Cyclically reduced elements in Coxeter groups
 Groups and Geometries - Banff 2019

Timothée Marquis

UCLouvain

August 26, 2019

The word and conjugacy problems in Coxeter groups

- Throughout this talk, (W, S) denotes a Coxeter system:

$$
\left.W=\langle s \in S| s^{2}=1=(s t)^{m_{s t}} \text { for all } s, t \in S \text { with } s \neq t\right\rangle
$$

for some $m_{s t} \in \mathbb{N}_{\geq 2} \cup\{\infty\}$;

The word and conjugacy problems in Coxeter groups

- Throughout this talk, (W, S) denotes a Coxeter system:

$$
\left.W=\langle s \in S| s^{2}=1=(s t)^{m_{s t}} \text { for all } s, t \in S \text { with } s \neq t\right\rangle
$$

for some $m_{s t} \in \mathbb{N}_{\geq 2} \cup\{\infty\}$;

- $\boldsymbol{W}=\bigcup_{n \in \mathbb{N}} S^{n}$ is the monoid of words on the alphabet S;

The word and conjugacy problems in Coxeter groups

- Throughout this talk, (W, S) denotes a Coxeter system:

$$
\left.W=\langle s \in S| s^{2}=1=(s t)^{m_{s t}} \text { for all } s, t \in S \text { with } s \neq t\right\rangle
$$

for some $m_{s t} \in \mathbb{N}_{\geq 2} \cup\{\infty\}$;

- $\boldsymbol{W}=\bigcup_{n \in \mathbb{N}} S^{n}$ is the monoid of words on the alphabet S;
- $\ell=\ell_{S}: W \rightarrow \mathbb{N}$ is the word length on W.

The word and conjugacy problems in Coxeter groups

- Throughout this talk, (W, S) denotes a Coxeter system:

$$
\left.W=\langle s \in S| s^{2}=1=(s t)^{m_{s t}} \text { for all } s, t \in S \text { with } s \neq t\right\rangle
$$

for some $m_{s t} \in \mathbb{N}_{\geq 2} \cup\{\infty\}$;

- $\boldsymbol{W}=\bigcup_{n \in \mathbb{N}} S^{n}$ is the monoid of words on the alphabet S;
- $\ell=\ell_{S}: W \rightarrow \mathbb{N}$ is the word length on W.

Solution to the word problem in W (Tits, Matsumoto, 1960's)

Assume that $\boldsymbol{w}, \boldsymbol{w}^{\prime} \in \boldsymbol{W}$ represent the same element of W, and that \boldsymbol{w}^{\prime} is reduced. Then \boldsymbol{w}^{\prime} can be obtained from \boldsymbol{w} by a (finite) sequence of elementary operations of the form

- Braid relations: $\underbrace{s t s t \ldots}_{m_{s t} \text { letters }} \mapsto \underbrace{\text { tsts } \ldots}_{m_{s t} \text { letters }}$ for distinct $s, t \in S$ with $m_{s t}<\infty$.
- ss-cancellations: ss $\mapsto \varnothing$ for $s \in S$.

The word and conjugacy problems in Coxeter groups

Solution to the conjugacy problem in W (Krammer, 1994)

There is a polynomial time algorithm determining whether two words $\boldsymbol{w}, \boldsymbol{w}^{\prime} \in \boldsymbol{W}$ represent conjugate elements of W.

The word and conjugacy problems in Coxeter groups

Solution to the conjugacy problem in W (Krammer, 1994)

There is a polynomial time algorithm determining whether two words $\boldsymbol{w}, \boldsymbol{w}^{\prime} \in \boldsymbol{W}$ represent conjugate elements of W.

Question
 Is there a "nicer" algorithm for the conjugacy problem in W, with "natural" elementary operations as in Matsumoto's Theorem?

The word and conjugacy problems in Coxeter groups

Solution to the conjugacy problem in W (Krammer, 1994)

There is a polynomial time algorithm determining whether two words $\boldsymbol{w}, \boldsymbol{w}^{\prime} \in \boldsymbol{W}$ represent conjugate elements of W.

Question

Is there a "nicer" algorithm for the conjugacy problem in W, with "natural" elementary operations as in Matsumoto's Theorem?

- Call $w^{\prime} \in W$ a cyclic shift of $w \in W$ if there is a reduced expression $w=s_{1} \ldots s_{k}$ of w such that $w^{\prime}=s_{2} \ldots s_{k} s_{1}$ or $w^{\prime}=s_{k} s_{1} \ldots s_{k-1}$.

The word and conjugacy problems in Coxeter groups

Solution to the conjugacy problem in W (Krammer, 1994)

There is a polynomial time algorithm determining whether two words $\boldsymbol{w}, \boldsymbol{w}^{\prime} \in \boldsymbol{W}$ represent conjugate elements of W.

Question

Is there a "nicer" algorithm for the conjugacy problem in W, with "natural" elementary operations as in Matsumoto's Theorem?

- Call $w^{\prime} \in W$ a cyclic shift of $w \in W$ if there is a reduced expression $w=s_{1} \ldots s_{k}$ of w such that $w^{\prime}=s_{2} \ldots s_{k} s_{1}$ or $w^{\prime}=s_{k} s_{1} \ldots s_{k-1}$.
- w^{\prime} cyclic shift of $w \Leftrightarrow w^{\prime}=s w s$ for some $s \in S$ with $\ell(s w s) \leq \ell(w)$. In that case, we write $w \xrightarrow{s} w^{\prime}$.

The word and conjugacy problems in Coxeter groups

Solution to the conjugacy problem in W (Krammer, 1994)

There is a polynomial time algorithm determining whether two words $\boldsymbol{w}, \boldsymbol{w}^{\prime} \in \boldsymbol{W}$ represent conjugate elements of W.

Question

Is there a "nicer" algorithm for the conjugacy problem in W, with "natural" elementary operations as in Matsumoto's Theorem?

- Call $w^{\prime} \in W$ a cyclic shift of $w \in W$ if there is a reduced expression $w=s_{1} \ldots s_{k}$ of w such that $w^{\prime}=s_{2} \ldots s_{k} s_{1}$ or $w^{\prime}=s_{k} s_{1} \ldots s_{k-1}$.
- w^{\prime} cyclic shift of $w \Leftrightarrow w^{\prime}=s w s$ for some $s \in S$ with $\ell(s w s) \leq \ell(w)$. In that case, we write $w \xrightarrow{s} w^{\prime}$.
- Write $w \rightarrow w^{\prime}$ if $w=w_{0} \xrightarrow{s_{1}} w_{1} \cdots \xrightarrow{s_{k}} w_{k}=w^{\prime}$ for some w_{i}, s_{i}.

The word and conjugacy problems in Coxeter groups

Solution to the conjugacy problem in W (Krammer, 1994)

There is a polynomial time algorithm determining whether two words $\boldsymbol{w}, \boldsymbol{w}^{\prime} \in \boldsymbol{W}$ represent conjugate elements of W.

Question

Is there a "nicer" algorithm for the conjugacy problem in W, with "natural" elementary operations as in Matsumoto's Theorem?

- Call $w^{\prime} \in W$ a cyclic shift of $w \in W$ if there is a reduced expression $w=s_{1} \ldots s_{k}$ of w such that $w^{\prime}=s_{2} \ldots s_{k} s_{1}$ or $w^{\prime}=s_{k} s_{1} \ldots s_{k-1}$.
- w^{\prime} cyclic shift of $w \Leftrightarrow w^{\prime}=s w s$ for some $s \in S$ with $\ell(s w s) \leq \ell(w)$. In that case, we write $w \xrightarrow{s} w^{\prime}$.
- Write $w \rightarrow w^{\prime}$ if $w=w_{0} \xrightarrow{s_{1}} w_{1} \cdots \xrightarrow{s_{k}} w_{k}=w^{\prime}$ for some w_{i}, s_{i}.
- Call $w \in W$ cyclically reduced if $\ell\left(w^{\prime}\right)=\ell(w)$ for every $w \rightarrow w^{\prime}$.

The word and conjugacy problems in Coxeter groups

A first step towards a better algorithm might be found by use of reductions of w of the form

$$
\begin{equation*}
w \mapsto s w s \quad \text { whenever } \quad \ell(s w s) \leq \ell(w) \tag{2}
\end{equation*}
$$

We shall call w conjugacy-reduced if each series of reductions as in (2) starting with w leads to an element w^{\prime} of W with $\ell\left(w^{\prime}\right)=\ell(w)$.
Conjecture 2.18 Let C be a conjugacy class of W and put $\ell_{C}=\min \{\ell(w) \mid w \in$ $C\}$. Then, for any $w \in C$, we have $\ell(w)=\ell_{C}$ if and only if w is conjugacy-reduced.

By Geck and Pfeiffer [1992], the conjecture holds for Weyl groups. The authors use the result for Hecke algebra representations.
A. Cohen, Recent results on Coxeter groups (1994) in NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.

The word and conjugacy problems in Coxeter groups

- Call $w^{\prime} \in W$ a cyclic shift of $w \in W$ if there is a reduced expression $w=s_{1} \ldots s_{k}$ of w such that $w^{\prime}=s_{2} \ldots s_{k} s_{1}$ or $w^{\prime}=s_{k} s_{1} \ldots s_{k-1}$.
- w^{\prime} cyclic shift of $w \Leftrightarrow w^{\prime}=s w s$ for some $s \in S$ with $\ell(s w s) \leq \ell(w)$. In that case, we write $w \xrightarrow{s} w^{\prime}$.
- Write $w \rightarrow w^{\prime}$ if $w=w_{0} \xrightarrow{s_{1}} w_{1} \cdots \xrightarrow{s_{k}} w_{k}=w^{\prime}$ for some w_{i}, s_{i}.
- Call $w \in W$ cyclically reduced if $\ell\left(w^{\prime}\right)=\ell(w)$ for every $w \rightarrow w^{\prime}$.

