Cyclically reduced elements in Coxeter groups Groups and Geometries — Banff 2019

Timothée Marquis

UCLouvain

August 26, 2019

• Throughout this talk, (W, S) denotes a Coxeter system:

$$W = \langle s \in S \mid s^2 = 1 = (st)^{m_{st}} \text{ for all } s, t \in S \text{ with } s \neq t \rangle$$

for some $m_{st} \in \mathbb{N}_{\geq 2} \cup \{\infty\}$;

• Throughout this talk, (W, S) denotes a Coxeter system:

$$W = \langle s \in S \mid s^2 = 1 = (st)^{m_{st}} \text{ for all } s, t \in S \text{ with } s \neq t
angle$$

for some $m_{st} \in \mathbb{N}_{\geq 2} \cup \{\infty\}$;

• $\mathbf{W} = \bigcup_{n \in \mathbb{N}} S^n$ is the monoid of words on the alphabet S;

• Throughout this talk, (W, S) denotes a Coxeter system:

$$W = \langle s \in S \mid s^2 = 1 = (st)^{m_{st}} \text{ for all } s, t \in S \text{ with } s \neq t
angle$$

for some $m_{st} \in \mathbb{N}_{\geq 2} \cup \{\infty\}$;

- $\mathbf{W} = \bigcup_{n \in \mathbb{N}} S^n$ is the monoid of words on the alphabet S;
- $\ell = \ell_S : W \to \mathbb{N}$ is the word length on W.

• Throughout this talk, (W, S) denotes a Coxeter system:

$$W = \langle s \in S \mid s^2 = 1 = (st)^{m_{st}} ext{ for all } s, t \in S ext{ with } s
eq t
angle$$

for some $m_{st} \in \mathbb{N}_{\geq 2} \cup \{\infty\}$;

- $\mathbf{W} = \bigcup_{n \in \mathbb{N}} S^n$ is the monoid of words on the alphabet S;
- $\ell = \ell_S : W \to \mathbb{N}$ is the word length on W.

Solution to the word problem in W (Tits, Matsumoto, 1960's)

Assume that $w, w' \in W$ represent the same element of W, and that w' is reduced. Then w' can be obtained from w by a (finite) sequence of elementary operations of the form

• <u>Braid relations</u>: $\underbrace{stst...}_{m_{st} \text{ letters}} \mapsto \underbrace{tsts...}_{m_{st} \text{ letters}}$ for distinct $s, t \in S$ with $m_{st} < \infty$. • ss-cancellations: $ss \mapsto \emptyset$ for $s \in S$.

Solution to the conjugacy problem in W (Krammer, 1994)

There is a polynomial time algorithm determining whether two words $w, w' \in W$ represent conjugate elements of W.

Solution to the conjugacy problem in W (Krammer, 1994)

There is a polynomial time algorithm determining whether two words $w, w' \in W$ represent conjugate elements of W.

Question

Solution to the conjugacy problem in W (Krammer, 1994)

There is a polynomial time algorithm determining whether two words $\boldsymbol{w}, \boldsymbol{w}' \in \boldsymbol{W}$ represent conjugate elements of W.

Question

Is there a "nicer" algorithm for the conjugacy problem in *W*, with "natural" elementary operations as in Matsumoto's Theorem?

• Call $w' \in W$ a **cyclic shift** of $w \in W$ if there is a reduced expression $w = s_1 \dots s_k$ of w such that $w' = s_2 \dots s_k s_1$ or $w' = s_k s_1 \dots s_{k-1}$.

Solution to the conjugacy problem in W (Krammer, 1994)

There is a polynomial time algorithm determining whether two words $\boldsymbol{w}, \boldsymbol{w}' \in \boldsymbol{W}$ represent conjugate elements of W.

Question

- Call $w' \in W$ a **cyclic shift** of $w \in W$ if there is a reduced expression $w = s_1 \dots s_k$ of w such that $w' = s_2 \dots s_k s_1$ or $w' = s_k s_1 \dots s_{k-1}$.
- w' cyclic shift of $w \Leftrightarrow w' = sws$ for some $s \in S$ with $\ell(sws) \leq \ell(w)$. In that case, we write $w \stackrel{s}{\to} w'$.

Solution to the conjugacy problem in W (Krammer, 1994)

There is a polynomial time algorithm determining whether two words $\boldsymbol{w}, \boldsymbol{w}' \in \boldsymbol{W}$ represent conjugate elements of W.

Question

- Call $w' \in W$ a **cyclic shift** of $w \in W$ if there is a reduced expression $w = s_1 \dots s_k$ of w such that $w' = s_2 \dots s_k s_1$ or $w' = s_k s_1 \dots s_{k-1}$.
- w' cyclic shift of w ⇔ w' = sws for some s ∈ S with ℓ(sws) ≤ ℓ(w). In that case, we write w → w'.
- Write $w \to w'$ if $w = w_0 \stackrel{s_1}{\to} w_1 \cdots \stackrel{s_k}{\to} w_k = w'$ for some w_i, s_i .

Solution to the conjugacy problem in W (Krammer, 1994)

There is a polynomial time algorithm determining whether two words $\boldsymbol{w}, \boldsymbol{w}' \in \boldsymbol{W}$ represent conjugate elements of W.

Question

- Call $w' \in W$ a **cyclic shift** of $w \in W$ if there is a reduced expression $w = s_1 \dots s_k$ of w such that $w' = s_2 \dots s_k s_1$ or $w' = s_k s_1 \dots s_{k-1}$.
- w' cyclic shift of $w \Leftrightarrow w' = sws$ for some $s \in S$ with $\ell(sws) \leq \ell(w)$. In that case, we write $w \stackrel{s}{\to} w'$.
- Write $w \to w'$ if $w = w_0 \stackrel{s_1}{\to} w_1 \cdots \stackrel{s_k}{\to} w_k = w'$ for some w_i, s_i .
- Call $w \in W$ cyclically reduced if $\ell(w') = \ell(w)$ for every $w \to w'$.

A first step towards a better algorithm might be found by use of reductions of w of the form

$$w \mapsto sws$$
 whenever $\ell(sws) \le \ell(w)$. (2)

We shall call w conjugacy-reduced if each series of reductions as in (2) starting with w leads to an element w' of W with $\ell(w') = \ell(w)$.

Conjecture 2.18 Let C be a conjugacy class of W and put $\ell_C = \min\{\ell(w) \mid w \in C\}$. Then, for any $w \in C$, we have $\ell(w) = \ell_C$ if and only if w is conjugacy-reduced.

By Geck and Pfeiffer [1992], the conjecture holds for Weyl groups. The authors use the result for Hecke algebra representations.

