Update on GLS

R. Lyons and R. Solomon and many others

Banff, August, 2019

CFSG, Amer. Math. Soc. Surveys \& Monographs 40 Published:
No. 1: Overview and Outline of Proof
No. 2: General Group Theory
No. 3: Almost Simple K-Groups
No. 4: Part II, Chapters 1-4: Uniqueness Theorems
No. 5: Part III, Chapters 1-6: The Generic Case,
No. 7: Part III, Chapters 7-11: The Generic Case, continued
No. 8: Part III, Chapters 12-17: The Generic Case, completed
No. 6: Part IV, Chapters 1-10: The Special Odd Case
In progress:
No. 9: Part V, Chapters 1-6: The Bicharacteristic and Intermediate Cases (with I. CAPDEBOSCQ)
No. 10: Part V, The Case $e(G)=3$ (with I. CAPDEBOSCQ, K.
MAGAARD, C. PARKER)
No. 11: Part II, p-Uniqueness Theorems and 2-Uniqueness
Theorems (with R. FOOTE)
No. 12: Part II, The Uniqueness Case (G. STROTH)

2 A Corollary, and $\sigma_{0}(G)$

Corollary (of Volumes 1-8)
A minimal counterexample G to CFSG is of even type. Moreover, assuming all the uniqueness theorems in Part II, it is of special even type.

By Aschbacher-Smith Quasi Thin Theorem, $e(G) \geq 3$, so $\sigma(G) \neq \emptyset$, where

2 A Corollary, and $\sigma_{0}(G)$

Corollary (of Volumes 1-8)

A minimal counterexample G to CFSG is of even type. Moreover, assuming all the uniqueness theorems in Part II, it is of special even type.

By Aschbacher-Smith Quasi Thin Theorem, $e(G) \geq 3$, so $\sigma(G) \neq \emptyset$, where

Definition

$$
\sigma(G)= \begin{cases}\left\{\text { odd primes } p \mid m_{2, p}(G) \geq 4\right\} & \text { if nonempty } \\ \left\{\text { odd primes } p \mid m_{2, p}(G)=3\right\} & \text { otherwise }\end{cases}
$$

$m_{2, p}(G)=$ largest p-rank found among all 2-locals in G.
$\sigma_{0}(G)=\{p \in \sigma(G) \mid G$ has no very strong p-uniqueness subgroup $\}$
$\sigma_{0}(G) \neq \emptyset$: Volumes 9 and 10.
$\sigma_{0}(G)=\emptyset \neq \sigma(G):$ Volumes 11 and 12.

3 The foundation: Background Results

These are well-established results that we itemize in the first volume. In subsequent volumes we add a few more. The first one is the Odd Order theorem of W. Feit and J. G. Thompson.
When M. Aschbacher and S. D. Smith published their
Classification of Quasithin Groups, we added that to the list. Another Background Result is that each sporadic simple group is determined by its "centralizer of involution pattern." In the Generic Case we use some recent results on Phan Theory due to R. Köhl, S. Shpectorov, C. Bennett, B. Mühlherr and others, for the purpose of recognizing certain Chevalley groups.

4 Outline

- Case division.
- Uniqueness Theorems.
- The Generic Case.
- The Bicharacteristic Case.

5 Minimal counterexample; the finite quasisimple groups
$G=$ minimal counterexample to CFSG
G is \mathcal{K}-proper
$\mathcal{K}=$ Alt \cup Chev \cup Spor \quad includes covering groups
$p=$ prime
$\mathcal{K}_{p}=\left\{K \in \mathcal{K} \mid O_{p^{\prime}}(K)=1\right\} \quad\left(O_{p^{\prime}}(K)=\max p^{\prime} \triangleleft K\right)$
$\mathcal{K}_{p}=$ set of possible components of $\bar{N}:=N / O_{p^{\prime}}(N)$, $N=N_{G}(P)=p$-local subgroup in \mathcal{K}-proper simple group G

5 Minimal counterexample; the finite quasisimple groups
$G=$ minimal counterexample to CFSG
G is \mathcal{K}-proper
$\mathcal{K}=$ Alt \cup Chev \cup Spor \quad includes covering groups
$p=$ prime
$\mathcal{K}_{p}=\left\{K \in \mathcal{K} \mid O_{p^{\prime}}(K)=1\right\} \quad\left(O_{p^{\prime}}(K)=\max p^{\prime} \triangleleft K\right)$
$\mathcal{K}_{p}=$ set of possible components of $\bar{N}:=N / O_{p^{\prime}}(N)$, $N=N_{G}(P)=p$-local subgroup in \mathcal{K}-proper simple group G

Convention: For any group $H, \bar{H}:=H / O_{p^{\prime}}(H)$.
Notation: $m_{p}(X)=p$-rank of X
If $K, L \in \mathcal{K}_{p}$, then $K \uparrow_{p} L \Longleftrightarrow$ there is $x \in \operatorname{Aut}(L)$ of order p and $K_{0} \triangleleft \triangleleft C_{L}(x)$ such that $\overline{K_{0}} \cong K$.

6 A principle

We begin by surveying the isomorphism types, for all primes p and p-local subgroups N of G, of components of $E(\bar{N})$. On the basis of this (and whether G is of even type) we select

- a prime p to guide the analysis of G, and
- a strategy for that analysis.

7 The Guiding Prime; A Basic Case Division

If G is of odd type, $p=2$ will be the guiding prime, and if G is of even type, an odd prime p will be the guiding prime.

Odd, 2-Special Type	Even, p-Special Type $\forall p \in \sigma_{0}(G)$
Odd, 2-Generic Type	Even, p-Generic Type for some $p \in \sigma_{0}(G)$

8 -Component Pairs in G

$$
p=\text { a prime; } m_{p}(G) \geq 3
$$

8 -Component Pairs in G

$p=$ a prime; $m_{p}(G) \geq 3$
A p-component pair (x, K) in G consists of an element x of order p and a p-component K of $C_{G}(x)$.
$\left(K \triangleleft \triangleleft C_{G}(x), \bar{K}\right.$ quasisimple, K minimal)
Based on $L_{p^{\prime}}$-balance, $\quad\left(x, K_{x}\right)<\left(y, K_{y}\right) \Longleftrightarrow$
[$\left.\bar{K}_{x}, y\right]=1$ and K_{y} is a "pumpup" of K_{x} in $C_{G}(y)$:
trivial $\left(\left[\bar{K}_{y}, x\right]=1\right.$ and $\left.\bar{K}_{x} \cong \bar{K}_{y}\right)$, vertical $\left(\bar{K}_{x} \uparrow_{p} \bar{K}_{y}\right)$, or diagonal