Conjecture (A. Cohen, 1994)

An element $w \in W$ is cyclically reduced if and only if it is of minimal length in its conjugacy class.

The word and conjugacy problems in Coxeter groups

- Call $w^{\prime} \in W$ a cyclic shift of $w \in W$ if there is a reduced expression $w=s_{1} \ldots s_{k}$ of w such that $w^{\prime}=s_{2} \ldots s_{k} s_{1}$ or $w^{\prime}=s_{k} s_{1} \ldots s_{k-1}$.
- w^{\prime} cyclic shift of $w \Leftrightarrow w^{\prime}=s w s$ for some $s \in S$ with $\ell(s w s) \leq \ell(w)$. In that case, we write $w \xrightarrow{s} w^{\prime}$.
- Write $w \rightarrow w^{\prime}$ if $w=w_{0} \xrightarrow{s_{1}} w_{1} \cdots \xrightarrow{s_{k}} w_{k}=w^{\prime}$ for some w_{i}, s_{i}.
- Call $w \in W$ cyclically reduced if $\ell\left(w^{\prime}\right)=\ell(w)$ for every $w \rightarrow w^{\prime}$.

Conjecture (A. Cohen, 1994)

An element $w \in W$ is cyclically reduced if and only if it is of minimal length in its conjugacy class.

Example: $W=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{3}=1\right\rangle=D_{6}$
The elements s and t are conjugate but $s \nrightarrow t$.

Previous works

- Two elements $w, w^{\prime} \in W$ are elementarily strongly conjugate if
- $\ell\left(w^{\prime}\right)=\ell(w)$ and
- there exists $x \in W$ with $w^{\prime}=x^{-1} w x$ such that either $\ell\left(x^{-1} w\right)=\ell(x)+\ell(w)$ or $\ell(w x)=\ell(w)+\ell(x)$.
We then write $w \stackrel{x}{\sim} w^{\prime}$.

Previous works

- Two elements $w, w^{\prime} \in W$ are elementarily strongly conjugate if
- $\ell\left(w^{\prime}\right)=\ell(w)$ and
- there exists $x \in W$ with $w^{\prime}=x^{-1} w x$ such that either

$$
\ell\left(x^{-1} w\right)=\ell(x)+\ell(w) \text { or } \ell(w x)=\ell(w)+\ell(x) .
$$

We then write $w \stackrel{x}{\sim} w^{\prime}$.

- Call $w, w^{\prime} \in W$ strongly conjugate if $w=w_{0} \stackrel{x_{1}}{\sim} w_{1} \cdots \stackrel{x_{k}}{\sim} w_{k}=w^{\prime}$ for some $w_{i}, x_{i} \in W$.

Previous works

- Two elements $w, w^{\prime} \in W$ are elementarily strongly conjugate if
- $\ell\left(w^{\prime}\right)=\ell(w)$ and
- there exists $x \in W$ with $w^{\prime}=x^{-1} w x$ such that either

$$
\ell\left(x^{-1} w\right)=\ell(x)+\ell(w) \text { or } \ell(w x)=\ell(w)+\ell(x) .
$$

We then write $w \stackrel{x}{\sim} w^{\prime}$.

- Call $w, w^{\prime} \in W$ strongly conjugate if $w=w_{0} \stackrel{x_{1}}{\sim} w_{1} \cdots \stackrel{x_{k}}{\sim} w_{k}=w^{\prime}$ for some $w_{i}, x_{i} \in W$.
Example: $W=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{3}=1\right\rangle=D_{6}$
$s \stackrel{t s}{\sim} t$ because $t=s t \cdot s \cdot t s$ and $\ell(s t \cdot s)=\ell(t s)+\ell(s)$.

Previous works

- Two elements $w, w^{\prime} \in W$ are elementarily strongly conjugate if
- $\ell\left(w^{\prime}\right)=\ell(w)$ and
- there exists $x \in W$ with $w^{\prime}=x^{-1} w x$ such that either

$$
\ell\left(x^{-1} w\right)=\ell(x)+\ell(w) \text { or } \ell(w x)=\ell(w)+\ell(x) .
$$

We then write $w \stackrel{x}{\sim} w^{\prime}$.

- Call $w, w^{\prime} \in W$ strongly conjugate if $w=w_{0} \stackrel{x_{1}}{\sim} w_{1} \cdots \stackrel{x_{k}}{\sim} w_{k}=w^{\prime}$ for some $w_{i}, x_{i} \in W$.
Example: $W=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{3}=1\right\rangle=D_{6}$
$s \stackrel{t s}{\sim} t$ because $t=s t \cdot s \cdot t s$ and $\ell(s t \cdot s)=\ell(t s)+\ell(s)$.
Theorem (Geck-Pfeiffer, 1993)
Assume that W is finite. Let \mathcal{O} be a conjugacy class in W. Then:
(1) For every $w \in \mathcal{O}$ there exists w^{\prime} of minimal length in \mathcal{O} with $w \rightarrow w^{\prime}$.
(2) If w, w^{\prime} are of minimal length in \mathcal{O}, they are strongly conjugate.

Previous works

- Two elements $w, w^{\prime} \in W$ are elementarily strongly conjugate if
- $\ell\left(w^{\prime}\right)=\ell(w)$ and
- there exists $x \in W$ with $w^{\prime}=x^{-1} w x$ such that either

$$
\ell\left(x^{-1} w\right)=\ell(x)+\ell(w) \text { or } \ell(w x)=\ell(w)+\ell(x) .
$$

We then write $w \stackrel{x}{\sim} w^{\prime}$.

- Call $w, w^{\prime} \in W$ strongly conjugate if $w=w_{0} \stackrel{x_{1}}{\sim} w_{1} \cdots \stackrel{x_{k}}{\sim} w_{k}=w^{\prime}$ for some $w_{i}, x_{i} \in W$.
Example: $W=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{3}=1\right\rangle=D_{6}$
$s \stackrel{t s}{\sim} t$ because $t=s t \cdot s \cdot t s$ and $\ell(s t \cdot s)=\ell(t s)+\ell(s)$.
Theorem (Geck-Kim-Pfeiffer, 2000 and He-Nie, 2012)
Assume that W is finite. Let \mathcal{O} be a twisted conjugacy class in W. Then:
(1) For every $w \in \mathcal{O}$ there exists w^{\prime} of minimal length in \mathcal{O} with $w \rightarrow w^{\prime}$.
(2) If w, w^{\prime} are of minimal length in \mathcal{O}, they are strongly conjugate.

Previous works

- Two elements $w, w^{\prime} \in W$ are elementarily strongly conjugate if
- $\ell\left(w^{\prime}\right)=\ell(w)$ and
- there exists $x \in W$ with $w^{\prime}=x^{-1} w x$ such that either

$$
\ell\left(x^{-1} w\right)=\ell(x)+\ell(w) \text { or } \ell(w x)=\ell(w)+\ell(x) .
$$

We then write $w \stackrel{x}{\sim} w^{\prime}$.

- Call $w, w^{\prime} \in W$ strongly conjugate if $w=w_{0} \stackrel{x_{1}}{\sim} w_{1} \cdots \stackrel{x_{k}}{\sim} w_{k}=w^{\prime}$ for some $w_{i}, x_{i} \in W$.
- Let $\delta \in \operatorname{Aut}(W, S)$ be a diagram automorphism. Define the δ-twisted conjugation by $x \in W$ as $W \rightarrow W: w \mapsto x^{-1} w \delta(x)$. \rightsquigarrow twisted conjugacy classes, twisted relations $\xrightarrow{s}, \stackrel{x}{\sim}$, etc.

Theorem (Geck-Kim-Pfeiffer, 2000 and He-Nie, 2012)

Assume that W is finite. Let \mathcal{O} be a twisted conjugacy class in W. Then:
(1) For every $w \in \mathcal{O}$ there exists w^{\prime} of minimal length in \mathcal{O} with $w \rightarrow w^{\prime}$.
(2) If w, w^{\prime} are of minimal length in \mathcal{O}, they are strongly conjugate.

Previous works

- Two elements $w, w^{\prime} \in W$ are elementarily strongly conjugate if
- $\ell\left(w^{\prime}\right)=\ell(w)$ and
- there exists $x \in W$ with $w^{\prime}=x^{-1} w x$ such that either

$$
\ell\left(x^{-1} w\right)=\ell(x)+\ell(w) \text { or } \ell(w x)=\ell(w)+\ell(x) .
$$

We then write $w \stackrel{x}{\sim} w^{\prime}$.

- Call $w, w^{\prime} \in W$ strongly conjugate if $w=w_{0} \stackrel{x_{1}}{\sim} w_{1} \cdots \stackrel{x_{k}}{\sim} w_{k}=w^{\prime}$ for some $w_{i}, x_{i} \in W$.
- Let $\delta \in \operatorname{Aut}(W, S)$ be a diagram automorphism. Define the δ-twisted conjugation by $x \in W$ as $W \rightarrow W: w \mapsto x^{-1} w \delta(x)$. \rightsquigarrow twisted conjugacy classes, twisted relations $\xrightarrow{s}, \stackrel{x}{\sim}$, etc.