A. Cohen, *Recent results on Coxeter groups* (1994) in NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.

- Call $w' \in W$ a cyclic shift of $w \in W$ if there is a reduced expression $w = s_1 \dots s_k$ of w such that $w' = s_2 \dots s_k s_1$ or $w' = s_k s_1 \dots s_{k-1}$.
- w' cyclic shift of w ⇔ w' = sws for some s ∈ S with ℓ(sws) ≤ ℓ(w).
 In that case, we write w → w'.
- Write $w \to w'$ if $w = w_0 \stackrel{s_1}{\to} w_1 \cdots \stackrel{s_k}{\to} w_k = w'$ for some w_i, s_i .
- Call $w \in W$ cyclically reduced if $\ell(w') = \ell(w)$ for every $w \to w'$.

Conjecture (A. Cohen, 1994)

- Call $w' \in W$ a cyclic shift of $w \in W$ if there is a reduced expression $w = s_1 \dots s_k$ of w such that $w' = s_2 \dots s_k s_1$ or $w' = s_k s_1 \dots s_{k-1}$.
- w' cyclic shift of w ⇔ w' = sws for some s ∈ S with ℓ(sws) ≤ ℓ(w).
 In that case, we write w → w'.
- Write $w \to w'$ if $w = w_0 \stackrel{s_1}{\to} w_1 \cdots \stackrel{s_k}{\to} w_k = w'$ for some w_i, s_i .
- Call $w \in W$ cyclically reduced if $\ell(w') = \ell(w)$ for every $w \to w'$.

Conjecture (A. Cohen, 1994)

An element $w \in W$ is cyclically reduced if and only if it is of minimal length in its conjugacy class.

Example:
$$W = \langle s, t | s^2 = t^2 = (st)^3 = 1 \rangle = D_6$$

The elements *s* and *t* are conjugate but $s \not\rightarrow t$.

• Two elements $w, w' \in W$ are elementarily strongly conjugate if

•
$$\ell(w') = \ell(w)$$
 and

▶ there exists $x \in W$ with $w' = x^{-1}wx$ such that either $\ell(x^{-1}w) = \ell(x) + \ell(w)$ or $\ell(wx) = \ell(w) + \ell(x)$.

We then write $w \stackrel{\times}{\sim} w'$.

• Two elements $w, w' \in W$ are elementarily strongly conjugate if

•
$$\ell(w') = \ell(w)$$
 and

▶ there exists $x \in W$ with $w' = x^{-1}wx$ such that either $\ell(x^{-1}w) = \ell(x) + \ell(w)$ or $\ell(wx) = \ell(w) + \ell(x)$.

We then write $w \stackrel{\times}{\sim} w'$.

Call w, w' ∈ W strongly conjugate if w = w₀ ∼^{x₁} w₁ · · · ∼^{x_k} w_k = w' for some w_i, x_i ∈ W.

• Two elements $w, w' \in W$ are elementarily strongly conjugate if

•
$$\ell(w') = \ell(w)$$
 and

 there exists x ∈ W with w' = x⁻¹wx such that either ℓ(x⁻¹w) = ℓ(x) + ℓ(w) or ℓ(wx) = ℓ(w) + ℓ(x).
 We then write w ~ w'.

Call w, w' ∈ W strongly conjugate if w = w₀ ∼ w₁ ··· ∼ w_k = w' for some w_i, x_i ∈ W.

Example:
$$W = \langle s, t | s^2 = t^2 = (st)^3 = 1 \rangle = D_6$$

$$s \stackrel{ts}{\sim} t$$
 because $t = st \cdot s \cdot ts$ and $\ell(st \cdot s) = \ell(ts) + \ell(s)$.

• Two elements $w, w' \in W$ are elementarily strongly conjugate if

•
$$\ell(w') = \ell(w)$$
 and

 there exists x ∈ W with w' = x⁻¹wx such that either ℓ(x⁻¹w) = ℓ(x) + ℓ(w) or ℓ(wx) = ℓ(w) + ℓ(x).
 We then write w [×]/_x w'.

Call w, w' ∈ W strongly conjugate if w = w₀ ∼^{x₁} w₁ · · · ∼^{x_k} w_k = w' for some w_i, x_i ∈ W.

Example:
$$W = \langle s, t \mid s^2 = t^2 = (st)^3 = 1 \rangle = D_6$$

$$s \stackrel{ts}{\sim} t$$
 because $t = st \cdot s \cdot ts$ and $\ell(st \cdot s) = \ell(ts) + \ell(s)$.

Theorem (Geck-Pfeiffer, 1993)

Assume that W is **finite**. Let \mathcal{O} be a conjugacy class in W. Then:

- **9** For every $w \in \mathcal{O}$ there exists w' of minimal length in \mathcal{O} with $w \to w'$.
- **2** If w, w' are of minimal length in \mathcal{O} , they are strongly conjugate.

• Two elements $w, w' \in W$ are elementarily strongly conjugate if

•
$$\ell(w') = \ell(w)$$
 and

 there exists x ∈ W with w' = x⁻¹wx such that either ℓ(x⁻¹w) = ℓ(x) + ℓ(w) or ℓ(wx) = ℓ(w) + ℓ(x).
 We then write w [×]/_x w'.

Call w, w' ∈ W strongly conjugate if w = w₀ ∼ w₁ ··· ∼ w_k = w' for some w_i, x_i ∈ W.

Example:
$$W = \langle s, t \mid s^2 = t^2 = (st)^3 = 1 \rangle = D_6$$

$$s \stackrel{ts}{\sim} t$$
 because $t = st \cdot s \cdot ts$ and $\ell(st \cdot s) = \ell(ts) + \ell(s)$.

Theorem (Geck-Kim-Pfeiffer, 2000 and He-Nie, 2012)

Assume that W is **finite**. Let \mathcal{O} be a **twisted** conjugacy class in W. Then:

- **9** For every $w \in \mathcal{O}$ there exists w' of minimal length in \mathcal{O} with $w \to w'$.
- **2** If w, w' are of minimal length in \mathcal{O} , they are strongly conjugate.

- Two elements $w, w' \in W$ are elementarily strongly conjugate if
 - $\ell(w') = \ell(w)$ and
 - there exists x ∈ W with w' = x⁻¹wx such that either ℓ(x⁻¹w) = ℓ(x) + ℓ(w) or ℓ(wx) = ℓ(w) + ℓ(x).
 We then write w ~ w'.
- Call w, w' ∈ W strongly conjugate if w = w₀ ~^{x₁} w₁ · · · ~^{x_k} w_k = w' for some w_i, x_i ∈ W.
- Let $\delta \in \operatorname{Aut}(W, S)$ be a diagram automorphism. Define the δ -twisted conjugation by $x \in W$ as $W \to W : w \mapsto x^{-1}w\delta(x)$. \rightsquigarrow twisted conjugacy classes, twisted relations $\stackrel{s}{\to}$, $\stackrel{x}{\sim}$, etc.