Information about $E\left(\overline{C_{G}(x)}\right)$ moves along the commuting graph of elements of G of order p.
$\left(x, K_{x}\right)$ is p-terminal if for all such $y,\left[\overline{K_{y}}, x\right]=1$ and $\overline{K_{x}} \cong \overline{K_{y}}$ (\& a further Sylow p-subgroup condition holds)
$9 \quad$ p-Terminal Pairs Exist
$\left(x, K_{x}\right)$ is p-terminal if $\left[\overline{K_{y}}, x\right]=1(\& \ldots)$ for all $\left(x, K_{x}\right)<\left(y, K_{y}\right)$
Theorem (M. Aschbacher, R. H. Gilman, GLS)
Let (x, K) be a p-component pair. If $p>2$, assume that K has a $Z_{p} \times Z_{p}$ subgroup disjoint from $O_{p^{\prime} p}(K)$. Then a suitable series of pumpups leads to a p-terminal pair.

For a p-component pair $(x, K), K$ itself is "terminal" $\Longleftrightarrow K \triangleleft \triangleleft C_{G}(y)$ for all $y \in C_{G}(K)$ of order p.

Example: $\ln L_{5}(q), p=3$ dividing $q-1, \omega^{3}=1 \neq \omega$, $\left(\operatorname{diag}\left(\omega, \omega^{2}, 1,1,1\right), S L_{3}(q)\right)$
pumps up to $\left(\operatorname{diag}\left(\omega^{2}, \omega, \omega, \omega, \omega\right), S L_{4}(q)\right)$, which is 3 -terminal and terminal.
$10 \quad \mathcal{K}_{p}=\mathcal{C}_{p} \cup \mathcal{T}_{p} \cup \mathcal{G}_{p}$ (a partition for each prime p)
Start with

$$
\mathcal{K}_{p}=\operatorname{Chev}(p) \cup\left\{K \mid m_{p}(K)=1\right\} \cup\{\text { the rest }\}
$$

and move some groups around the "edges".
$10 \quad \mathcal{K}_{p}=\mathcal{C}_{p} \cup \mathcal{T}_{p} \cup \mathcal{G}_{p}($ a partition for each prime $p)$ Start with

$$
\mathcal{K}_{p}=\operatorname{Chev}(p) \cup\left\{K \mid m_{p}(K)=1\right\} \cup\{\text { the rest }\}
$$

and move some groups around the "edges".
For $p \leq 11$: some groups are taken from \mathcal{G}_{p} and put in \mathcal{C}_{p} or \mathcal{T}_{p}.
\mathcal{C}_{2} contains 19 sporadic groups, \mathcal{C}_{3} contains 16 $\mathcal{C}_{2} \cup \mathcal{T}_{2}$ contains $L_{2}(q)$ and $S L_{2}(q), q$ odd \mathcal{T}_{3} contains $A_{7}, L_{3}(q), U_{3}(q), S L_{3}(q), S U_{3}(q), q \neq 3^{n}$
$10 \quad \mathcal{K}_{p}=\mathcal{C}_{p} \cup \mathcal{T}_{p} \cup \mathcal{G}_{p}$ (a partition for each prime p) Start with

$$
\mathcal{K}_{p}=\operatorname{Chev}(p) \cup\left\{K \mid m_{p}(K)=1\right\} \cup\{\text { the rest }\}
$$

and move some groups around the "edges".
For $p \leq 11$: some groups are taken from \mathcal{G}_{p} and put in \mathcal{C}_{p} or \mathcal{T}_{p}.
\mathcal{C}_{2} contains 19 sporadic groups, \mathcal{C}_{3} contains 16
$\mathcal{C}_{2} \cup \mathcal{T}_{2}$ contains $L_{2}(q)$ and $S L_{2}(q), q$ odd
\mathcal{T}_{3} contains $A_{7}, L_{3}(q), U_{3}(q), S L_{3}(q), S U_{3}(q), q \neq 3^{n}$

Properties:

- If $K, L \in \mathcal{K}_{p}$ and $K \uparrow_{p} L$, then
- $K \in \mathcal{G}_{p} \Longrightarrow L \in \mathcal{G}_{p}$
- $L \in \mathcal{C}_{p} \Longrightarrow K \in \mathcal{C}_{p}$
and roughly speaking,
- $K \in \mathcal{C}_{p} \Longrightarrow K$ has good balance properties for prime p ideally: $O_{p^{\prime}}\left(C_{\text {Aut (K) }}(x)\right)=1$ for all $x \in \operatorname{Aut}(K), x^{p}=1$
- $K \in \mathcal{G}_{p} \Longrightarrow K$ has good generation properties for p ideally: $Z_{p} \times Z_{p} \cong E \leq \operatorname{Aut}(K) \Longrightarrow K=\left\langle C_{K}(e) \mid e \in E^{\#}\right\rangle$

11 Generic type vs. Special type

Definition

Given p, G is of p-generic type if and only if there exists a p-terminal component pair $\left(x, K_{x}\right)$ such that

- $\bar{K}_{x} \in \mathcal{G}_{p}$;
- $m_{p}\left(C_{G}(x)\right) \geq 3$, with strict inequality if $p>2$.

Otherwise, G is of p-special type.
For example if \exists involution $z: \quad C_{G}(z) \cong Z_{2} \times L_{5}(3)$, then G is of 2-generic type.

If $\exists x: x^{3}=1, C_{G}(x) \cong S U_{6}(8) \times P S p_{8}(3)$, then G is of 3-generic type.

12 Even type vs. Odd type

Definition (GLS)

G is of even type if and only if

- $m_{2}(G) \geq 3$,
- For every involution $z \in G$,
- $O_{2^{\prime}}\left(C_{G}(z)\right)=1$
- $K \in \mathcal{C}_{2}$ for every component K of $C_{G}(z)$.