Theorem (He-Nie, 2014)

Assume that W is affine. Let \mathcal{O} be a twisted conjugacy class in W. Then:
(1) For every $w \in \mathcal{O}$ there exists w^{\prime} of minimal length in \mathcal{O} with $w \rightarrow w^{\prime}$.
(2) If w, w^{\prime} are of minimal length in \mathcal{O}, they are strongly conjugate.

Main result

Theorem (M., 2018)
Let (W, S) be a Coxeter system. Let \mathcal{O} be a conjugacy class in W. Then:
(1) For every $w \in \mathcal{O}$ there exists w^{\prime} of minimal length in \mathcal{O} with $w \rightarrow w^{\prime}$.
(2) If w, w^{\prime} are of minimal length in \mathcal{O}, they are tightly conjugate.

Main result

Theorem (M., 2018)

Let (W, S) be a Coxeter system. Let \mathcal{O} be a conjugacy class in W. Then:
(1) For every $w \in \mathcal{O}$ there exists w^{\prime} of minimal length in \mathcal{O} with $w \rightarrow w^{\prime}$.
(2) If w, w^{\prime} are of minimal length in \mathcal{O}, they are tightly conjugate.

Corollary (M., 2018)

An element $w \in W$ is cyclically reduced if and only if it is of minimal length in its conjugacy class.

Main result

Theorem (M., 2018)

Let (W, S) be a Coxeter system. Let \mathcal{O} be a conjugacy class in W. Then:
(1) For every $w \in \mathcal{O}$ there exists w^{\prime} of minimal length in \mathcal{O} with $w \rightarrow w^{\prime}$.
(2) If w, w^{\prime} are of minimal length in \mathcal{O}, they are tightly conjugate.

Corollary (M., 2018)

An element $w \in W$ is cyclically reduced if and only if it is of minimal length in its conjugacy class.

- Call $w, w^{\prime} \in W$ elem. tightly conjugate if $\ell\left(w^{\prime}\right)=\ell(w)$ and either
- w^{\prime} is a cyclic shift of w, or
- there exist $I \subseteq S$ spherical (i.e. $W_{I}:=\langle I\rangle \subseteq W$ is finite) such that $w \in N_{W}\left(W_{l}\right)$, and some $x \in W_{l}$ such that $w \stackrel{x}{\sim} w^{\prime}$.

Main result

Theorem (M., 2018)

Let (W, S) be a Coxeter system. Let \mathcal{O} be a conjugacy class in W. Then:
(1) For every $w \in \mathcal{O}$ there exists w^{\prime} of minimal length in \mathcal{O} with $w \rightarrow w^{\prime}$.
(2) If w, w^{\prime} are of minimal length in \mathcal{O}, they are tightly conjugate.

Corollary (M., 2018)

An element $w \in W$ is cyclically reduced if and only if it is of minimal length in its conjugacy class.

- Call $w, w^{\prime} \in W$ elem. tightly conjugate if $\ell\left(w^{\prime}\right)=\ell(w)$ and either
- w^{\prime} is a cyclic shift of w, or
- there exist $I \subseteq S$ spherical (i.e. $W_{I}:=\langle I\rangle \subseteq W$ is finite) such that $w \in N_{W}\left(W_{l}\right)$, and some $x \in W_{l}$ such that $w \stackrel{x}{\sim} w^{\prime}$.
- Call $w, w^{\prime} \in W$ tightly conjugate if w^{\prime} can be obtained from w by a sequence of elem. tight conjugations. We then write $w \approx w^{\prime}$.

Proof idea - The Coxeter complex Σ of (W, S)

Ex: $W=\left\langle s, t, u \mid s^{2}=t^{2}=u^{2}=(s t)^{3}=(s u)^{3}=(t u)^{3}=1\right\rangle=\tilde{A}_{2}$

$W \curvearrowright \Sigma$ simplicial complex

Proof idea - The Coxeter complex Σ of (W, S)

Ex: $W=\left\langle s, t, u \mid s^{2}=t^{2}=u^{2}=(s t)^{3}=(s u)^{3}=(t u)^{3}=1\right\rangle=\widetilde{A}_{2}$

$W \curvearrowright \Sigma$ simplicial complex chambers $=$ max simplices $\operatorname{Ch}(\Sigma)=\left\{w C_{0} \mid w \in W\right\}$

Proof idea - The Coxeter complex Σ of (W, S)

Ex: $W=\left\langle s, t, u \mid s^{2}=t^{2}=u^{2}=(s t)^{3}=(s u)^{3}=(t u)^{3}=1\right\rangle=\widetilde{A}_{2}$

$W \curvearrowright \Sigma$ simplicial complex chambers $=$ max simplices $\operatorname{Ch}(\Sigma)=\left\{w C_{0} \mid w \in W\right\}$
walls $=$ reflection hyperplanes

Proof idea - The Coxeter complex Σ of (W, S)

Ex: $W=\left\langle s, t, u \mid s^{2}=t^{2}=u^{2}=(s t)^{3}=(s u)^{3}=(t u)^{3}=1\right\rangle=\widetilde{A}_{2}$
 $W \curvearrowright \Sigma$ simplicial complex chambers $=$ max simplices $\operatorname{Ch}(\Sigma)=\left\{w C_{0} \mid w \in W\right\}$
walls $=$ reflection hyperplanes d_{Ch} chamber distance on $\mathrm{Ch}(\Sigma)$ $\mathrm{d}_{\mathrm{Ch}}\left(C_{0}, w C_{0}\right)=\ell(w)$

Proof idea - The Coxeter complex Σ of (W, S)

$$
\text { Ex: } W=\left\langle s, t, u \mid s^{2}=t^{2}=u^{2}=(s t)^{3}=(s u)^{3}=(t u)^{3}=1\right\rangle=\widetilde{A}_{2}
$$

 $W \curvearrowright \Sigma$ simplicial complex chambers $=$ max simplices $\operatorname{Ch}(\Sigma)=\left\{w C_{0} \mid w \in W\right\}$
walls $=$ reflection hyperplanes d_{Ch} chamber distance on $\mathrm{Ch}(\Sigma)$ $\mathrm{d}_{\mathrm{Ch}}\left(C_{0}, w C_{0}\right)=\ell(w)$

Proof idea - The Coxeter complex Σ of (W, S)
Ex: $W=\left\langle s, t, u \mid s^{2}=t^{2}=u^{2}=(s t)^{3}=(s u)^{3}=(t u)^{3}=1\right\rangle=\widetilde{A}_{2}$

$W \curvearrowright \Sigma$ simplicial complex chambers $=$ max simplices $\operatorname{Ch}(\Sigma)=\left\{w C_{0} \mid w \in W\right\}$
walls $=$ reflection hyperplanes d_{Ch} chamber distance on $\mathrm{Ch}(\Sigma)$

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{Ch}}\left(C_{0}, w C_{0}\right)=\ell(w) \\
& \text { galleries from } C_{0} \leftrightarrow \mathbf{W} \\
& \Gamma=\left(C_{0}, \ldots, w C_{0}\right) \mapsto \operatorname{type}(\Gamma)
\end{aligned}
$$

Proof idea - The Coxeter complex Σ of (W, S)
Ex: $W=\left\langle s, t, u \mid s^{2}=t^{2}=u^{2}=(s t)^{3}=(s u)^{3}=(t u)^{3}=1\right\rangle=\widetilde{A}_{2}$

$W \curvearrowright \Sigma$ simplicial complex chambers $=$ max simplices $\operatorname{Ch}(\Sigma)=\left\{w C_{0} \mid w \in W\right\}$
walls $=$ reflection hyperplanes d_{Ch} chamber distance on $\mathrm{Ch}(\Sigma)$

$$
\mathrm{d}_{\mathrm{Ch}}\left(C_{0}, w C_{0}\right)=\ell(w)
$$

galleries from $C_{0} \leftrightarrow \boldsymbol{W}$

$$
\Gamma=\left(C_{0}, \ldots, w C_{0}\right) \mapsto \operatorname{type}(\Gamma)
$$

$\left(|\Sigma|_{\text {CAT(0) }}, \mathrm{d}\right)$ Davis complex

Proof idea - The Coxeter complex Σ of (W, S)
Ex: $W=\left\langle s, t, u \mid s^{2}=t^{2}=u^{2}=(s t)^{3}=(s u)^{3}=(t u)^{3}=1\right\rangle=\widetilde{A}_{2}$
 chambers $=$ max simplices $\operatorname{Ch}(\Sigma)=\left\{w C_{0} \mid w \in W\right\}$
walls $=$ reflection hyperplanes d_{Ch} chamber distance on $\mathrm{Ch}(\Sigma)$

$$
\mathrm{d}_{\mathrm{Ch}}\left(C_{0}, w C_{0}\right)=\ell(w)
$$

$$
\text { galleries from } C_{0} \leftrightarrow \boldsymbol{W}
$$

$$
\Gamma=\left(C_{0}, \ldots, w C_{0}\right) \mapsto \operatorname{type}(\Gamma)
$$ $\left(|\Sigma|_{\text {CAT(0) }}, \mathrm{d}\right)$ Davis complex residue $R_{x}=\{$ chambers $\ni x\}$ $\operatorname{Stab}_{W}\left(R_{x}\right)$ spherical parabolic