Theorem (Geck-Kim-Pfeiffer, 2000 and He-Nie, 2012)

Assume that W is **finite**. Let \mathcal{O} be a **twisted** conjugacy class in W. Then:

- **(**) For every $w \in \mathcal{O}$ there exists w' of minimal length in \mathcal{O} with $w \to w'$.
- **2** If w, w' are of minimal length in \mathcal{O} , they are strongly conjugate.

- Two elements $w, w' \in W$ are elementarily strongly conjugate if
 - $\ell(w') = \ell(w)$ and
 - there exists x ∈ W with w' = x⁻¹wx such that either ℓ(x⁻¹w) = ℓ(x) + ℓ(w) or ℓ(wx) = ℓ(w) + ℓ(x).
 We then write w ~ w'.
- Call w, w' ∈ W strongly conjugate if w = w₀ ~^{x₁} w₁ · · · ~^{x_k} w_k = w' for some w_i, x_i ∈ W.
- Let $\delta \in \operatorname{Aut}(W, S)$ be a diagram automorphism. Define the δ -twisted conjugation by $x \in W$ as $W \to W : w \mapsto x^{-1}w\delta(x)$. \rightsquigarrow twisted conjugacy classes, twisted relations $\stackrel{s}{\to}$, $\stackrel{x}{\sim}$, etc.

Theorem (He-Nie, 2014)

Assume that W is affine. Let \mathcal{O} be a **twisted** conjugacy class in W. Then:

- **(**) For every $w \in \mathcal{O}$ there exists w' of minimal length in \mathcal{O} with $w \to w'$.
- **2** If w, w' are of minimal length in \mathcal{O} , they are strongly conjugate.

Theorem (M., 2018)

Let (W, S) be a Coxeter system. Let \mathcal{O} be a conjugacy class in W. Then:

- **(**) For every $w \in \mathcal{O}$ there exists w' of minimal length in \mathcal{O} with $w \to w'$.
- **2** If w, w' are of minimal length in \mathcal{O} , they are **tightly** conjugate.

Theorem (M., 2018)

Let (W, S) be a Coxeter system. Let \mathcal{O} be a conjugacy class in W. Then:

- **(**) For every $w \in \mathcal{O}$ there exists w' of minimal length in \mathcal{O} with $w \to w'$.
- **2** If w, w' are of minimal length in \mathcal{O} , they are **tightly** conjugate.

Corollary (M., 2018)

Theorem (M., 2018)

Let (W, S) be a Coxeter system. Let \mathcal{O} be a conjugacy class in W. Then:

- **(**) For every $w \in \mathcal{O}$ there exists w' of minimal length in \mathcal{O} with $w \to w'$.
- **2** If w, w' are of minimal length in \mathcal{O} , they are **tightly** conjugate.

Corollary (M., 2018)

- Call $w, w' \in W$ elem. tightly conjugate if $\ell(w') = \ell(w)$ and either
 - w' is a cyclic shift of w, or
 - there exist I ⊆ S spherical (i.e. W_I := ⟨I⟩ ⊆ W is finite) such that w ∈ N_W(W_I), and some x ∈ W_I such that w ∼ w'.

Theorem (M., 2018)

Let (W, S) be a Coxeter system. Let \mathcal{O} be a conjugacy class in W. Then:

- **(**) For every $w \in \mathcal{O}$ there exists w' of minimal length in \mathcal{O} with $w \to w'$.
- **2** If w, w' are of minimal length in \mathcal{O} , they are **tightly** conjugate.

Corollary (M., 2018)

- Call $w, w' \in W$ elem. tightly conjugate if $\ell(w') = \ell(w)$ and either
 - w' is a cyclic shift of w, or
 - ▶ there exist $I \subseteq S$ spherical (i.e. $W_I := \langle I \rangle \subseteq W$ is finite) such that $w \in N_W(W_I)$, and some $x \in W_I$ such that $w \stackrel{\times}{\sim} w'$.
- Call w, w' ∈ W tightly conjugate if w' can be obtained from w by a sequence of elem. tight conjugations. We then write w ≈ w'.

Proof idea — The Coxeter complex Σ of (W, S)<u>Ex</u>: $W = \langle s, t, u | s^2 = t^2 = u^2 = (st)^4 = (su)^4 = (tu)^4 = 1 \rangle$

Proof idea — A geometric solution to the word problem

w = sutstus

= ustutsu

w = sutstus

= ustutsu

w = sutstus= sustsus

- w = sutstus
 - = sustsus
 - = usutsus
 - = ustutsu

- w = sutstus
 - = sustsus
 - = usutsus
 - = us<mark>utu</mark>su
 - = ustutsu

- w = sutstus
 - = sustsus
 - = usutsus
 - = us<mark>utu</mark>su
 - = ustutsu

w = sutsututs

w = sutsututs = sutstutts

- w = sutsututs
 - = sutstutts

- w = sutsututs
 - = sutstutts

$$= \ldots$$

= ustutsu

 $\mathcal{O}_w = \{ v^{-1} w v \mid v \in W \}$ and $\mathcal{O}_w^{\min} = \{ u \in \mathcal{O}_w \mid \ell(u) \text{ minimal} \}.$

 $\mathcal{O}_w = \{ v^{-1} w v \mid v \in W \}$ and $\mathcal{O}_w^{\min} = \{ u \in \mathcal{O}_w \mid \ell(u) \text{ minimal} \}.$

• Γ gallery from vC_0 to $wvC_0 \Rightarrow \operatorname{type}(\Gamma)$ expression for $v^{-1}wv$.

Proof idea — Minimal displacement sets

Proof idea — Minimal displacement sets

 $\mathcal{O}_w = \{ v^{-1} w v \mid v \in W \}$ and $\mathcal{O}_w^{\min} = \{ u \in \mathcal{O}_w \mid \ell(u) \text{ minimal} \}.$

• Γ gallery from vC_0 to $wvC_0 \Rightarrow \operatorname{type}(\Gamma)$ expression for $v^{-1}wv$.

 $\mathcal{O}_w = \{ v^{-1} w v \mid v \in W \}$ and $\mathcal{O}_w^{\min} = \{ u \in \mathcal{O}_w \mid \ell(u) \text{ minimal} \}.$

• Γ gallery from vC_0 to $wvC_0 \Rightarrow \text{type}(\Gamma)$ expression for $v^{-1}wv$.