Otherwise, G is of odd type.
If $G \in \operatorname{Chev}(2)$, then G is of even type.
In the first-generation proof, "odd type" = "not charac. 2-type."
Most of the largest sporadic groups are of even type but not char.
2 type, e.g. $M=F_{1}, B M=F_{2}, C o_{1}, F i_{24}^{\prime}, F i_{23}, F i_{22}, S u z$

13 The Outcomes: What is G in the different cases?

Special Odd Type (Part IV)
 Special Even Type (Part V)

SMALL CASE $-m_{2}(G) \leq 2$:
$L_{2}(q), L_{3}(q), U_{3}(q), q$ odd M_{11}, A_{7}
2-INTERMEDIATE CASE
All 2-Components in $\mathcal{C}_{2} \cup \mathcal{T}_{2}$, and $m_{2}(G) \geq 3$:
Chev(odd), untw. Lie rank ≤ 2; ${ }^{3} D_{4}(q)$, some $L_{4}(q), U_{4}(q), q$ odd;
A_{9}, A_{10}, A_{11}
$M_{12}, M c, L y, O^{\prime} N$
p-Generic Type (Part III): Large Chev; $A_{n}, n \geq 13$ $p=2$ or $p>2$ according as Odd or Even Type

Uniqueness Theorems (Part II)
Chev(2), twisted rank 1
i.e., groups with a strongly embedded subgroup; also J_{1}

14 Uniqueness Theorems when $p=2$

- Bender-Suzuki Strongly Embedded Subgroup Theorem
- Global C(G,T)-Theorem (Aschbacher, Foote, Harada, Solomon)
- Terminal components K are standard if $m_{2}(K)>1$ (Aschbacher, Gilman) $\left(\left[K, K^{g}\right] \neq 1\right.$ for all $\left.g \in G\right)$ - rules out wreathed local structure

Theorem (Aschbacher, Gilman)

Let x be an involution of a simple group G and K a component of $C_{G}(x)$ which is terminal in G. If $m_{2}(K)>1$, then K is standard in G, i.e., for all $g \in G,\left[K, K^{g}\right] \neq 1$.

14 Uniqueness Theorems when $p=2$

- Bender-Suzuki Strongly Embedded Subgroup Theorem
- Global C(G,T)-Theorem (Aschbacher, Foote, Harada, Solomon)
- Terminal components K are standard if $m_{2}(K)>1$ (Aschbacher, Gilman) $\left(\left[K, K^{g}\right] \neq 1\right.$ for all $\left.g \in G\right)$ - rules out wreathed local structure

Theorem (Aschbacher, Gilman)

Let x be an involution of a simple group G and K a component of $C_{G}(x)$ which is terminal in G. If $m_{2}(K)>1$, then K is standard in G, i.e., for all $g \in G,\left[K, K^{g}\right] \neq 1$.

GLS proves a version of this and some other uniqueness theorems for odd primes too.
A subgroup $M<G$ is strongly p-embedded in G if and only if it has order divisible by p and contains the normalizers of all its nontrivial p-subgroups.

15 Uniqueness Theorems in \mathcal{K}-proper simple G for any p

Theorem (GLS4)

Let M be a maximal subgroup of G, and K a p-component of M. Suppose that for every $y \in C_{M}(\bar{K})$ of order $p, C_{G}(y) \leq M$. Suppose that $m_{p}(K)>1, m_{p}\left(C_{M}(\bar{K})\right)>1$, and $m_{p}(M) \geq 4$. Then either M is strongly p-embedded in G or else:

1. There is $g \in G-M$ and $E_{p^{2}} \cong Q \leq C_{M}(\bar{K})$ such that $Q^{g} \leq M$; and
2. $K \triangleleft M$.

If $m_{p}(K)=1$ and $p>2$, we still get these conclusions, unless M is "almost strongly p-embedded in G."

Corollary

Let (x, K) be a p-component pair in G with K quasisimple and terminal in $G, m_{p}(K) \geq 2, m_{p}\left(N_{G}(K)\right) \geq 4$. Then either G has a strongly p-embedded subgroup or K is standard in G.

Theorem (G. Stroth - Uniqueness Case - Vol. 12, in progress)

Suppose that G is a \mathcal{K}-local simple group of even type with $\sigma(G) \neq \emptyset$. Assume that for each $p \in \sigma(G), G$ possesses a very strong p-uniqueness subgroup M_{p}. Then any such M_{p} is the unique maximal 2-local containing one of its Sylow 2-subgroups. . .

16 The Uniqueness Case - Volume 12

Theorem (G. Stroth - Uniqueness Case - Vol. 12, in progress)

Suppose that G is a \mathcal{K}-local simple group of even type with $\sigma(G) \neq \emptyset$. Assume that for each $p \in \sigma(G), G$ possesses a very strong p-uniqueness subgroup M_{p}. Then any such M_{p} is the unique maximal 2-local containing one of its Sylow 2-subgroups. . .

Corollary (GLS-R. Foote)

... and in fact is strongly embedded in G, so G does not exist.

Theorem (G. Stroth - Uniqueness Case - Vol. 12, in progress)

Suppose that G is a \mathcal{K}-local simple group of even type with $\sigma(G) \neq \emptyset$. Assume that for each $p \in \sigma(G), G$ possesses a very strong p-uniqueness subgroup M_{p}. Then any such M_{p} is the unique maximal 2-local containing one of its Sylow 2-subgroups...

Corollary (GLS-R. Foote)

... and in fact is strongly embedded in G, so G does not exist.
"Definition": Let $p \in \sigma(G)$. A very strong p-uniqueness subgroup of G is a maximal subgroup M such that

- M is almost strongly p-embedded in G
- M contains a Sylow 2-subgroup of G
- For almost any $H \leq G$ such that $O_{2}(H) \neq 1$ and $m_{p}(H \cap M)>1, H \leq M$
- $F^{*}(M)=O_{2}(M) E(M), E(M)=1$ or $E(M) \in \operatorname{Chev}(2)$ of untwisted rank $>2, m_{p}\left(C_{M}(E(M))\right)=1$.

Theorem (G. Stroth - Uniqueness Case - Vol. 12, in progress)

Suppose that G is a \mathcal{K}-local simple group of even type with $\sigma(G) \neq \emptyset$. Assume that for each $p \in \sigma(G), G$ possesses a very strong p-uniqueness subgroup M_{p}. Then any such M_{p} is the unique maximal 2-local containing one of its Sylow 2-subgroups...

Corollary (GLS-R. Foote)

... and in fact is strongly embedded in G, so G does not exist.
"Definition": Let $p \in \sigma(G)$. A very strong p-uniqueness subgroup of G is a maximal subgroup M such that

- M is almost strongly p-embedded in G
- M contains a Sylow 2-subgroup of G
- For almost any $H \leq G$ such that $O_{2}(H) \neq 1$ and $m_{p}(H \cap M)>1, H \leq M$
- $F^{*}(M)=O_{2}(M) E(M), E(M)=1$ or $E(M) \in \operatorname{Chev}(2)$ of untwisted rank $>2, m_{p}\left(C_{M}(E(M))\right)=1$.