Proof idea - The Coxeter complex Σ of (W, S)
Ex: $W=\left\langle s, t, u \mid s^{2}=t^{2}=u^{2}=(s t)^{3}=(s u)^{3}=(t u)^{3}=1\right\rangle=\widetilde{A}_{2}$

$W \curvearrowright \Sigma$ simplicial complex chambers $=$ max simplices $\operatorname{Ch}(\Sigma)=\left\{w C_{0} \mid w \in W\right\}$
walls $=$ reflection hyperplanes d_{Ch} chamber distance on $\mathrm{Ch}(\Sigma)$

$$
\mathrm{d}_{\mathrm{Ch}}\left(C_{0}, w C_{0}\right)=\ell(w)
$$

galleries from $C_{0} \leftrightarrow \boldsymbol{W}$

$$
\Gamma=\left(C_{0}, \ldots, w C_{0}\right) \mapsto \operatorname{type}(\Gamma)
$$ ($\left.|\Sigma|_{\text {CAT(0) }}, \mathrm{d}\right)$ Davis complex residue $R_{x}=\{$ chambers $\ni x\}$ $\operatorname{Stab}_{W}\left(R_{x}\right)$ spherical parabolic

Proof idea — The Coxeter complex Σ of (W, S)

Ex: $W=\left\langle s, t, u \mid s^{2}=t^{2}=u^{2}=(s t)^{4}=(s u)^{4}=(t u)^{4}=1\right\rangle$

Proof idea - A geometric solution to the word problem

$w=$ sutstus
$=u s t u t s u$

Proof idea - A geometric solution to the word problem

$$
w=\text { sutstus }
$$

$=$ ustutsu

Proof idea - A geometric solution to the word problem

$$
\begin{aligned}
w & =\text { sutstus } \\
& =\text { sustsus }
\end{aligned}
$$

$$
=\text { ustutsu }
$$

Proof idea - A geometric solution to the word problem

$w=$ sutstus
= sustsus
= usutsus
$=u s t u t s u$

Proof idea - A geometric solution to the word problem

$$
\begin{aligned}
w & =\text { sutstus } \\
& =\text { sustsus } \\
& =u s u t s u s \\
& =u s u t u s u \\
& =u s t u t s u
\end{aligned}
$$

Proof idea - A geometric solution to the word problem

$$
\begin{aligned}
w & =\text { sutstus } \\
& =\text { sustsus } \\
& =u s u t s u s \\
& =u s u t u s u \\
& =u s t u t s u
\end{aligned}
$$

Proof idea - A geometric solution to the word problem

$w=$ sutsututs

Proof idea - A geometric solution to the word problem

$w=$ sutsututs
$=$ sutstutts

Proof idea - A geometric solution to the word problem

$w=$ sutsututs
= sutstutts
$=$ sutstus

Proof idea - A geometric solution to the word problem

$w=$ sutsututs
= sutstutts
$=$ sutstus
= ...
$=$ ustutsu

Proof idea - Minimal displacement sets

Fix $w \in W$, and let

$$
\mathcal{O}_{w}=\left\{v^{-1} w v \mid v \in W\right\} \quad \text { and } \quad \mathcal{O}_{w}^{\min }=\left\{u \in \mathcal{O}_{w} \mid \ell(u) \text { minimal }\right\}
$$

Proof idea - Minimal displacement sets

Fix $w \in W$, and let

$$
\mathcal{O}_{w}=\left\{v^{-1} w v \mid v \in W\right\} \quad \text { and } \quad \mathcal{O}_{w}^{\min }=\left\{u \in \mathcal{O}_{w} \mid \ell(u) \text { minimal }\right\}
$$

- 「 gallery from $v C_{0}$ to $w v C_{0} \Rightarrow \operatorname{type}(\Gamma)$ expression for $v^{-1} w v$.

Proof idea - Minimal displacement sets

Proof idea - Minimal displacement sets

Proof idea - Minimal displacement sets

Fix $w \in W$, and let

$$
\mathcal{O}_{w}=\left\{v^{-1} w v \mid v \in W\right\} \quad \text { and } \quad \mathcal{O}_{w}^{\min }=\left\{u \in \mathcal{O}_{w} \mid \ell(u) \text { minimal }\right\}
$$

- 「 gallery from $v C_{0}$ to $w v C_{0} \Rightarrow \operatorname{type}(\Gamma)$ expression for $v^{-1} w v$.

Proof idea - Minimal displacement sets

Fix $w \in W$, and let

$$
\mathcal{O}_{w}=\left\{v^{-1} w v \mid v \in W\right\} \quad \text { and } \quad \mathcal{O}_{w}^{\min }=\left\{u \in \mathcal{O}_{w} \mid \ell(u) \text { minimal }\right\}
$$

- Γ gallery from $v C_{0}$ to $w v C_{0} \Rightarrow$ type (Γ) expression for $v^{-1} w v$.
- Define $\pi: \operatorname{Ch}(\Sigma) \rightarrow \mathcal{O}_{w}: v C_{0} \mapsto v^{-1} w v$.

Proof idea - Minimal displacement sets

Fix $w \in W$, and let

$$
\mathcal{O}_{w}=\left\{v^{-1} w v \mid v \in W\right\} \quad \text { and } \quad \mathcal{O}_{w}^{\min }=\left\{u \in \mathcal{O}_{w} \mid \ell(u) \text { minimal }\right\}
$$

- 「 gallery from $v C_{0}$ to $w v C_{0} \Rightarrow$ type(Γ) expression for $v^{-1} w v$.
- Define $\pi: \operatorname{Ch}(\Sigma) \rightarrow \mathcal{O}_{w}: v C_{0} \mapsto v^{-1} w v$.
- The (combinatorial) minimal displacement set of w is

$$
\begin{aligned}
\operatorname{CombiMin}(w) & =\left\{D \in \operatorname{Ch}(\Sigma) \mid \mathrm{d}_{\mathrm{Ch}}(D, w D) \text { minimal }\right\} \\
& =\left\{v C_{0} \in \operatorname{Ch}(\Sigma) \mid \ell\left(v^{-1} w v\right) \text { minimal }\right\}
\end{aligned}
$$

Proof idea - Minimal displacement sets

Fix $w \in W$, and let

$$
\mathcal{O}_{w}=\left\{v^{-1} w v \mid v \in W\right\} \quad \text { and } \quad \mathcal{O}_{w}^{\min }=\left\{u \in \mathcal{O}_{w} \mid \ell(u) \text { minimal }\right\}
$$

- 「 gallery from $v C_{0}$ to $w v C_{0} \Rightarrow \operatorname{type}(\Gamma)$ expression for $v^{-1} w v$.
- Define $\pi: \operatorname{Ch}(\Sigma) \rightarrow \mathcal{O}_{w}: v C_{0} \mapsto v^{-1} w v$.
- The (combinatorial) minimal displacement set of w is

$$
\begin{aligned}
\operatorname{CombiMin}(w) & =\left\{D \in \operatorname{Ch}(\Sigma) \mid \mathrm{d}_{\mathrm{Ch}}(D, w D) \text { minimal }\right\} \\
& =\left\{v C_{0} \in \operatorname{Ch}(\Sigma) \mid \ell\left(v^{-1} w v\right) \text { minimal }\right\}=\pi^{-1}\left(\mathcal{O}_{w}^{\min }\right)
\end{aligned}
$$

Proof idea - Minimal displacement sets

Fix $w \in W$, and let

$$
\mathcal{O}_{w}=\left\{v^{-1} w v \mid v \in W\right\} \quad \text { and } \quad \mathcal{O}_{w}^{\min }=\left\{u \in \mathcal{O}_{w} \mid \ell(u) \text { minimal }\right\}
$$

- 「 gallery from $v C_{0}$ to $w v C_{0} \Rightarrow \operatorname{type}(\Gamma)$ expression for $v^{-1} w v$.
- Define $\pi: \operatorname{Ch}(\Sigma) \rightarrow \mathcal{O}_{w}: v C_{0} \mapsto v^{-1} w v$.
- The (combinatorial) minimal displacement set of w is

$$
\begin{aligned}
\operatorname{CombiMin}(w) & =\left\{D \in \operatorname{Ch}(\Sigma) \mid \mathrm{d}_{\mathrm{Ch}}(D, w D) \text { minimal }\right\} \\
& =\left\{v C_{0} \in \operatorname{Ch}(\Sigma) \mid \ell\left(v^{-1} w v\right) \text { minimal }\right\}=\pi^{-1}\left(\mathcal{O}_{w}^{\text {min }}\right)
\end{aligned}
$$

Note that $w \in \mathcal{O}_{w}^{\min }$ if and only if $C_{0} \in \operatorname{CombiMin}(w)$.

Proof idea - Minimal displacement sets

Fix $w \in W$, and let

$$
\mathcal{O}_{w}=\left\{v^{-1} w v \mid v \in W\right\} \quad \text { and } \quad \mathcal{O}_{w}^{\min }=\left\{u \in \mathcal{O}_{w} \mid \ell(u) \text { minimal }\right\}
$$

- 「 gallery from $v C_{0}$ to $w v C_{0} \Rightarrow \operatorname{type}(\Gamma)$ expression for $v^{-1} w v$.
- Define $\pi: \operatorname{Ch}(\Sigma) \rightarrow \mathcal{O}_{w}: v C_{0} \mapsto v^{-1} w v$.
- The (combinatorial) minimal displacement set of w is
$\operatorname{CombiMin}(w)=\left\{D \in \operatorname{Ch}(\Sigma) \mid \mathrm{d}_{\mathrm{Ch}}(D, w D)\right.$ minimal $\}$

$$
=\left\{v C_{0} \in \operatorname{Ch}(\Sigma) \mid \ell\left(v^{-1} w v\right) \text { minimal }\right\}=\pi^{-1}\left(\mathcal{O}_{w}^{\min }\right)
$$

Note that $w \in \mathcal{O}_{w}^{\min }$ if and only if $C_{0} \in \operatorname{CombiMin}(w)$.
Obs: If $\Gamma \subseteq$ CombiMin (w) gallery from D to E, then $\pi(D) \rightarrow \pi(E)$.