• Define π : $Ch(\Sigma) \twoheadrightarrow \mathcal{O}_w : vC_0 \mapsto v^{-1}wv$.

$$\mathcal{O}_w = \{ v^{-1} w v \mid v \in W \}$$
 and $\mathcal{O}_w^{\min} = \{ u \in \mathcal{O}_w \mid \ell(u) \text{ minimal} \}.$

- Γ gallery from vC_0 to $wvC_0 \Rightarrow \text{type}(\Gamma)$ expression for $v^{-1}wv$.
- Define π : $Ch(\Sigma) \twoheadrightarrow \mathcal{O}_w : vC_0 \mapsto v^{-1}wv$.
- The (combinatorial) minimal displacement set of w is

$$\begin{aligned} \mathsf{CombiMin}(w) &= \{ D \in \mathsf{Ch}(\Sigma) \mid \mathsf{d_{Ch}}(D, wD) \text{ minimal} \} \\ &= \{ v C_0 \in \mathsf{Ch}(\Sigma) \mid \ell(v^{-1}wv) \text{ minimal} \} \end{aligned}$$

$$\mathcal{O}_w = \{ v^{-1} w v \mid v \in W \}$$
 and $\mathcal{O}_w^{\min} = \{ u \in \mathcal{O}_w \mid \ell(u) \text{ minimal} \}.$

- Γ gallery from vC_0 to $wvC_0 \Rightarrow \text{type}(\Gamma)$ expression for $v^{-1}wv$.
- Define π : $Ch(\Sigma) \twoheadrightarrow \mathcal{O}_w : vC_0 \mapsto v^{-1}wv$.
- The (combinatorial) minimal displacement set of w is

$$\begin{split} \mathsf{CombiMin}(w) &= \{ D \in \mathsf{Ch}(\Sigma) \mid \mathsf{d_{Ch}}(D, wD) \text{ minimal} \} \\ &= \{ v C_0 \in \mathsf{Ch}(\Sigma) \mid \ell(v^{-1}wv) \text{ minimal} \} = \pi^{-1}(\mathcal{O}_w^{\mathsf{min}}). \end{split}$$

$$\mathcal{O}_w = \{ v^{-1} w v \mid v \in W \}$$
 and $\mathcal{O}_w^{\min} = \{ u \in \mathcal{O}_w \mid \ell(u) \text{ minimal} \}.$

- Γ gallery from vC_0 to $wvC_0 \Rightarrow \text{type}(\Gamma)$ expression for $v^{-1}wv$.
- Define π : $Ch(\Sigma) \twoheadrightarrow \mathcal{O}_w : vC_0 \mapsto v^{-1}wv$.
- The (combinatorial) minimal displacement set of w is

$$\begin{split} \mathsf{CombiMin}(w) &= \{ D \in \mathsf{Ch}(\Sigma) \mid \mathsf{d_{Ch}}(D, wD) \text{ minimal} \} \\ &= \{ v C_0 \in \mathsf{Ch}(\Sigma) \mid \ell(v^{-1}wv) \text{ minimal} \} = \pi^{-1}(\mathcal{O}_w^{\mathsf{min}}). \end{split}$$

Note that $w \in \mathcal{O}_w^{\min}$ if and only if $C_0 \in \text{CombiMin}(w)$.

$$\mathcal{O}_w = \{ v^{-1} w v \mid v \in W \}$$
 and $\mathcal{O}_w^{\min} = \{ u \in \mathcal{O}_w \mid \ell(u) \text{ minimal} \}.$

- Γ gallery from vC_0 to $wvC_0 \Rightarrow \text{type}(\Gamma)$ expression for $v^{-1}wv$.
- Define π : $Ch(\Sigma) \twoheadrightarrow \mathcal{O}_w : vC_0 \mapsto v^{-1}wv$.
- The (combinatorial) minimal displacement set of w is

$$\begin{split} \mathsf{CombiMin}(w) &= \{ D \in \mathsf{Ch}(\Sigma) \mid \mathsf{d_{Ch}}(D, wD) \text{ minimal} \} \\ &= \{ vC_0 \in \mathsf{Ch}(\Sigma) \mid \ell(v^{-1}wv) \text{ minimal} \} = \pi^{-1}(\mathcal{O}_w^{\mathsf{min}}). \end{split}$$

Note that $w \in \mathcal{O}_w^{\min}$ if and only if $C_0 \in \text{CombiMin}(w)$.

<u>Obs</u>: If $\Gamma \subseteq$ CombiMin(w) gallery from D to E, then $\pi(D) \rightarrow \pi(E)$.

$$\mathcal{O}_w = \{ v^{-1} w v \mid v \in W \}$$
 and $\mathcal{O}_w^{\min} = \{ u \in \mathcal{O}_w \mid \ell(u) \text{ minimal} \}.$

- Γ gallery from vC_0 to $wvC_0 \Rightarrow \operatorname{type}(\Gamma)$ expression for $v^{-1}wv$.
- Define π : $Ch(\Sigma) \twoheadrightarrow \mathcal{O}_w : vC_0 \mapsto v^{-1}wv$.
- The (combinatorial) minimal displacement set of w is

$$\begin{split} \mathsf{CombiMin}(w) &= \{ D \in \mathsf{Ch}(\Sigma) \mid \mathsf{d_{Ch}}(D, wD) \text{ minimal} \} \\ &= \{ vC_0 \in \mathsf{Ch}(\Sigma) \mid \ell(v^{-1}wv) \text{ minimal} \} = \pi^{-1}(\mathcal{O}_w^{\mathsf{min}}). \end{split}$$

Note that $w \in \mathcal{O}_w^{\min}$ if and only if $C_0 \in \text{CombiMin}(w)$.

Obs: If
$$\Gamma \subseteq \text{CombiMin}(w)$$
 gallery from D to E , then $\pi(D) \to \pi(E)$.
Proof: WLOG, $D = vC_0$ and $E = vsC_0$ adjacent ($v \in W, s \in S$).
 $\implies \ell(v^{-1}wv) = \ell(\mathcal{O}_w^{\min}) = \ell(sv^{-1}wvs)$
 $\implies \pi(D) = v^{-1}wv \stackrel{s}{\to} sv^{-1}wvs = \pi(E)$.

Proof idea — Minimal displacement sets

Proof idea — Minimal displacement sets

Let \mathcal{C}^w be the smallest chamber subcomplex A of Σ such that

- $C_0 \in Ch(A);$
- **2** If $C \in Ch(A)$ and Γ minimal gallery from C to $w^{\pm 1}C$, then $\Gamma \subseteq A$;
- **③** Let *R* be a (spherical) residue such that *w* normalises $\operatorname{Stab}_W(R)$. If *C*, *D* ∈ *R* and *C* ∈ Ch(*A*) and *D* ∈ CombiMin(*w*), then *D* ∈ Ch(*A*).