17 Bootstrapping - Volume 11

"Definition": Let $p \in \sigma(G)$. A very strong p-uniqueness subgroup of G is a maximal subgroup M such that

- M is almost strongly p-embedded in G;
- M contains a Sylow 2-subgroup of G
- For almost any $H \leq G$ such that $O_{2}(H) \neq 1$ and $m_{p}(H \cap M)>1, H \leq M$.
- $F^{*}(M)=O_{2}(M) E(M), E(M)=1$ or $E(M) \in \operatorname{Chev}(2)$, $m_{p}\left(C_{M}(E(M))\right)=1$

Volume 11 bootstraps from the first condition to the other three.

17 Bootstrapping - Volume 11

"Definition": Let $p \in \sigma(G)$. A very strong p-uniqueness subgroup of G is a maximal subgroup M such that

- M is almost strongly p-embedded in G;
- M contains a Sylow 2-subgroup of G
- For almost any $H \leq G$ such that $O_{2}(H) \neq 1$ and

$$
m_{p}(H \cap M)>1, H \leq M .
$$

- $F^{*}(M)=O_{2}(M) E(M), E(M)=1$ or $E(M) \in \operatorname{Chev}(2)$, $m_{p}\left(C_{M}(E(M))\right)=1$

Volume 11 bootstraps from the first condition to the other three.

Hence the even type strategy is:
CHOOSE $p \in \sigma(G)$ with NO ALMOST STRONGLY p-EMBEDDED SUBGROUP IN G. THEN SHOW $G \in \mathcal{K}$.

The following conditions define this case.

- Either G is of odd type, $p=2$, and $m_{2}(G) \geq 3$, or G is of even type, $p>2$, and $m_{p}(G) \geq 4$; and
- In either case, there is a p-component pair (x, K) such that $\bar{K} \in \mathcal{G}_{p}$ and $m_{p}\left(C_{G}(x)\right) \geq 3$ or 4 according as $p=2$ or $p>2$.
p is fixed but arbitrary, satisfying these conditions (except for one possible shift).

The following conditions define this case.

- Either G is of odd type, $p=2$, and $m_{2}(G) \geq 3$, or G is of even type, $p>2$, and $m_{p}(G) \geq 4$; and
- In either case, there is a p-component pair (x, K) such that $\bar{K} \in \mathcal{G}_{p}$ and $m_{p}\left(C_{G}(x)\right) \geq 3$ or 4 according as $p=2$ or $p>2$.
p is fixed but arbitrary, satisfying these conditions (except for one possible shift).
Desired conclusion: $G \cong A_{n}, n \geq 13$, or $G \in$ Chev.

19 The Generic Case: Neighborhoods

A neighborhood \mathcal{N} in simple group G is determined by (D, L) $D \leq G, D \cong Z_{p} \times Z_{p}$, and L is a p-component of $C_{G}(D)$.
Then for each $1 \neq d \in D$, the subnormal closure of L in $C_{G}(d)$ is called L_{d}, and

$$
\mathcal{N}=\mathcal{N}(D, L)=\left\{L_{d} \mid 1 \neq d \in D\right\} .
$$

Example: $G=L_{5}(q), q$ odd, $p=2$

- $d_{1}=\operatorname{diag}(1,-1,-1,-1,-1), d_{2}=\operatorname{diag}(-1,-1,-1,-1,1)$,
- $D=\left\langle d_{1}, d_{2}\right\rangle$
- $C_{G}(D) \triangleright L \cong S L_{3}(q), \quad L_{d_{1}} \cong L_{d_{2}} \cong S L_{4}(q), \quad L_{d_{1} d_{2}}=L$
- $\mathcal{N}=\left\{L_{d_{1}}, L_{d_{2}}, L_{d_{1} d_{2}}\right\}$ and $\langle\mathcal{N}\rangle=G$

This example neighborhood is

- semisimple-each $O_{p^{\prime}}\left(L_{d}\right) \leq Z\left(L_{d}\right)$
- nontrivial $-L_{d} \not \approx L$ for at least two $\langle d\rangle \leq D$
- vertical-nontrivial, and each L_{d} is a vertical or trivial pumpup
- level-all L_{d} 's are of Lie type with the same q.

Theorem (Gorenstein-Walter)

In a neighborhood $\mathcal{N}=\mathcal{N}(D, L)$, each $L_{d}, d \in D$, satisfies one of the following:

- $\bar{L}_{d} \cong \bar{L}$ (trivial pumpup-D centralizes L_{d})
- \bar{L}_{d} is quasisimple and $\bar{L} \uparrow_{p} \bar{L}_{d}$ "via" $D /\langle d\rangle$
- \bar{L}_{d} is the commuting product of p covering groups of \bar{L} permuted transitively by $D /\langle d\rangle$.

Here \bar{X} always means $X / O_{p^{\prime}}(X)$.
\mathcal{K}-group observation: if $p>2$, then the first and third possibilities never both occur in the same neighborhood.

22 The Generic Case - Volumes 5, 7, 8 - Flowchart CHOOSE p, and p-TERMINAL $(x, K), \bar{K} \in \mathcal{G}_{p}$ $\operatorname{CHOOSE}(D, L), x \in D \cong E_{p^{2}}$, AND LET $\mathcal{N}=\mathcal{N}(D, L)$
\mathcal{N} IS SEMISIMPLE
\mathcal{N} IS NONTRIVIAL

$$
\text { IF } p>2, K \in \operatorname{Chev}(2) \text { AND } p \mid q^{2}-1
$$

\mathcal{N} IS LEVEL AND COMES FROM SOME KNOWN G^{*}

$$
\begin{gathered}
\langle\mathcal{N}\rangle \cong_{c} G^{*} \text { AND } \Gamma_{D, 1}(G) \text { NORMALIZES }\langle\mathcal{N}\rangle \\
\downarrow \\
G=\langle\mathcal{N}\rangle
\end{gathered}
$$

There is a technical "stratification" of \mathcal{G}_{p}, according to isomorphism type. We choose (x, K) so that \bar{K} is in the highest stratum possible, and call it "preferred".

Roughly speaking, we prefer alternating and sporadic groups to groups of Lie type, and large rank groups of Lie type to small rank ones.