Proof idea - Minimal displacement sets

Fix $w \in W$, and let

$$
\mathcal{O}_{w}=\left\{v^{-1} w v \mid v \in W\right\} \quad \text { and } \quad \mathcal{O}_{w}^{\min }=\left\{u \in \mathcal{O}_{w} \mid \ell(u) \text { minimal }\right\}
$$

- 「 gallery from $v C_{0}$ to $w v C_{0} \Rightarrow \operatorname{type}(\Gamma)$ expression for $v^{-1} w v$.
- Define $\pi: \operatorname{Ch}(\Sigma) \rightarrow \mathcal{O}_{w}: v C_{0} \mapsto v^{-1} w v$.
- The (combinatorial) minimal displacement set of w is
$\operatorname{CombiMin}(w)=\left\{D \in \operatorname{Ch}(\Sigma) \mid \mathrm{d}_{\mathrm{Ch}}(D, w D)\right.$ minimal $\}$

$$
=\left\{v C_{0} \in \operatorname{Ch}(\Sigma) \mid \ell\left(v^{-1} w v\right) \text { minimal }\right\}=\pi^{-1}\left(\mathcal{O}_{w}^{\min }\right) .
$$

Note that $w \in \mathcal{O}_{w}^{\min }$ if and only if $C_{0} \in \operatorname{CombiMin}(w)$.

Obs: If $\Gamma \subseteq$ CombiMin (w) gallery from D to E, then $\pi(D) \rightarrow \pi(E)$.

Proof: WLOG, $D=v C_{0}$ and $E=v s C_{0}$ adjacent $(v \in W, s \in S)$.
$\Longrightarrow \ell\left(v^{-1} w v\right)=\ell\left(\mathcal{O}_{w}^{\min }\right)=\ell\left(s v^{-1} w v s\right)$
$\Longrightarrow \pi(D)=v^{-1} w v \xrightarrow{s} s v^{-1} w v s=\pi(E)$.

Proof idea - Minimal displacement sets

Proof idea - Minimal displacement sets

Proof idea - The complex \mathcal{C}^{w}

Let \mathcal{C}^{w} be the smallest chamber subcomplex A of Σ such that
(1) $C_{0} \in \mathrm{Ch}(A)$;
(2) If $C \in \operatorname{Ch}(A)$ and Γ minimal gallery from C to $w^{ \pm 1} C$, then $\Gamma \subseteq A$;
(3) Let R be a (spherical) residue such that w normalises $\operatorname{Stab}_{w}(R)$. If $C, D \in R$ and $C \in \operatorname{Ch}(A)$ and $D \in \operatorname{CombiMin}(w)$, then $D \in \operatorname{Ch}(A)$.

Proof idea - The complex \mathcal{C}^{w}

Let \mathcal{C}^{w} be the smallest chamber subcomplex A of Σ such that
(1) $C_{0} \in \mathrm{Ch}(A)$;
(2) If $C \in \operatorname{Ch}(A)$ and Γ minimal gallery from C to $w^{ \pm 1} C$, then $\Gamma \subseteq A$;
(3) Let R be a (spherical) residue such that w normalises $\operatorname{Stab}_{w}(R)$. If $C, D \in R$ and $C \in \operatorname{Ch}(A)$ and $D \in \operatorname{CombiMin}(w)$, then $D \in \operatorname{Ch}(A)$.
Write $w \rightarrow \approx w^{\prime}$ if there exists $w^{\prime \prime} \in W$ with $w \rightarrow w^{\prime \prime} \approx w^{\prime}$.

Proof idea - The complex \mathcal{C}^{w}

Let \mathcal{C}^{w} be the smallest chamber subcomplex A of Σ such that
(1) $C_{0} \in \mathrm{Ch}(A)$;
(2) If $C \in \operatorname{Ch}(A)$ and Γ minimal gallery from C to $w^{ \pm 1} C$, then $\Gamma \subseteq A$;
(3) Let R be a (spherical) residue such that w normalises $\operatorname{Stab}_{w}(R)$. If $C, D \in R$ and $C \in \operatorname{Ch}(A)$ and $D \in \operatorname{CombiMin}(w)$, then $D \in \operatorname{Ch}(A)$.
Write $w \rightarrow \approx w^{\prime}$ if there exists $w^{\prime \prime} \in W$ with $w \rightarrow w^{\prime \prime} \approx w^{\prime}$.
Obs: If $v C_{0} \in \mathcal{C}^{w}$ then $w \rightarrow \approx v^{-1} w v$.

Proof idea - The complex \mathcal{C}^{w}

Let \mathcal{C}^{w} be the smallest chamber subcomplex A of Σ such that
(1) $C_{0} \in \mathrm{Ch}(A)$;
(2) If $C \in \operatorname{Ch}(A)$ and Γ minimal gallery from C to $w^{ \pm 1} C$, then $\Gamma \subseteq A$;
(3) Let R be a (spherical) residue such that w normalises $\operatorname{Stab}_{W}(R)$. If $C, D \in R$ and $C \in \operatorname{Ch}(A)$ and $D \in \operatorname{CombiMin}(w)$, then $D \in \operatorname{Ch}(A)$.
Write $w \rightarrow \approx w^{\prime}$ if there exists $w^{\prime \prime} \in W$ with $w \rightarrow w^{\prime \prime} \approx w^{\prime}$.
Obs: If $v C_{0} \in \mathcal{C}^{w}$ then $w \rightarrow \approx v^{-1} w v$.
Proof: This is equivalent to: If $C \in \operatorname{Ch}\left(\mathcal{C}^{w}\right)$, then $\pi\left(C_{0}\right) \rightarrow \approx \pi(C)$.

Proof idea - The complex \mathcal{C}^{w}

Let \mathcal{C}^{w} be the smallest chamber subcomplex A of Σ such that
(1) $C_{0} \in \mathrm{Ch}(A)$;
(2) If $C \in \operatorname{Ch}(A)$ and Γ minimal gallery from C to $w^{ \pm 1} C$, then $\Gamma \subseteq A$;
(3) Let R be a (spherical) residue such that w normalises $\operatorname{Stab}_{W}(R)$. If $C, D \in R$ and $C \in \operatorname{Ch}(A)$ and $D \in \operatorname{CombiMin}(w)$, then $D \in \operatorname{Ch}(A)$.
Write $w \rightarrow \approx w^{\prime}$ if there exists $w^{\prime \prime} \in W$ with $w \rightarrow w^{\prime \prime} \approx w^{\prime}$.
Obs: If $v C_{0} \in \mathcal{C}^{w}$ then $w \rightarrow \approx v^{-1} w v$.
Proof: This is equivalent to: If $C \in \operatorname{Ch}\left(\mathcal{C}^{w}\right)$, then $\pi\left(C_{0}\right) \rightarrow \approx \pi(C)$.
(1) If D is on a minimal gallery Γ from C to $w C$, then $\pi(C) \rightarrow \pi(D)$.
(2) If $C, D \in R$ and $D \in \operatorname{CombiMin}(w)$, then $\pi(C) \rightarrow \approx \pi(D)$.

Proof idea - The complex \mathcal{C}^{w}

Write $w \rightarrow \approx w^{\prime}$ if there exists $w^{\prime \prime} \in W$ with $w \rightarrow w^{\prime \prime} \approx w^{\prime}$.
Obs: If $v C_{0} \in \mathcal{C}^{w}$ then $w \rightarrow \approx v^{-1} w v$.
Proof: This is equivalent to: If $C \in \operatorname{Ch}\left(\mathcal{C}^{w}\right)$, then $\pi\left(C_{0}\right) \rightarrow \approx \pi(C)$. (1) If D is on a minimal gallery Γ from C to $w C$, then $\pi(C) \rightarrow \pi(D)$. (2) If $C, D \in R$ and $D \in \operatorname{CombiMin}(w)$, then $\pi(C) \rightarrow \approx \pi(D)$.

Proof idea - The complex \mathcal{C}^{w}

Write $w \rightarrow \approx w^{\prime}$ if there exists $w^{\prime \prime} \in W$ with $w \rightarrow w^{\prime \prime} \approx w^{\prime}$.
Obs: If $v C_{0} \in \mathcal{C}^{w}$ then $w \rightarrow \approx v^{-1} w v$.
Proof: This is equivalent to: If $C \in \operatorname{Ch}\left(\mathcal{C}^{w}\right)$, then $\pi\left(C_{0}\right) \rightarrow \approx \pi(C)$. (1) If D is on a minimal gallery Γ from C to $w C$, then $\pi(C) \rightarrow \pi(D)$. (2) If $C, D \in R$ and $D \in \operatorname{CombiMin}(w)$, then $\pi(C) \rightarrow \approx \pi(D)$.

To simplify notations, say $C=C_{0}$. For (1), see picture; for (2), see below.