Let \mathcal{C}^w be the smallest chamber subcomplex A of Σ such that

- $C_0 \in Ch(A);$
- **2** If $C \in Ch(A)$ and Γ minimal gallery from C to $w^{\pm 1}C$, then $\Gamma \subseteq A$;
- Let *R* be a (spherical) residue such that *w* normalises $\operatorname{Stab}_W(R)$. If *C*, *D* ∈ *R* and *C* ∈ Ch(*A*) and *D* ∈ CombiMin(*w*), then *D* ∈ Ch(*A*).

Write $w \to \approx w'$ if there exists $w'' \in W$ with $w \to w'' \approx w'$.

Let \mathcal{C}^w be the smallest chamber subcomplex A of Σ such that

- $C_0 \in Ch(A);$
- **2** If $C \in Ch(A)$ and Γ minimal gallery from C to $w^{\pm 1}C$, then $\Gamma \subseteq A$;
- Solution R be a (spherical) residue such that w normalises $\operatorname{Stab}_W(R)$. If $C, D \in R$ and $C \in \operatorname{Ch}(A)$ and $D \in \operatorname{CombiMin}(w)$, then $D \in \operatorname{Ch}(A)$.
- Write $w \to \approx w'$ if there exists $w'' \in W$ with $w \to w'' \approx w'$.

<u>Obs</u>: If $vC_0 \in C^w$ then $w \to \approx v^{-1}wv$.

Let \mathcal{C}^w be the smallest chamber subcomplex A of Σ such that

- $C_0 \in Ch(A);$
- **2** If $C \in Ch(A)$ and Γ minimal gallery from C to $w^{\pm 1}C$, then $\Gamma \subseteq A$;
- Solution R be a (spherical) residue such that w normalises $\operatorname{Stab}_W(R)$. If $C, D \in R$ and $C \in \operatorname{Ch}(A)$ and $D \in \operatorname{CombiMin}(w)$, then $D \in \operatorname{Ch}(A)$.

Write $w \to \approx w'$ if there exists $w'' \in W$ with $w \to w'' \approx w'$.

<u>Obs</u>: If $vC_0 \in \mathcal{C}^w$ then $w \to \approx v^{-1}wv$.

<u>Proof</u>: This is equivalent to: If $C \in Ch(\mathcal{C}^w)$, then $\pi(C_0) \rightarrow \approx \pi(C)$.

Let \mathcal{C}^w be the smallest chamber subcomplex A of Σ such that

- $C_0 \in Ch(A);$
- **2** If $C \in Ch(A)$ and Γ minimal gallery from C to $w^{\pm 1}C$, then $\Gamma \subseteq A$;
- Let *R* be a (spherical) residue such that *w* normalises $\operatorname{Stab}_W(R)$. If *C*, *D* ∈ *R* and *C* ∈ Ch(*A*) and *D* ∈ CombiMin(*w*), then *D* ∈ Ch(*A*).

Write $w \to \approx w'$ if there exists $w'' \in W$ with $w \to w'' \approx w'$.

<u>Obs</u>: If $vC_0 \in C^w$ then $w \to \approx v^{-1}wv$.

<u>Proof</u>: This is equivalent to: If $C \in Ch(C^w)$, then $\pi(C_0) \to \approx \pi(C)$. (1) If D is on a minimal gallery Γ from C to wC, then $\pi(C) \to \pi(D)$. (2) If $C, D \in R$ and $D \in CombiMin(w)$, then $\pi(C) \to \approx \pi(D)$.

Write $w \to \approx w'$ if there exists $w'' \in W$ with $w \to w'' \approx w'$.

<u>Obs</u>: If $vC_0 \in C^w$ then $w \to \approx v^{-1}wv$.

<u>Proof</u>: This is equivalent to: If $C \in Ch(\mathcal{C}^w)$, then $\pi(C_0) \to \approx \pi(C)$. (1) If D is on a minimal gallery Γ from C to wC, then $\pi(C) \to \pi(D)$. (2) If $C, D \in R$ and $D \in \text{CombiMin}(w)$, then $\pi(C) \to \approx \pi(D)$.

Write $w \to \approx w'$ if there exists $w'' \in W$ with $w \to w'' \approx w'$.

<u>Obs</u>: If $vC_0 \in C^w$ then $w \to \approx v^{-1}wv$.

Proof: This is equivalent to: If $C \in Ch(C^w)$, then $\pi(C_0) \to \approx \pi(C)$. (1) If D is on a minimal gallery Γ from C to wC, then $\pi(C) \to \pi(D)$. (2) If $C, D \in R$ and $D \in CombiMin(w)$, then $\pi(C) \to \approx \pi(D)$. To simplify notations, say $C = C_0$. For (1), see picture; for (2), see below.

Proof of (1):

 $\begin{array}{l} \Gamma \mbox{ from } C_0 \mbox{ to } wC_0 \\ \mbox{ type}(\Gamma) = usut \end{array}$

Proof of (1):

- $\begin{array}{l} \Gamma \mbox{ from } C_0 \mbox{ to } wC_0 \\ \mbox{ type}(\Gamma) = usut \end{array}$
- $w\Gamma$ from wC_0 to w^2C_0 type($w\Gamma$) = usut

Write $w \to \approx w'$ if there exists $w'' \in W$ with $w \to w'' \approx w'$.

<u>Obs</u>: If $vC_0 \in C^w$ then $w \to \approx v^{-1}wv$.

Proof: This is equivalent to: If $C \in Ch(C^w)$, then $\pi(C_0) \to \approx \pi(C)$. (1) If D is on a minimal gallery Γ from C to wC, then $\pi(C) \to \pi(D)$. (2) If $C, D \in R$ and $D \in CombiMin(w)$, then $\pi(C) \to \approx \pi(D)$. To simplify notations, say $C = C_0$. For (1), see picture; for (2), see below.

Write $w \to \approx w'$ if there exists $w'' \in W$ with $w \to w'' \approx w'$.

<u>Obs</u>: If $vC_0 \in C^w$ then $w \to \approx v^{-1}wv$.

<u>Proof</u>: This is equivalent to: If $C \in Ch(C^w)$, then $\pi(C_0) \to \approx \pi(C)$. (1) If D is on a minimal gallery Γ from C to wC, then $\pi(C) \to \pi(D)$. (2) If $C, D \in R$ and $D \in CombiMin(w)$, then $\pi(C) \to \approx \pi(D)$. To simplify notations, say $C = C_0$. For (1), see picture; for (2), see below. <u>Hyp</u>: $C_0, D \in R$ and w normalises $Stab_W(R) = W_I$ with $I \subseteq S$ spherical.