By a series of pumpups, we may choose (x, K) to be p-terminal.
Looking ahead to our neighborhood, x will lie in D, and $K=L_{x}$, and $L \triangleleft E\left(C_{K}(D)\right)$.

24 The Generic Case: Choosing a p-Source A

We want to be able to apply signalizer functor theory to $A \cong Z_{p} \times Z_{p} \times Z_{p}$: need 3/2-balance for A.

We also want A to be closely related to our soon-to-be-made choice of D (recall $L \triangleleft E\left(C_{K}(D)\right)$).

For small (rank) \bar{K}, choice is ad hoc. For large rank:

- $\bar{K} \cong A_{n}, n \geq 9, p=2: A=E \times\langle x\rangle, E \leq K, \bar{E}$ is root four-group
- $\bar{K} \cong A_{n}, p$ odd, $n>3 p: A=\left\langle x_{1}, x_{2}, x_{3}\right\rangle, x_{i}$ disjoint p-cycles
- \bar{K} large Lie type, $p=2: A=Z\left(S L_{2}(q) \times S L_{2}(q) \times S L_{2}(q)\right)$, root $S L_{2}(q)$'s (Aschbacher)
- \bar{K} large classical group, p odd: $A \leq K$, minimum support on natural module among all $Z_{p} \times Z_{p} \times Z_{p}$ subgroups

25 The Generic Case: Semisimple Neighborhoods
Choose $D \leq C_{K}(x)$ and (large) $L \triangleleft E\left(C_{K}(D)\right)$ such that $x \in D \cong Z_{p} \times Z_{p}$ and D is "nicely related" to A.
(Best situation: $[D, A]=1$ and $E\left(C_{L}(A)\right) \neq 1$.)
Let $\mathcal{N}=\left\{L_{d} \mid 1 \neq d \in D\right\}$, the neighborhood determined by D and L. Let $W=\Theta_{3 / 2}(G ; A), M=N_{G}(W)$ (signalizer functor gadgets)
Signalizer functor theory implies $\left.\Gamma_{A, 2}(G)=\left\langle N_{G}(B)\right||A: B| \leq p\right\rangle \leq M$.
Relationship of D and A implies Gorenstein-Walter Alternative:

1. \mathcal{N} is a semisimple neighborhood $\left(L_{d} \leq E\left(C_{G}(d)\right)\right.$ for all $1 \neq d \in D)$, OR
2. $W \neq 1$, so $\Gamma_{A, 2}(G) \leq M<G$.

Option $2 \Longrightarrow G$ has a strongly p-embedded subgroup, contradiction.
Hence \mathcal{N} is a semisimple neighborhood.

26 The Generic Case: More example neighborhoods \mathcal{N}

VERTICAL

\[

\]

NOT VERTICAL

$$
\begin{array}{ccc}
L_{d_{1}} & L_{d_{2}} & L_{d_{1} d_{2}} \\
D_{5}(q) & D_{5}(q) & D_{4}(q) \times D_{4}(q) \\
& \backslash & \mid \\
& D_{4}(q)
\end{array}
$$

26 The Generic Case: More example neighborhoods \mathcal{N}

VERTICAL

\[

\]

NOT VERTICAL

$$
\begin{array}{ccc}
L_{d_{1}} & L_{d_{2}} & L_{d_{1} d_{2}} \\
D_{5}(q) & D_{5}(q) & D_{4}(q) \times D_{4}(q) \\
& \backslash & \\
& & \\
& D_{4}(q)
\end{array}
$$

26 The Generic Case: More example neighborhoods \mathcal{N} VERTICAL

$$
\begin{aligned}
& L_{d_{1}} \quad L_{d_{2}} \quad L_{d_{1} d_{2}} \\
& D_{5}(q) \quad D_{5}(q) \quad D_{5}(q) \\
& \backslash \mid 1 \\
& D_{4}(q) \\
& \langle\mathcal{N}\rangle=E_{6}(q)
\end{aligned}
$$

NOT VERTICAL

$$
\begin{array}{cll}
L_{d_{1}} & L_{d_{2}} & L_{d_{1} d_{2}} \\
D_{5}(q) & D_{5}(q) & D_{4}(q) \times D_{4}(q) \\
\backslash & \| & / \\
D_{4}(q) \\
\langle\mathcal{N}\rangle=D_{5}(q) \times D_{5}(q) \\
\langle\mathcal{N}\rangle D=D_{5}(q) \imath Z_{2}
\end{array}
$$

Theorem*

In the Generic Case, starting with any preferred and p-terminal (x, K), there exists $D \leq C_{G}(x), D \cong Z_{p} \times Z_{p}$, and $L \triangleleft E\left(C_{K}(D)\right)$, and a nontrivial semisimple neighborhood $\mathcal{N}(D, L)$. Moreover,

- K is standard in G (no pumpups; $\left[K, K^{g}\right]=1 \Longrightarrow K=K^{g}$)
- $m_{p}\left(C_{G}(K)\right)=1$ unless $p=2$ and $K \cong A_{n}$, in which case $m_{2}\left(C_{G}(K)\right)=2 \ldots$
- If $p>2$, then $K \in \operatorname{Chev}(2)$.

First show $\langle x\rangle$ strongly closed in $C_{G}(x) \Longrightarrow$ almost strongly p-embedded subgroup (p odd).
Then $\exists z=x^{g} \in C_{G}(x),\langle z\rangle \neq\langle x\rangle \quad\left(Z^{*}\right.$ theorem $)$
Often $[z, D]=1$. Action of D on $K^{g} \triangleleft C_{K}(z)$ is faithful and produces a nontrivial "neighborhood in K^{g} " which implies that $\mathcal{N}(D, L)$ is nontrivial too.

If $[z, D] \neq 1$ find a suitable "bridge element" x_{1} of order p centralizing both D and z and show nontrivial nbhd in $K^{g} \Longrightarrow$ nontrivial nbhd in $E\left(C_{G}\left(x_{1}\right)\right) \Longrightarrow$ $\mathcal{N}(D, L)$ is nontrivial.

We have to refine our choice of (x, K) to make sure $\mathcal{N}(D, L)$ is vertical. The "bigger" the better.

