈ Min(w ′).
Let Γ = (C0, . . . ,C ,D, . . . , vC0) be a
minimal gallery containing [xw , vxw ′ ].
Let m be the wall between C and D.
Let L be a w -axis through x ∈ C ∩ D.

Case 2: L ⊆ m.
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Proof idea — Here we go

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.
Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).

xw

vxw ′

C0

vC0

C
D

m

x

L

Rx E = projRx (vC0)

Let xw ∈ Min(w) and xw ′ ∈ Min(w ′).
Let Γ = (C0, . . . ,C ,D, . . . , vC0) be a
minimal gallery containing [xw , vxw ′ ].
Let m be the wall between C and D.
Let L be a w -axis through x ∈ C ∩ D.

Case 2: L ⊆ m.
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Proof idea — Here we go

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.
Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).

xw

vxw ′

C0

vC0

C
D

m

x

L

Rx

E = projRx (vC0)

Let xw ∈ Min(w) and xw ′ ∈ Min(w ′).
Let Γ = (C0, . . . ,C ,D, . . . , vC0) be a
minimal gallery containing [xw , vxw ′ ].
Let m be the wall between C and D.
Let L be a w -axis through x ∈ C ∩ D.

Case 2: L ⊆ m.Case 2: L ⊆ m. Then w normalises StabW (Rx ).∗
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Proof idea — Here we go

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.
Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).
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Rx E = projRx (vC0)

Let xw ∈ Min(w) and xw ′ ∈ Min(w ′).
Let Γ = (C0, . . . ,C ,D, . . . , vC0) be a
minimal gallery containing [xw , vxw ′ ].
Let m be the wall between C and D.
Let L be a w -axis through x ∈ C ∩ D.

Case 2: L ⊆ m.Case 2: L ⊆ m. Then w normalises StabW (Rx ).∗
Prop: E = projRx (vC0) ∈ CombiMin(w)
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Proof idea — Here we go

Theorem: Let w ′ ∈ Omin
w . Then w →≈ w ′.

Assume that w ∈W has infinite order, and let w ′ ∈ Omin
w .

Reduction step: WLOG, w ,w ′ have an axis through C0.
Claim: Write w ′ = v−1wv for some v ∈W . Then vC0 ∈ Cw .
Hyp: vC0 ∈ CombiMin(w).

xw

vxw ′

C0

vC0

C
D

m

x

L

Rx E = projRx (vC0)

Let xw ∈ Min(w) and xw ′ ∈ Min(w ′).
Let Γ = (C0, . . . ,C ,D, . . . , vC0) be a
minimal gallery containing [xw , vxw ′ ].
Let m be the wall between C and D.
Let L be a w -axis through x ∈ C ∩ D.

Case 2: L ⊆ m.Case 2: L ⊆ m. Then w normalises StabW (Rx ).∗
Prop: E = projRx (vC0) ∈ CombiMin(w)

Hence, C ∈ Cw ⇒ E ∈ Cw .
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