Write $w \to \approx w'$ if there exists $w'' \in W$ with $w \to w'' \approx w'$.

<u>Obs</u>: If $vC_0 \in C^w$ then $w \to \approx v^{-1}wv$.

Proof: This is equivalent to: If $C \in Ch(C^w)$, then $\pi(C_0) \to \approx \pi(C)$. (1) If D is on a minimal gallery Γ from C to wC, then $\pi(C) \to \pi(D)$. (2) If $C, D \in R$ and $D \in CombiMin(w)$, then $\pi(C) \to \approx \pi(D)$. To simplify notations, say $C = C_0$. For (1), see picture; for (2), see below. <u>Hyp</u>: $C_0, D \in R$ and w normalises $Stab_W(R) = W_I$ with $I \subseteq S$ spherical. <u>Lem</u> (Lusztig '77): $N_W(W_I) = W_I \rtimes N_I$ where $N_I = \{w \in W \mid w.I = I\}$, and $\ell(w_I n_I) = \ell(w_I) + \ell(n_I)$ for all $w_I \in W_I$ and $n_I \in N_I$. Write $w = w_I n_I$ with $w_I \in W_I$ and $n_I \in N_I$.

Write $w \to \approx w'$ if there exists $w'' \in W$ with $w \to w'' \approx w'$.

<u>Obs</u>: If $vC_0 \in C^w$ then $w \to \approx v^{-1}wv$.

<u>Proof</u>: This is equivalent to: If $C \in Ch(C^w)$, then $\pi(C_0) \to \approx \pi(C)$. (1) If D is on a minimal gallery Γ from C to wC, then $\pi(C) \to \pi(D)$. (2) If $C, D \in R$ and $D \in CombiMin(w)$, then $\pi(C) \to \approx \pi(D)$. To simplify notations, say $C = C_0$. For (1), see picture; for (2), see below. <u>Hyp</u>: $C_0, D \in R$ and w normalises $Stab_W(R) = W_I$ with $I \subseteq S$ spherical. <u>Lem</u> (Lusztig '77): $N_W(W_I) = W_I \rtimes N_I$ where $N_I = \{w \in W \mid w.I = I\}$, and $\ell(w_I n_I) = \ell(w_I) + \ell(n_I)$ for all $w_I \in W_I$ and $n_I \in N_I$. Write $w = w_I n_I$ with $w_I \in W_I$ and $n_I \in N_I$.

Note that $\delta: W_I \to W_I : x \mapsto n_I x n_I^{-1}$ is a diagram automorphism.
Proof idea — The complex C^w

Write $w \to \approx w'$ if there exists $w'' \in W$ with $w \to w'' \approx w'$.

<u>Obs</u>: If $vC_0 \in C^w$ then $w \to \approx v^{-1}wv$.

Proof: This is equivalent to: If $C \in Ch(\mathcal{C}^w)$, then $\pi(C_0) \to \approx \pi(C)$. (1) If D is on a minimal gallery Γ from C to wC, then $\pi(C) \rightarrow \pi(D)$. (2) If $C, D \in R$ and $D \in \text{CombiMin}(w)$, then $\pi(C) \to \approx \pi(D)$. To simplify notations, say $C = C_0$. For (1), see picture; for (2), see below. Hyp: $C_0, D \in R$ and w normalises $\operatorname{Stab}_W(R) = W_I$ with $I \subseteq S$ spherical. Lem (Lusztig '77): $N_W(W_l) = W_l \rtimes N_l$ where $N_l = \{w \in W \mid w.l = l\}$, and $\ell(w_l n_l) = \ell(w_l) + \ell(n_l)$ for all $w_l \in W_l$ and $n_l \in N_l$. Write $w = w_l n_l$ with $w_l \in W_l$ and $n_l \in N_l$. Note that $\delta: W_I \to W_I: x \mapsto n_I x n_I^{-1}$ is a diagram automorphism. As $D \in R$, we have $D = vC_0$ for some $v \in W_1$. To prove: $w_l \cdot n_l = w \rightarrow \approx v^{-1} w v$

Proof idea — The complex C^w

Write $w \to \approx w'$ if there exists $w'' \in W$ with $w \to w'' \approx w'$.

<u>Obs</u>: If $vC_0 \in C^w$ then $w \to \approx v^{-1}wv$.

Proof: This is equivalent to: If $C \in Ch(\mathcal{C}^w)$, then $\pi(C_0) \to \approx \pi(C)$. (1) If D is on a minimal gallery Γ from C to wC, then $\pi(C) \to \pi(D)$. (2) If $C, D \in R$ and $D \in \text{CombiMin}(w)$, then $\pi(C) \to \approx \pi(D)$. To simplify notations, say $C = C_0$. For (1), see picture; for (2), see below. Hyp: $C_0, D \in R$ and w normalises $\operatorname{Stab}_W(R) = W_I$ with $I \subseteq S$ spherical. Lem (Lusztig '77): $N_W(W_l) = W_l \rtimes N_l$ where $N_l = \{w \in W \mid w.l = l\}$, and $\ell(w_l n_l) = \ell(w_l) + \ell(n_l)$ for all $w_l \in W_l$ and $n_l \in N_l$. Write $w = w_l n_l$ with $w_l \in W_l$ and $n_l \in N_l$. Note that $\delta: W_I \to W_I: x \mapsto n_I x n_I^{-1}$ is a diagram automorphism. As $D \in R$, we have $D = vC_0$ for some $v \in W_1$. To prove: $w_l \cdot n_l = w \rightarrow \approx v^{-1}wv = v^{-1}w_ln_lv \cdot n_l^{-1}n_l = v^{-1}w_l\delta(v) \cdot n_l$.

Proof idea — The complex C^w

Write $w \to \approx w'$ if there exists $w'' \in W$ with $w \to w'' \approx w'$.

<u>Obs</u>: If $vC_0 \in C^w$ then $w \to \approx v^{-1}wv$.