Proof idea - The complex \mathcal{C}^{w}

Proof of (1):

Γ from C_{0} to $w C_{0}$ type(Г) $=$ usut

Proof idea - The complex \mathcal{C}^{w}

Proof of (1):

Γ from C_{0} to $w C_{0}$ type($(\Gamma)=u s u t$
$w \Gamma$ from $w C_{0}$ to $w^{2} C_{0}$ type $(w \Gamma)=u s u t$

Proof idea - The complex \mathcal{C}^{w}

Proof of (1):

Γ from C_{0} to $w C_{0}$ type(Г) $=$ usut
$w \Gamma$ from $w C_{0}$ to $w^{2} C_{0}$ $\operatorname{type}(w \Gamma)=u s u t$
Γ^{\prime} from D to $w D$
type $\left(\Gamma^{\prime}\right)=$ usutusut
type $(\Gamma) \xrightarrow{\text { cyclic shifts }}$ type $\left(\Gamma^{\prime}\right)$ $\pi\left(C_{0}\right) \rightarrow \pi(D)$

Proof idea - The complex \mathcal{C}^{w}

Write $w \rightarrow \approx w^{\prime}$ if there exists $w^{\prime \prime} \in W$ with $w \rightarrow w^{\prime \prime} \approx w^{\prime}$.
Obs: If $v C_{0} \in \mathcal{C}^{w}$ then $w \rightarrow \approx v^{-1} w v$.
Proof: This is equivalent to: If $C \in \operatorname{Ch}\left(\mathcal{C}^{w}\right)$, then $\pi\left(C_{0}\right) \rightarrow \approx \pi(C)$. (1) If D is on a minimal gallery Γ from C to $w C$, then $\pi(C) \rightarrow \pi(D)$. (2) If $C, D \in R$ and $D \in \operatorname{CombiMin}(w)$, then $\pi(C) \rightarrow \approx \pi(D)$.

To simplify notations, say $C=C_{0}$. For (1), see picture; for (2), see below.

Proof idea - The complex \mathcal{C}^{w}

Write $w \rightarrow \approx w^{\prime}$ if there exists $w^{\prime \prime} \in W$ with $w \rightarrow w^{\prime \prime} \approx w^{\prime}$.
Obs: If $v C_{0} \in \mathcal{C}^{w}$ then $w \rightarrow \approx v^{-1} w v$.
Proof: This is equivalent to: If $C \in \operatorname{Ch}\left(\mathcal{C}^{w}\right)$, then $\pi\left(C_{0}\right) \rightarrow \approx \pi(C)$. (1) If D is on a minimal gallery Γ from C to $w C$, then $\pi(C) \rightarrow \pi(D)$. (2) If $C, D \in R$ and $D \in \operatorname{CombiMin}(w)$, then $\pi(C) \rightarrow \approx \pi(D)$.

To simplify notations, say $C=C_{0}$. For (1), see picture; for (2), see below. Hyp: $C_{0}, D \in R$ and w normalises $\operatorname{Stab}_{W}(R)=W_{I}$ with $I \subseteq S$ spherical.

Proof idea - The complex \mathcal{C}^{w}

Write $w \rightarrow \approx w^{\prime}$ if there exists $w^{\prime \prime} \in W$ with $w \rightarrow w^{\prime \prime} \approx w^{\prime}$.
Obs: If $v C_{0} \in \mathcal{C}^{w}$ then $w \rightarrow \approx v^{-1} w v$.
Proof: This is equivalent to: If $C \in \operatorname{Ch}\left(\mathcal{C}^{w}\right)$, then $\pi\left(C_{0}\right) \rightarrow \approx \pi(C)$. (1) If D is on a minimal gallery Γ from C to $w C$, then $\pi(C) \rightarrow \pi(D)$. (2) If $C, D \in R$ and $D \in \operatorname{CombiMin}(w)$, then $\pi(C) \rightarrow \approx \pi(D)$.

To simplify notations, say $C=C_{0}$. For (1), see picture; for (2), see below. Hyp: $C_{0}, D \in R$ and w normalises $\operatorname{Stab}_{W}(R)=W_{I}$ with $I \subseteq S$ spherical. Lem (Lusztig '77): $N_{W}\left(W_{I}\right)=W_{I} \rtimes N_{I}$ where $N_{I}=\{w \in W \mid w . I=I\}$, and $\ell\left(w_{l} n_{l}\right)=\ell\left(w_{l}\right)+\ell\left(n_{l}\right)$ for all $w_{l} \in W_{l}$ and $n_{l} \in N_{l}$.
Write $w=w_{l} n_{l}$ with $w_{l} \in W_{l}$ and $n_{l} \in N_{l}$.

Proof idea - The complex \mathcal{C}^{w}

Write $w \rightarrow \approx w^{\prime}$ if there exists $w^{\prime \prime} \in W$ with $w \rightarrow w^{\prime \prime} \approx w^{\prime}$.
Obs: If $v C_{0} \in \mathcal{C}^{w}$ then $w \rightarrow \approx v^{-1} w v$.
Proof: This is equivalent to: If $C \in \operatorname{Ch}\left(\mathcal{C}^{w}\right)$, then $\pi\left(C_{0}\right) \rightarrow \approx \pi(C)$.
(1) If D is on a minimal gallery Γ from C to $w C$, then $\pi(C) \rightarrow \pi(D)$.
(2) If $C, D \in R$ and $D \in \operatorname{CombiMin}(w)$, then $\pi(C) \rightarrow \approx \pi(D)$.

To simplify notations, say $C=C_{0}$. For (1), see picture; for (2), see below. Hyp: $C_{0}, D \in R$ and w normalises $\operatorname{Stab}_{W}(R)=W_{I}$ with $I \subseteq S$ spherical. Lem (Lusztig '77): $N_{W}\left(W_{l}\right)=W_{l} \rtimes N_{l}$ where $N_{I}=\{w \in W \mid w . l=I\}$, and $\ell\left(w_{l} n_{l}\right)=\ell\left(w_{l}\right)+\ell\left(n_{l}\right)$ for all $w_{l} \in W_{l}$ and $n_{l} \in N_{l}$.
Write $w=w_{l} n_{l}$ with $w_{l} \in W_{l}$ and $n_{l} \in N_{l}$. Note that $\delta: W_{I} \rightarrow W_{I}: x \mapsto n_{I} \times n_{l}^{-1}$ is a diagram automorphism.

Proof idea - The complex \mathcal{C}^{w}

Write $w \rightarrow \approx w^{\prime}$ if there exists $w^{\prime \prime} \in W$ with $w \rightarrow w^{\prime \prime} \approx w^{\prime}$.
Obs: If $v C_{0} \in \mathcal{C}^{w}$ then $w \rightarrow \approx v^{-1} w v$.
Proof: This is equivalent to: If $C \in \operatorname{Ch}\left(\mathcal{C}^{w}\right)$, then $\pi\left(C_{0}\right) \rightarrow \approx \pi(C)$.
(1) If D is on a minimal gallery Γ from C to $w C$, then $\pi(C) \rightarrow \pi(D)$.
(2) If $C, D \in R$ and $D \in \operatorname{CombiMin}(w)$, then $\pi(C) \rightarrow \approx \pi(D)$.

To simplify notations, say $C=C_{0}$. For (1), see picture; for (2), see below. Hyp: $C_{0}, D \in R$ and w normalises $\operatorname{Stab}_{W}(R)=W_{I}$ with $I \subseteq S$ spherical. Lem (Lusztig '77): $N_{W}\left(W_{l}\right)=W_{I} \rtimes N_{l}$ where $N_{I}=\{w \in W \mid w . l=I\}$, and $\ell\left(w_{l} n_{l}\right)=\ell\left(w_{l}\right)+\ell\left(n_{l}\right)$ for all $w_{l} \in W_{l}$ and $n_{l} \in N_{l}$.
Write $w=w_{l} n_{l}$ with $w_{l} \in W_{l}$ and $n_{l} \in N_{l}$.
Note that $\delta: W_{I} \rightarrow W_{I}: x \mapsto n_{1} x n_{l}^{-1}$ is a diagram automorphism.
As $D \in R$, we have $D=v C_{0}$ for some $v \in W_{l}$.
To prove: $w_{l} \cdot n_{l}=w \rightarrow \approx v^{-1} w v$

Proof idea - The complex \mathcal{C}^{w}

Write $w \rightarrow \approx w^{\prime}$ if there exists $w^{\prime \prime} \in W$ with $w \rightarrow w^{\prime \prime} \approx w^{\prime}$.
Obs: If $v C_{0} \in \mathcal{C}^{w}$ then $w \rightarrow \approx v^{-1} w v$.
Proof: This is equivalent to: If $C \in \operatorname{Ch}\left(\mathcal{C}^{w}\right)$, then $\pi\left(C_{0}\right) \rightarrow \approx \pi(C)$.
(1) If D is on a minimal gallery Γ from C to $w C$, then $\pi(C) \rightarrow \pi(D)$.
(2) If $C, D \in R$ and $D \in \operatorname{CombiMin}(w)$, then $\pi(C) \rightarrow \approx \pi(D)$.