If $p=2$ and $K \cong A_{n}$, make sure that n is as large as possible.
If $K={ }^{d} \mathcal{L}_{n}(q) \in$ Chev, maximize $f(K)=q^{n^{2}}$.
Subject to that, maximize the Lie type of $K(A-G)$:
$A<D<E<B C<F<G$
Call (x, K) "maximal" if it achieves these maximizations.
$f(K)$ is a crude measure of the Sylow q-subgroup of K.
Properties:

- $I \uparrow_{p} J \Longrightarrow f(I) \leq f(J)$
- $I, J \in \operatorname{Chev}(2), I$ involved in $J \Longrightarrow f(I) \leq f(J)$.

Theorem
 If (x, K) is maximal, then $\mathcal{N}(D, L)$ is vertical.

30 The Generic Case: Vertical Neighborhoods

Theorem

If (x, K) is maximal, then $\mathcal{N}(D, L)$ is vertical.
Otherwise, for some $d \in D-\langle x\rangle$,

$$
L_{d}=L_{1} \times \cdots \times L_{p}, \quad \text { each } L_{i} \cong L
$$

Now start with $\left(d, L_{1}\right)$, with $m_{p}\left(C_{C_{G}(d)}\left(L_{1}\right)\right) \geq 2 p-1$. (Assuming podd)
Take a series of vertical pumpups ending with a p-terminal pair:

$$
\left(d, L_{1}\right)=\left(d_{1}, J_{1}\right)<\cdots<\left(d^{*}, J^{*}\right)
$$

By previous theorem $m_{p}\left(C_{C_{G}\left(d^{*}\right)}\left(J^{*}\right)\right)=1$ (in Lie type case) Hence there exists a series

$$
K \downarrow_{p} L \sim L_{1}=J_{1} \uparrow_{p} J_{2} \uparrow_{p} \cdots \uparrow_{p} J_{m}=J^{*}
$$

such that $m \geq 3$, implying $f\left(J^{*}\right)>f(K)$ and contradicting maximality of (x, K).

31 The Generic Case: Volume 7

In Volume 7 our neighborhood gets refined further and the alternating group case is finished.

Theorem*

In the Generic Case, there exists a prime p and maximal pair (x, K), and $x \in D \cong Z_{p} \times Z_{p}$ and $L \triangleleft \triangleleft E\left(C_{K}(D)\right)$, such that

1. $\mathcal{N}:=\mathcal{N}(D, L)$ is vertical;
2. If $K \in$ Chev, then p splits K (i.e., p divides $q^{2}-1$);
3. If $K \in$ Chev, then \mathcal{N} is level.

Moreover, either $K \in$ Chev or $G=\langle\mathcal{N}\rangle \cong A_{n}, n \geq 13$.
In the alternating case we prove $\langle\mathcal{N}\rangle \cong A_{n}$ and $N_{G}(\langle\mathcal{N}\rangle)$ is strongly embedded in G.

In this theorem, for the first time, we specify for any given K a unique choice of D and L (up to automorphisms of K) - an "acceptable subterminal pair." We do this to reduce the number of recognition results we will have to prove to recognize $\langle\mathcal{N}\rangle$.

Now that \mathcal{N} looks good, we need to identify $\langle\mathcal{N}\rangle$.

Theorem

With \mathcal{N} as before and $K \in$ Chev,

- $\langle\mathcal{N}\rangle \in$ Chev

Now that \mathcal{N} looks good, we need to identify $\langle\mathcal{N}\rangle$.
Theorem
With \mathcal{N} as before and $K \in$ Chev,

- $\langle\mathcal{N}\rangle \in$ Chev
- $\Gamma_{D, 1}(G) \leq N_{G}(\langle\mathcal{N}\rangle)$, i.e., $N_{G}\left(D_{0}\right) \leq N_{G}(\langle\mathcal{N}\rangle)$ for all $1 \neq D_{0} \leq D$

The Generic Case: Volume 8, The Lie-type Endgame

Now that \mathcal{N} looks good, we need to identify $\langle\mathcal{N}\rangle$.
Theorem
With \mathcal{N} as before and $K \in$ Chev,

- $\langle\mathcal{N}\rangle \in$ Chev
- $\Gamma_{D, 1}(G) \leq N_{G}(\langle\mathcal{N}\rangle)$, i.e., $N_{G}\left(D_{0}\right) \leq N_{G}(\langle\mathcal{N}\rangle)$ for all $1 \neq D_{0} \leq D$
- $N_{G}(\langle\mathcal{N}\rangle)$ is almost strongly p-embedded in G, or $\langle\mathcal{N}\rangle=G$.

The Generic Case: Recognition Criteria

Recognition theorems for groups in Chev:

- Curtis-Tits theorems and Phan theory (odd characteristic, some characteristic 2)
- Gilman-Griess theorem (characteristic 2, exceptional gps)
- Wong-Finkelstein-Solomon theorems for classical groups Illustration: recognize $S p(V)=S p_{2 m}(q), q=2^{n}, m \geq 5$.
Standard module $V=V_{1} \perp \cdots \perp V_{m}, \operatorname{dim} V_{i}=2$
For every $I \subseteq\{1, \ldots, m\}$ let $V_{I}=\oplus_{i \in I} V_{i}$ and

$$
S p(V) \geq C_{S p(V)}\left(V_{l^{\prime}}\right) "=" S p\left(V_{l}\right)
$$

Let $T \leq \operatorname{Sp}(V), T \cong \operatorname{Sym}_{m}$ permuting $\left\{V_{1}, \ldots, V_{m}\right\}$ naturally, with $N_{T}\left(V_{i}\right)=C_{T}\left(V_{i}\right)$ for all $i=1, \ldots, m$.

Theorem (Solomon-Wong-Finkelstein)

Let $G=\langle K, N\rangle$. Suppose
given an isomorphism $f: \operatorname{Sp}\left(V_{\{1, \ldots, m-1\}}\right) \rightarrow K$, and given a surjection $\quad \lambda$: $\quad T \leftarrow N$.
Then there is a surjection $g: S p(V) \rightarrow G$, assuming two natural conditions on f and λ : Illustration: recognize $S p(V)=S p_{2 m}(q), q=2^{n}, m \geq 5$.
Standard module $V=V_{1} \perp \cdots \perp V_{m}$, $\operatorname{dim} V_{i}=2$
For every $I \subseteq\{1, \ldots, m\}$ let $V_{I}=\oplus_{i \in I} V_{i}$ and

$$
S p(V) \geq C_{S p(V)}\left(V_{l^{\prime}}\right) "=" S p\left(V_{l}\right)
$$

Let $T \leq \operatorname{Sp}(V), T \cong \operatorname{Sym}_{m}$ permuting $\left\{V_{1}, \ldots, V_{m}\right\}$ naturally, with $N_{T}\left(V_{i}\right)=C_{T}\left(V_{i}\right)$ for all $i=1, \ldots, m$.