Proof: This is equivalent to: If $C \in Ch(\mathcal{C}^w)$, then $\pi(C_0) \to \approx \pi(C)$. (1) If D is on a minimal gallery Γ from C to wC, then $\pi(C) \to \pi(D)$. (2) If $C, D \in R$ and $D \in \text{CombiMin}(w)$, then $\pi(C) \to \approx \pi(D)$. To simplify notations, say $C = C_0$. For (1), see picture; for (2), see below. Hyp: $C_0, D \in R$ and w normalises $\operatorname{Stab}_W(R) = W_I$ with $I \subseteq S$ spherical. Lem (Lusztig '77): $N_W(W_I) = W_I \rtimes N_I$ where $N_I = \{w \in W \mid w.I = I\}$, and $\ell(w_l n_l) = \ell(w_l) + \ell(n_l)$ for all $w_l \in W_l$ and $n_l \in N_l$. Write $w = w_l n_l$ with $w_l \in W_l$ and $n_l \in N_l$. Note that $\delta: W_I \to W_I: x \mapsto n_I x n_I^{-1}$ is a diagram automorphism. As $D \in R$, we have $D = vC_0$ for some $v \in W_1$. <u>To prove</u>: $w_l \cdot n_l = w \rightarrow \approx v^{-1}wv = v^{-1}w_ln_lv \cdot n_l^{-1}n_l = v^{-1}w_l\delta(v) \cdot n_l$. By [GKP00] or [HN12] in W_l , we have $w_l \rightarrow_{\delta} \approx_{\delta} v^{-1} w_l \delta(v)$ in W_l , and hence $w_l \cdot n_l \rightarrow \approx v^{-1} w_l \delta(v) \cdot n_l$, as desired.

Recall we have a CAT(0) metric d on $X := |\Sigma|_{CAT(0)}$. The **minimal displacement set** of *w* is

 $Min(w) = \{x \in X \mid d(x, wx) \text{ is minimal}\}.$

If w has infinite order, then Min(w) is the closed convex subset of X which is the union of all w-**axes**, i.e. of all geodesic lines L stabilised by w.

Example:

w = sut

 ${
m Min}(w) = L$ ${
m Min}(w^2) = |\Sigma|_{
m CAT}(0)$

Recall we have a CAT(0) metric d on $X := |\Sigma|_{CAT(0)}$. The **minimal displacement set** of *w* is

 $Min(w) = \{x \in X \mid d(x, wx) \text{ is minimal}\}.$

If w has infinite order, then Min(w) is the closed convex subset of X which is the union of all w-**axes**, i.e. of all geodesic lines L stabilised by w.

<u>Theorem</u>: Let $w' \in \mathcal{O}_w^{\min}$. Then $w \to \approx w'$.

Recall we have a CAT(0) metric d on $X := |\Sigma|_{CAT(0)}$. The **minimal displacement set** of *w* is

 $Min(w) = \{x \in X \mid d(x, wx) \text{ is minimal}\}.$

If w has infinite order, then Min(w) is the closed convex subset of X which is the union of all w-**axes**, i.e. of all geodesic lines L stabilised by w.

<u>Theorem</u>: Let $w' \in \mathcal{O}_w^{\min}$. Then $w \to \approx w'$.

Assume that $w \in W$ has infinite order, and let $w' \in \mathcal{O}_w^{\min}$.

Recall we have a CAT(0) metric d on $X := |\Sigma|_{CAT(0)}$. The **minimal displacement set** of *w* is

 $Min(w) = \{x \in X \mid d(x, wx) \text{ is minimal}\}.$

If w has infinite order, then Min(w) is the closed convex subset of X which is the union of all w-**axes**, i.e. of all geodesic lines L stabilised by w.

<u>Theorem</u>: Let $w' \in \mathcal{O}_w^{\min}$. Then $w \to \approx w'$.

Assume that $w \in W$ has infinite order, and let $w' \in \mathcal{O}_w^{\min}$. <u>Reduction step</u>: WLOG, w, w' have an axis through C_0 .

Recall we have a CAT(0) metric d on $X := |\Sigma|_{CAT(0)}$. The **minimal displacement set** of *w* is

 $Min(w) = \{x \in X \mid d(x, wx) \text{ is minimal}\}.$

If w has infinite order, then Min(w) is the closed convex subset of X which is the union of all w-**axes**, i.e. of all geodesic lines L stabilised by w.

<u>Theorem</u>: Let $w' \in \mathcal{O}_w^{\min}$. Then $w \to \approx w'$.

<u>Theorem</u>: Let $w' \in \mathcal{O}_w^{\min}$. Then $w \to \approx w'$.

<u>Theorem</u>: Let $w' \in \mathcal{O}_w^{\min}$. Then $w \to \approx w'$.

Let
$$x_w \in Min(w)$$
 and $x_{w'} \in Min(w')$.
 $\Rightarrow vx_{w'} \in Min(vw'v^{-1}) = Min(w)$
 $\Rightarrow [x_w, vx_{w'}] \subseteq Min(w)$

<u>Theorem</u>: Let $w' \in \mathcal{O}_w^{\min}$. Then $w \to \approx w'$.

Let
$$x_w \in Min(w)$$
 and $x_{w'} \in Min(w')$.
 $\Rightarrow vx_{w'} \in Min(vw'v^{-1}) = Min(w)$
 $\Rightarrow [x_w, vx_{w'}] \subseteq Min(w)$
Let $\Gamma = (C_0, \dots, C, D, \dots, vC_0)$ be a
minimal gallery containing $[x_w, vx_{w'}]$.

<u>Theorem</u>: Let $w' \in \mathcal{O}_w^{\min}$. Then $w \to \approx w'$.

Assume that $w \in W$ has infinite order, and let $w' \in \mathcal{O}_w^{\min}$. <u>Reduction step</u>: WLOG, w, w' have an axis through C_0 . <u>Claim</u>: Write $w' = v^{-1}wv$ for some $v \in W$. Then $vC_0 \in \mathcal{C}^w$. <u>Hyp</u>: $vC_0 \in \text{CombiMin}(w)$.

Let $x_w \in Min(w)$ and $x_{w'} \in Min(w')$. $\Rightarrow vx_{w'} \in Min(vw'v^{-1}) = Min(w)$ $\Rightarrow [x_w, vx_{w'}] \subseteq Min(w)$ Let $\Gamma = (C_0, \dots, C, D, \dots, vC_0)$ be a minimal gallery containing $[x_w, vx_{w'}]$. Let *m* be the wall between *C* and *D*. Let *L* be a *w*-axis through $x \in C \cap D$.

<u>Theorem</u>: Let $w' \in \mathcal{O}_w^{\min}$. Then $w \to \approx w'$.

Assume that $w \in W$ has infinite order, and let $w' \in \mathcal{O}_w^{\min}$. <u>Reduction step</u>: WLOG, w, w' have an axis through C_0 . <u>Claim</u>: Write $w' = v^{-1}wv$ for some $v \in W$. Then $vC_0 \in \mathcal{C}^w$. <u>Hyp</u>: $vC_0 \in \text{CombiMin}(w)$.

Let $x_w \in Min(w)$ and $x_{w'} \in Min(w')$. $\Rightarrow vx_{w'} \in Min(vw'v^{-1}) = Min(w)$ $\Rightarrow [x_w, vx_{w'}] \subseteq Min(w)$ Let $\Gamma = (C_0, \dots, C, D, \dots, vC_0)$ be a minimal gallery containing $[x_w, vx_{w'}]$. Let *m* be the wall between *C* and *D*. Let *L* be a *w*-axis through $x \in C \cap D$.