To simplify notations, say $C=C_{0}$. For (1), see picture; for (2), see below. Hyp: $C_{0}, D \in R$ and w normalises $\operatorname{Stab}_{W}(R)=W_{I}$ with $I \subseteq S$ spherical. Lem (Lusztig '77): $N_{W}\left(W_{l}\right)=W_{I} \rtimes N_{I}$ where $N_{I}=\{w \in W \mid w . l=I\}$, and $\ell\left(w_{l} n_{l}\right)=\ell\left(w_{l}\right)+\ell\left(n_{l}\right)$ for all $w_{l} \in W_{l}$ and $n_{l} \in N_{l}$.
Write $w=w_{l} n_{l}$ with $w_{l} \in W_{l}$ and $n_{l} \in N_{l}$.
Note that $\delta: W_{I} \rightarrow W_{I}: x \mapsto n_{1} x n_{l}^{-1}$ is a diagram automorphism.
As $D \in R$, we have $D=v C_{0}$ for some $v \in W_{l}$.
To prove: $w_{l} \cdot n_{l}=w \rightarrow \approx v^{-1} w v=v^{-1} w_{l} n_{l} v \cdot n_{l}^{-1} n_{l}=v^{-1} w_{l} \delta(v) \cdot n_{l}$.

Proof idea - The complex \mathcal{C}^{w}

Write $w \rightarrow \approx w^{\prime}$ if there exists $w^{\prime \prime} \in W$ with $w \rightarrow w^{\prime \prime} \approx w^{\prime}$.

Obs: If $v C_{0} \in \mathcal{C}^{w}$ then $w \rightarrow \approx v^{-1} w v$.

Proof: This is equivalent to: If $C \in \operatorname{Ch}\left(\mathcal{C}^{w}\right)$, then $\pi\left(C_{0}\right) \rightarrow \approx \pi(C)$.
(1) If D is on a minimal gallery Γ from C to $w C$, then $\pi(C) \rightarrow \pi(D)$.
(2) If $C, D \in R$ and $D \in \operatorname{CombiMin}(w)$, then $\pi(C) \rightarrow \approx \pi(D)$.

To simplify notations, say $C=C_{0}$. For (1), see picture; for (2), see below. Hyp: $C_{0}, D \in R$ and w normalises $\operatorname{Stab}_{w}(R)=W_{I}$ with $I \subseteq S$ spherical. Lem (Lusztig '77): $N_{W}\left(W_{I}\right)=W_{I} \rtimes N_{I}$ where $N_{I}=\{w \in W \mid w . I=I\}$, and $\ell\left(w_{l} n_{l}\right)=\ell\left(w_{l}\right)+\ell\left(n_{l}\right)$ for all $w_{l} \in W_{l}$ and $n_{l} \in N_{l}$.
Write $w=w_{l} n_{l}$ with $w_{l} \in W_{l}$ and $n_{l} \in N_{l}$.
Note that $\delta: W_{I} \rightarrow W_{I}: x \mapsto n_{1} x n_{l}^{-1}$ is a diagram automorphism.
As $D \in R$, we have $D=v C_{0}$ for some $v \in W_{l}$.
To prove: $w_{l} \cdot n_{l}=w \rightarrow \approx v^{-1} w v=v^{-1} w_{l} n_{l} v \cdot n_{l}^{-1} n_{l}=v^{-1} w_{l} \delta(v) \cdot n_{l}$.
By [GKP00] or [HN12] in W_{l}, we have $w_{l} \rightarrow_{\delta} \approx_{\delta} v^{-1} w_{l} \delta(v)$ in W_{l}, and hence $w_{l} \cdot n_{l} \rightarrow \approx v^{-1} w_{l} \delta(v) \cdot n_{l}$, as desired.

Proof idea - Here we go

Recall we have a CAT(0) metric d on $X:=|\Sigma|_{\operatorname{CAT}(0)}$. The minimal displacement set of w is

$$
\operatorname{Min}(w)=\{x \in X \mid \mathrm{d}(x, w x) \text { is minimal }\} .
$$

If w has infinite order, then $\operatorname{Min}(w)$ is the closed convex subset of X which is the union of all w-axes, i.e. of all geodesic lines L stabilised by w.

Proof idea - Here we go

Example:

$$
w=s u t
$$

$\operatorname{Min}(w)=L$
$\operatorname{Min}\left(w^{2}\right)=|\Sigma|_{\operatorname{CAT}(0)}$

Proof idea - Here we go

Recall we have a CAT(0) metric d on $X:=|\Sigma|_{\operatorname{CAT}(0)}$. The minimal displacement set of w is

$$
\operatorname{Min}(w)=\{x \in X \mid \mathrm{d}(x, w x) \text { is minimal }\} .
$$

If w has infinite order, then $\operatorname{Min}(w)$ is the closed convex subset of X which is the union of all w-axes, i.e. of all geodesic lines L stabilised by w.

Theorem: Let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Then $w \rightarrow \approx w^{\prime}$.

Proof idea - Here we go

Recall we have a CAT(0) metric d on $X:=|\Sigma|_{\operatorname{CAT}(0)}$. The minimal displacement set of w is

$$
\operatorname{Min}(w)=\{x \in X \mid \mathrm{d}(x, w x) \text { is minimal }\} .
$$

If w has infinite order, then $\operatorname{Min}(w)$ is the closed convex subset of X which is the union of all w-axes, i.e. of all geodesic lines L stabilised by w.

Theorem: Let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Then $w \rightarrow \approx w^{\prime}$.
Assume that $w \in W$ has infinite order, and let $w^{\prime} \in \mathcal{O}_{w}^{\min }$.

Proof idea - Here we go

Recall we have a $\operatorname{CAT}(0)$ metric d on $X:=|\Sigma|_{\operatorname{CAT}(0)}$. The minimal displacement set of w is

$$
\operatorname{Min}(w)=\{x \in X \mid \mathrm{d}(x, w x) \text { is minimal }\} .
$$

If w has infinite order, then $\operatorname{Min}(w)$ is the closed convex subset of X which is the union of all w-axes, i.e. of all geodesic lines L stabilised by w.

Theorem: Let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Then $w \rightarrow \approx w^{\prime}$.
Assume that $w \in W$ has infinite order, and let $w^{\prime} \in \mathcal{O}_{w}^{\text {min }}$. Reduction step: WLOG, w, w^{\prime} have an axis through C_{0}.

Proof idea - Here we go

Recall we have a $\operatorname{CAT}(0)$ metric d on $X:=|\Sigma|_{\operatorname{CAT}(0)}$. The minimal displacement set of w is

$$
\operatorname{Min}(w)=\{x \in X \mid \mathrm{d}(x, w x) \text { is minimal }\} .
$$

If w has infinite order, then $\operatorname{Min}(w)$ is the closed convex subset of X which is the union of all w-axes, i.e. of all geodesic lines L stabilised by w.

Theorem: Let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Then $w \rightarrow \approx w^{\prime}$.

Assume that $w \in W$ has infinite order, and let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Reduction step: WLOG, w, w^{\prime} have an axis through C_{0}. Claim: Write $w^{\prime}=v^{-1} w v$ for some $v \in W$. Then $v C_{0} \in \mathcal{C}^{w}$. Hyp: $v C_{0} \in \operatorname{CombiMin}(w)$.

Proof idea - Here we go

Theorem: Let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Then $w \rightarrow \approx w^{\prime}$.

Assume that $w \in W$ has infinite order, and let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Reduction step: WLOG, w, w^{\prime} have an axis through C_{0}. Claim: Write $w^{\prime}=v^{-1} w v$ for some $v \in W$. Then $v C_{0} \in \mathcal{C}^{w}$. Hyp: $v C_{0} \in \operatorname{CombiMin}(w)$.

Proof idea - Here we go

Theorem: Let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Then $w \rightarrow \approx w^{\prime}$.

Assume that $w \in W$ has infinite order, and let $w^{\prime} \in \mathcal{O}_{w}^{\min }$.
Reduction step: WLOG, w, w^{\prime} have an axis through C_{0}.
Claim: Write $w^{\prime}=v^{-1} w v$ for some $v \in W$. Then $v C_{0} \in \mathcal{C}^{w}$. Hyp: $v C_{0} \in \operatorname{CombiMin}(w)$.

$$
\begin{aligned}
& \text { Let } x_{w} \in \operatorname{Min}(w) \text { and } x_{w^{\prime}} \in \operatorname{Min}\left(w^{\prime}\right) . \\
& \quad \Rightarrow v x_{w^{\prime}} \in \operatorname{Min}\left(v w^{\prime} v^{-1}\right)=\operatorname{Min}(w) \\
& \quad \Rightarrow\left[x_{w}, v x_{w^{\prime}}\right] \subseteq \operatorname{Min}(w)
\end{aligned}
$$

Proof idea - Here we go

Theorem: Let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Then $w \rightarrow \approx w^{\prime}$.

Assume that $w \in W$ has infinite order, and let $w^{\prime} \in \mathcal{O}_{w}^{\min }$.
Reduction step: WLOG, w, w^{\prime} have an axis through C_{0}.
Claim: Write $w^{\prime}=v^{-1} w v$ for some $v \in W$. Then $v C_{0} \in \mathcal{C}^{w}$. Hyp: $v C_{0} \in \operatorname{CombiMin}(w)$.

$$
\begin{aligned}
& \text { Let } x_{w} \in \operatorname{Min}(w) \text { and } x_{w^{\prime}} \in \operatorname{Min}\left(w^{\prime}\right) \text {. } \\
& \quad \Rightarrow v x_{w^{\prime}} \in \operatorname{Min}\left(v w^{\prime} v^{-1}\right)=\operatorname{Min}(w) \\
& \quad \Rightarrow\left[x_{w}, v x_{w^{\prime}}\right] \subseteq \operatorname{Min}(w) \\
& \text { Let } \Gamma=\left(C_{0}, \ldots, C, D, \ldots, v C_{0}\right) \text { be a } \\
& \text { minimal gallery containing }\left[x_{w}, v x_{w^{\prime}}\right] \text {. }
\end{aligned}
$$

Proof idea - Here we go

Theorem: Let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Then $w \rightarrow \approx w^{\prime}$.