Theorem (Solomon-Wong-Finkelstein)

Let $G=\langle K, N\rangle$. Suppose
given an isomorphism $f: \operatorname{Sp}\left(V_{\{1, \ldots, m-1\}}\right) \rightarrow K$, and
given a surjection $\quad \lambda$: $\quad T \leftarrow N$.
Then there is a surjection $g: S p(V) \rightarrow G$, assuming two natural conditions on f and λ :

1. $\left.\lambda \circ f\right|_{T_{m}}=1_{T_{m}}$ and
2. Let $g \in N$ and $I \subseteq\{1, \ldots, m\}$ be such that $m \notin I \cup \lambda(g)(I)$. Then $f\left(S p\left(V_{l}\right)\right)^{g}=f\left(S p\left(V_{\lambda(g)(I)}\right)\right)$.

C.Curtis, J.Tits, and K.-W.Phan

Curtis-Tits: Let $K \in$ Chev of twisted rank ≥ 3. Let Δ be the set of nodes of the twisted Dynkin diagram and $S:=\left\{K_{\delta} \mid \delta \in \Delta\right\}$ the set of fundamental rank 1 subgroups. Then with respect to the generating set $\cup S$, the subgroups $\left\langle K_{\delta}, K_{\delta^{\prime}}\right\rangle, \delta, \delta^{\prime} \in \Delta$, together contain defining relations for the universal version of K.

Phan: Consider certain $K \in$ Chev of untwisted rank ≥ 3. Let Γ be the set of nodes of the untwisted Dynkin diagram. Let $K_{\gamma}, \gamma \in \Gamma$, be copies of $S L_{2}(q)$ and make twisted isomorphism type assumptions about $\left\langle K_{\gamma}, K_{\gamma^{\prime}}\right\rangle, \gamma, \gamma^{\prime} \in \Gamma$. (Most famously, $\left[K_{\gamma}, K_{\gamma^{\prime}}\right]=1$ if γ, γ^{\prime} not connected, and $\left\langle K_{\gamma}, K_{\gamma^{\prime}}\right\rangle \cong(S) U_{3}(q)$ if γ, γ^{\prime} connected by a single bond.) Such subgroups can be found in K and often contain defining relations for K. Note: K itself is not necessarily a twisted group.

Volume 9: Groups of Special Even Type, $e(G) \geq 4$

Theorem (\mathcal{C}_{5} and \mathcal{C}_{6}, in progress)
Let G be of special even type, $e(G) \geq 4$.

- (Theorem \mathcal{C}_{5}) If $\mathcal{L}_{p}^{o}(G) \subseteq \mathcal{C}_{p}$, then $p=3$ and $G \cong$ Co $_{1}, F_{i_{22}}$, $F_{i 23}, F i_{24}^{\prime}, F_{2}, F_{1}, \Omega_{7}(3), P \Omega_{8}^{ \pm}(3), U_{7}(2),{ }^{2} D_{5}(2)$, or ${ }^{2} E_{6}(2)$.
- (Theorem $\left.\mathcal{C}_{6}\right) \mathcal{L}_{p}^{\circ}(G) \subseteq \mathcal{C}_{p}$.

Volume 9: Groups of Special Even Type, $e(G) \geq 4$

Theorem (\mathcal{C}_{5} and \mathcal{C}_{6}, in progress)

Let G be of special even type, $e(G) \geq 4$.

- (Theorem \mathcal{C}_{5}) If $\mathcal{L}_{p}^{\circ}(G) \subseteq \mathcal{C}_{p}$, then $p=3$ and $G \cong$ Co $_{1}$, Fi22, $F i_{23}, F i_{24}^{\prime}, F_{2}, F_{1}, \Omega_{7}(3), P \Omega_{8}^{ \pm}(3), U_{7}(2),{ }^{2} D_{5}(2)$, or ${ }^{2} E_{6}(2)$.
- (Theorem $\left.\mathcal{C}_{6}\right) \mathcal{L}_{p}^{\circ}(G) \subseteq \mathcal{C}_{p}$.
- G has even type, i.e., for all involutions $z \in G$, $O_{2^{\prime}}\left(C_{G}(z)\right)=1$ and all components L of $C_{G}(z)$ lie in \mathcal{C}_{2}. Thus, L is
- in Chev(2), or
- one of 19 sporadic groups and their covers, or
- $L_{2}(q), q \in \mathcal{F M} 9$, or
- $(P) \Omega_{n}^{ \pm}(3), n=5,6$, or $G_{2}(3)$ or $L_{3}(3)$
- For every $x \in G$ of order p (fixed odd prime) with $m_{p}\left(C_{G}(x)\right) \geq 4$, no components of $C_{G}(x)$ lie in \mathcal{G}_{p}.
- $m_{2, p}(G) \geq 4$
- There is no almost strongly p-embedded subgroup in G.

37 Remarks on Theorem \mathcal{C}_{5}

Setup:

- $F^{*}\left(C_{G}(z)\right)=O_{2}\left(C_{G}(z)\right) E\left(C_{G}(z)\right)$, components in \mathcal{C}_{2} $\left(z^{2}=1\right)$
- $\mathcal{L}_{p}^{o}(G) \subseteq \mathcal{C}_{p}$
- $m_{2, p}(G) \geq 4$
- There is no almost strongly p-embedded subgroup in G.

1. $\mathcal{C}_{3}=\operatorname{Chev}(3) \cup 16$ sporadics $\cup \cdots$
2. K. Klinger and G. Mason (1974) proved that if $m_{2, p}(G) \geq 3$, G cannot simultaneously be of characteristic 2-type and p-type. (Subremark: Characteristic p-type includes
$O_{p^{\prime}}\left(C_{G}(x)\right)=1$ for all x of order p. We can get by assuming $O_{p^{\prime}}\left(C_{G}(x)\right)$ has odd order for certain x.)
3. Root ideas go through Klinger-Mason back to Thompson's N -group paper. Heavy use of Thompson Dihedral Lemma.

Some tools

Lemma (Thompson Dihedral Lemma)

If $T \cong\left(Z_{2}\right)^{n}$ acts faithfully on a p-group P, p odd, then $T P$ contains the direct product of n copies of $D_{2 p}$. In particular $m_{2, p}(T P) \geq n-1$.