<u>**Case 1**</u>: $L \cap m = \{*\}.$

<u>Theorem</u>: Let $w' \in \mathcal{O}_w^{\min}$. Then $w \to \approx w'$.

Assume that $w \in W$ has infinite order, and let $w' \in \mathcal{O}_w^{\min}$. <u>Reduction step</u>: WLOG, w, w' have an axis through C_0 . <u>Claim</u>: Write $w' = v^{-1}wv$ for some $v \in W$. Then $vC_0 \in \mathcal{C}^w$. <u>Hyp</u>: $vC_0 \in \text{CombiMin}(w)$.

Let $x_w \in Min(w)$ and $x_{w'} \in Min(w')$. $\Rightarrow vx_{w'} \in Min(vw'v^{-1}) = Min(w)$ $\Rightarrow [x_w, vx_{w'}] \subseteq Min(w)$ Let $\Gamma = (C_0, \dots, C, D, \dots, vC_0)$ be a minimal gallery containing $[x_w, vx_{w'}]$. Let *m* be the wall between *C* and *D*. Let *L* be a *w*-axis through $x \in C \cap D$.

<u>Case 1</u>: $L \cap m = \{*\}$. Then $C \in \mathcal{C}^w \Rightarrow D \in \mathcal{C}^w$.

<u>Theorem</u>: Let $w' \in \mathcal{O}_w^{\min}$. Then $w \to \approx w'$.

Assume that $w \in W$ has infinite order, and let $w' \in \mathcal{O}_w^{\min}$. <u>Reduction step</u>: WLOG, w, w' have an axis through C_0 . <u>Claim</u>: Write $w' = v^{-1}wv$ for some $v \in W$. Then $vC_0 \in \mathcal{C}^w$. <u>Hyp</u>: $vC_0 \in \text{CombiMin}(w)$.

Let $x_w \in Min(w)$ and $x_{w'} \in Min(w')$. Let $\Gamma = (C_0, \ldots, C, D, \ldots, vC_0)$ be a minimal gallery containing $[x_w, vx_{w'}]$. Let *m* be the wall between *C* and *D*. Let *L* be a *w*-axis through $x \in C \cap D$.

<u>Case 2</u>: $L \subseteq m$.

<u>Theorem</u>: Let $w' \in \mathcal{O}_w^{\min}$. Then $w \to \approx w'$.

Assume that $w \in W$ has infinite order, and let $w' \in \mathcal{O}_w^{\min}$. <u>Reduction step</u>: WLOG, w, w' have an axis through C_0 . <u>Claim</u>: Write $w' = v^{-1}wv$ for some $v \in W$. Then $vC_0 \in \mathcal{C}^w$. <u>Hyp</u>: $vC_0 \in \text{CombiMin}(w)$.

Let $x_w \in Min(w)$ and $x_{w'} \in Min(w')$. Let $\Gamma = (C_0, \ldots, C, D, \ldots, vC_0)$ be a minimal gallery containing $[x_w, vx_{w'}]$. Let *m* be the wall between *C* and *D*. Let *L* be a *w*-axis through $x \in C \cap D$.

<u>Case 2</u>: $L \subseteq m$.

<u>Theorem</u>: Let $w' \in \mathcal{O}_w^{\min}$. Then $w \to \approx w'$.

Assume that $w \in W$ has infinite order, and let $w' \in \mathcal{O}_w^{\min}$. <u>Reduction step</u>: WLOG, w, w' have an axis through C_0 . <u>Claim</u>: Write $w' = v^{-1}wv$ for some $v \in W$. Then $vC_0 \in \mathcal{C}^w$. <u>Hyp</u>: $vC_0 \in \text{CombiMin}(w)$.

Let $x_w \in Min(w)$ and $x_{w'} \in Min(w')$. Let $\Gamma = (C_0, \ldots, C, D, \ldots, vC_0)$ be a minimal gallery containing $[x_w, vx_{w'}]$. Let *m* be the wall between *C* and *D*. Let *L* be a *w*-axis through $x \in C \cap D$.

<u>Case 2</u>: $L \subseteq m$. Then *w* normalises $\operatorname{Stab}_W(R_x)$.*

<u>Theorem</u>: Let $w' \in \mathcal{O}_w^{\min}$. Then $w \to \approx w'$.

Assume that $w \in W$ has infinite order, and let $w' \in \mathcal{O}_w^{\min}$. <u>Reduction step</u>: WLOG, w, w' have an axis through C_0 . <u>Claim</u>: Write $w' = v^{-1}wv$ for some $v \in W$. Then $vC_0 \in \mathcal{C}^w$. <u>Hyp</u>: $vC_0 \in \text{CombiMin}(w)$.

Let $x_w \in Min(w)$ and $x_{w'} \in Min(w')$. Let $\Gamma = (C_0, \dots, C, D, \dots, vC_0)$ be a minimal gallery containing $[x_w, vx_{w'}]$. Let *m* be the wall between *C* and *D*. Let *L* be a *w*-axis through $x \in C \cap D$.

<u>Case 2</u>: $L \subseteq m$. Then *w* normalises $\operatorname{Stab}_W(R_x)$.* <u>Prop</u>: $E = \operatorname{proj}_{R_x}(vC_0) \in \operatorname{CombiMin}(w)$

<u>Theorem</u>: Let $w' \in \mathcal{O}_w^{\min}$. Then $w \to \approx w'$.

Assume that $w \in W$ has infinite order, and let $w' \in \mathcal{O}_w^{\min}$. <u>Reduction step</u>: WLOG, w, w' have an axis through C_0 . <u>Claim</u>: Write $w' = v^{-1}wv$ for some $v \in W$. Then $vC_0 \in \mathcal{C}^w$. <u>Hyp</u>: $vC_0 \in \text{CombiMin}(w)$.

Let $x_w \in Min(w)$ and $x_{w'} \in Min(w')$. Let $\Gamma = (C_0, \dots, C, D, \dots, vC_0)$ be a minimal gallery containing $[x_w, vx_{w'}]$. Let m be the wall between C and D. Let L be a w-axis through $x \in C \cap D$. <u>Case 2</u>: $L \subseteq m$. Then w normalises $\operatorname{Stab}_W(R_x)$.* <u>Prop</u>: $E = \operatorname{proj}_{R_v}(vC_0) \in \operatorname{CombiMin}(w)$

Hence, $C \in \mathcal{C}^w \Rightarrow E \in \mathcal{C}^w$.