Assume that $w \in W$ has infinite order, and let $w^{\prime} \in \mathcal{O}_{w}^{\min }$.
Reduction step: WLOG, w, w^{\prime} have an axis through C_{0}.
Claim: Write $w^{\prime}=v^{-1} w v$ for some $v \in W$. Then $v C_{0} \in \mathcal{C}^{w}$. Hyp: $v C_{0} \in \operatorname{CombiMin}(w)$.

Let $x_{w} \in \operatorname{Min}(w)$ and $x_{w^{\prime}} \in \operatorname{Min}\left(w^{\prime}\right)$.
$\Rightarrow v x_{w^{\prime}} \in \operatorname{Min}\left(v w^{\prime} v^{-1}\right)=\operatorname{Min}(w)$
$\Rightarrow\left[x_{w}, v x_{w^{\prime}}\right] \subseteq \operatorname{Min}(w)$
Let $\Gamma=\left(C_{0}, \ldots, C, D, \ldots, v C_{0}\right)$ be a minimal gallery containing [$x_{w}, v x_{w^{\prime}}$].
Let m be the wall between C and D.
Let L be a w-axis through $x \in C \cap D$.

Proof idea - Here we go

Theorem: Let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Then $w \rightarrow \approx w^{\prime}$.

Assume that $w \in W$ has infinite order, and let $w^{\prime} \in \mathcal{O}_{w}^{\min }$.
Reduction step: WLOG, w, w^{\prime} have an axis through C_{0}.
Claim: Write $w^{\prime}=v^{-1} w v$ for some $v \in W$. Then $v C_{0} \in \mathcal{C}^{w}$. Hyp: $v C_{0} \in \operatorname{CombiMin}(w)$.

Let $x_{w} \in \operatorname{Min}(w)$ and $x_{w^{\prime}} \in \operatorname{Min}\left(w^{\prime}\right)$.
$\Rightarrow v x_{w^{\prime}} \in \operatorname{Min}\left(v w^{\prime} v^{-1}\right)=\operatorname{Min}(w)$
$\Rightarrow\left[x_{w}, v x_{w^{\prime}}\right] \subseteq \operatorname{Min}(w)$
Let $\Gamma=\left(C_{0}, \ldots, C, D, \ldots, v C_{0}\right)$ be a minimal gallery containing $\left[x_{w}, v x_{w^{\prime}}\right]$.
Let m be the wall between C and D.
Let L be a w-axis through $x \in C \cap D$.
Case 1: $L \cap m=\{*\}$.

Proof idea - Here we go

Theorem: Let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Then $w \rightarrow \approx w^{\prime}$.

Assume that $w \in W$ has infinite order, and let $w^{\prime} \in \mathcal{O}_{w}^{\min }$.
Reduction step: WLOG, w, w^{\prime} have an axis through C_{0}.
Claim: Write $w^{\prime}=v^{-1} w v$ for some $v \in W$. Then $v C_{0} \in \mathcal{C}^{w}$. Hyp: $v C_{0} \in \operatorname{CombiMin}(w)$.

Let $x_{w} \in \operatorname{Min}(w)$ and $x_{w^{\prime}} \in \operatorname{Min}\left(w^{\prime}\right)$.
$\Rightarrow v x_{w^{\prime}} \in \operatorname{Min}\left(v w^{\prime} v^{-1}\right)=\operatorname{Min}(w)$
$\Rightarrow\left[x_{w}, v x_{w^{\prime}}\right] \subseteq \operatorname{Min}(w)$
Let $\Gamma=\left(C_{0}, \ldots, C, D, \ldots, v C_{0}\right)$ be a minimal gallery containing $\left[x_{w}, v x_{w^{\prime}}\right]$.
Let m be the wall between C and D.
Let L be a w-axis through $x \in C \cap D$.
Case 1: $L \cap m=\{*\}$. Then $C \in \mathcal{C}^{w} \Rightarrow D \in \mathcal{C}^{w}$.

Proof idea - Here we go

Theorem: Let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Then $w \rightarrow \approx w^{\prime}$.

Assume that $w \in W$ has infinite order, and let $w^{\prime} \in \mathcal{O}_{w}^{\min }$.
Reduction step: WLOG, w, w^{\prime} have an axis through C_{0}.
Claim: Write $w^{\prime}=v^{-1} w v$ for some $v \in W$. Then $v C_{0} \in \mathcal{C}^{w}$. Hyp: $v C_{0} \in \operatorname{CombiMin}(w)$.

Case 2: $L \subseteq m$.

Proof idea - Here we go

Theorem: Let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Then $w \rightarrow \approx w^{\prime}$.

Assume that $w \in W$ has infinite order, and let $w^{\prime} \in \mathcal{O}_{w}^{\min }$.
Reduction step: WLOG, w, w^{\prime} have an axis through C_{0}.
Claim: Write $w^{\prime}=v^{-1} w v$ for some $v \in W$. Then $v C_{0} \in \mathcal{C}^{w}$. Hyp: $v C_{0} \in \operatorname{CombiMin}(w)$.

Let $x_{w} \in \operatorname{Min}(w)$ and $x_{w^{\prime}} \in \operatorname{Min}\left(w^{\prime}\right)$.
Let $\Gamma=\left(C_{0}, \ldots, C, D, \ldots, v C_{0}\right)$ be a
minimal gallery containing [$x_{w}, v x_{w^{\prime}}$].
Let m be the wall between C and D.
Let L be a w-axis through $x \in C \cap D$.
Case 2: $L \subseteq m$.

Proof idea - Here we go

Theorem: Let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Then $w \rightarrow \approx w^{\prime}$.

Assume that $w \in W$ has infinite order, and let $w^{\prime} \in \mathcal{O}_{w}^{\min }$.
Reduction step: WLOG, w, w^{\prime} have an axis through C_{0}.
Claim: Write $w^{\prime}=v^{-1} w v$ for some $v \in W$. Then $v C_{0} \in \mathcal{C}^{w}$. Hyp: $v C_{0} \in \operatorname{CombiMin}(w)$.

Let $x_{w} \in \operatorname{Min}(w)$ and $x_{w^{\prime}} \in \operatorname{Min}\left(w^{\prime}\right)$.
Let $\Gamma=\left(C_{0}, \ldots, C, D, \ldots, v C_{0}\right)$ be a
minimal gallery containing [$x_{w}, v x_{w^{\prime}}$].
Let m be the wall between C and D.
Let L be a w-axis through $x \in C \cap D$.
Case 2: $L \subseteq m$. Then w normalises $\operatorname{Stab}_{w}\left(R_{x}\right)$.*

Proof idea - Here we go

Theorem: Let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Then $w \rightarrow \approx w^{\prime}$.

Assume that $w \in W$ has infinite order, and let $w^{\prime} \in \mathcal{O}_{w}^{\min }$.
Reduction step: WLOG, w, w^{\prime} have an axis through C_{0}.
Claim: Write $w^{\prime}=v^{-1} w v$ for some $v \in W$. Then $v C_{0} \in \mathcal{C}^{w}$. Hyp: $v C_{0} \in \operatorname{CombiMin}(w)$.

Let $x_{w} \in \operatorname{Min}(w)$ and $x_{w^{\prime}} \in \operatorname{Min}\left(w^{\prime}\right)$. Let $\Gamma=\left(C_{0}, \ldots, C, D, \ldots, v C_{0}\right)$ be a minimal gallery containing [$x_{w}, v x_{w^{\prime}}$]. Let m be the wall between C and D. Let L be a w-axis through $x \in C \cap D$.
Case 2: $L \subseteq m$. Then w normalises $\operatorname{Stab}_{W}\left(R_{x}\right)$.*
Prop: $E=\operatorname{proj}_{R_{x}}\left(v C_{0}\right) \in \operatorname{CombiMin}(w)$

Proof idea - Here we go

Theorem: Let $w^{\prime} \in \mathcal{O}_{w}^{\min }$. Then $w \rightarrow \approx w^{\prime}$.

Assume that $w \in W$ has infinite order, and let $w^{\prime} \in \mathcal{O}_{w}^{\min }$.
Reduction step: WLOG, w, w^{\prime} have an axis through C_{0}.
Claim: Write $w^{\prime}=v^{-1} w v$ for some $v \in W$. Then $v C_{0} \in \mathcal{C}^{w}$. Hyp: $v C_{0} \in \operatorname{CombiMin}(w)$.

Let $x_{w} \in \operatorname{Min}(w)$ and $x_{w^{\prime}} \in \operatorname{Min}\left(w^{\prime}\right)$. Let $\Gamma=\left(C_{0}, \ldots, C, D, \ldots, v C_{0}\right)$ be a minimal gallery containing [$x_{w}, v x_{w^{\prime}}$]. Let m be the wall between C and D. Let L be a w-axis through $x \in C \cap D$.
Case 2: $L \subseteq m$. Then w normalises $\operatorname{Stab}_{w}\left(R_{x}\right)$.*
Prop: $E=\operatorname{proj}_{R_{x}}\left(v C_{0}\right) \in \operatorname{CombiMin}(w)$
Hence, $C \in \mathcal{C}^{w} \Rightarrow E \in \mathcal{C}^{w}$.