Definition

$\mathcal{E}^{p}(G)=\left\{B \leq G \mid B \cong\left(Z_{p}\right)^{n}\right.$, some $\left.n>0\right\}$.
$\mathcal{B}_{*}(G)=$ the set of "witnesses" to $m_{2, p}(G)$

$$
\left\{B \in \mathcal{E}^{p}(G) \mid И_{G}(B ; 2) \neq\{1\}, \quad m_{p}(B)=m_{2, p}(G)\right\}
$$

$\mathcal{S}^{p}(G)=$ the set of maximal el.ab. p-groups w.r.t. inclusion

Lemma (Strong Balance)

Let $B \in \mathcal{S}^{p}(G)$ with $m_{p}(B) \geq 4$. Then for all $b \in B^{\#}$ and every B-invariant p^{\prime}-subgroup W of $C_{G}(b), W \leq O_{p^{\prime}}\left(C_{G}(b)\right)$. EXCEPT IF $p=3$ and $\overline{C_{G}(b)}$ has a component $\bar{L} \cong L_{2}\left(3^{3}\right)$, and some $b \in B$ induces a field automorphism on \bar{L} of order 3 ; for then, $C_{\bar{L}}(b) \cong L_{2}(3)$.

Theorem (Strong Balance)

G is strongly balanced with respect to any $B \in \mathcal{S}^{p}(G)$ such that $m_{p}(B) \geq 4$. (I.e., the exceptional configuration in the Strong Balance Lemma does not occur in G.)

The indirect proof constructs a p-component uniqueness subgroup and argues that it is almost strongly p-embedded.

40 Theorem \mathcal{C}_{5} : Stage 1

Theorem (Stage 1)

Under the hypotheses of Theorem \mathcal{C}_{5},

1. G is balanced with respect to any $B \in \mathcal{S}^{p}(G), m_{p}(B) \geq 4$.
2. If $B \in \mathcal{B}_{*}(G)$, then there exists $B<B_{1} \in \mathcal{E}^{p}(G)$.

Definition: G has weak p-type if and only if for every $1 \neq b \in B \in \mathcal{E}^{p}(G)$,

- If $m_{p}(B) \geq 4$, then every component of $\overline{C_{G}(b)}$ lies in \mathcal{C}_{p}, and
- If $B \in \mathcal{B}_{*}(G)$, then $O_{p^{\prime}}\left(C_{G}(b)\right)$ has odd order.

Corollary

Under the hypotheses of Theorem \mathcal{C}_{5}, G has weak p-type (as well as even type).

Weak p-type is an analogue for $p>2$ of even type for $p=2$.

40 Groups of Symplectic Type

A 2-group T is of symplectic type $\Longleftrightarrow T=E * M$, E extraspecial, M cyclic or of maximal class Every characteristic abelian subgroup of T is cyclic (P.Hall)

Proposition

Let $B \in \mathcal{B}_{*}(G)$. Then any B-invariant 2 -subgroup $T \leq G$ such that $C_{T}(B) \neq 1$ is cyclic or of symplectic type.

We call such B, T a symplectic pair if T is maximal with respect to inclusion (relative to fixed B).
It is faithful if $C_{B}(T)=1$, and trivial if $|T|=2$. Examples:
In $G=F_{1}, T=F^{*}\left(C_{G}(z)\right) \cong 2^{1+24}, B \cong E_{36}$
$\ln G=F_{2},|T|=2, C_{G}(T) \cong 2^{2} E_{6}(2) 2$

41 Theorem \mathcal{C}_{5}, Stage 2: Trivial Symplectic Pairs

Theorem (Theorem \mathcal{C}_{5}, Stage 2)

Symplectic pairs exist, and $p=3$. Also, $G \cong \Omega_{7}(3)$ or $P \Omega_{8}^{ \pm}(3)$ or else

- Every symplectic pair is faithful or trivial.
- Let (B, T) be a trivial symplectic pair. Let K be a component of $E\left(C_{G}(T)\right) \neq 1$. After replacing (B, T, K) with a possibly different triple satisfying the same conditions, there is $b \in C_{G}(T)$ of order 3 such that
- $K>I<J$ where $I \triangleleft \triangleleft C_{K}(b), J \triangleleft \triangleleft C_{G}(b)$ are 3-components;
- (K, I, J), up to isomorphism, is one of a short explicit list of examples. It is called a "nonconstrained $\{2,3\}$-neighborhood."

42 A "NONCONSTRAINED (2,3)-NEIGHBORHOOD"

$$
(K, I, J)
$$

$$
\begin{array}{rc}
K \triangleleft C_{G}(t) & \quad J \triangleleft \overline{C_{G}(b)} \\
2^{2} E_{6}(2) & \quad i_{22} \\
\backslash \\
I=2 U_{6}(2) \\
\\
& I \triangleleft C_{G}(t b) \\
& {[t, b]=1}
\end{array}
$$

43 Theorem \mathcal{C}_{5}, Stage 3: Faithful Symplectic Pairs

Theorem (Klinger-Mason 90\%)
Suppose faithful symplectic pairs (B, T) exist.
Among all such and all $b \in B^{\#}$, maximize $\left|C_{T}(b)\right|$. Then
$C_{G}(b)$ has a 3-component J on which $B C_{T}(b) /\langle b\rangle$ acts faithfully.
Moreover, $\bar{J} \cong F_{1}, F_{2}, \ldots, U_{6}(2), \ldots$.
The configuration of $C_{G}(Z(T))$ and $C_{G}(b)$ is a "CONSTRAINED $\{2,3\}$-NEIGHBORHOOD".

44 A Constrained \{2, 3\}-Neighborhood

Here $\langle z\rangle=Z(T) \cong Z_{2},[z, b]=1, b^{3}=1$.

$$
\begin{array}{rc}
C_{G}(z) & J \triangleleft \overline{N_{G}(\langle b\rangle)} \\
2^{1+24} C_{o_{1}} & 3 F i_{24}^{\prime} \\
\backslash & /
\end{array}
$$

Theorem (Theorem \mathcal{C}_{5}, Stage 3)

Either $G \cong \Omega_{7}(3)$ or $\Omega_{8}^{ \pm}(3)$, or there exists a constrained or non-constrained $\{2,3\}$-neighborhood in G matching a known group $G^{*}=C_{1}, F i_{22}, F i_{23}, F i_{24}^{\prime}, F i_{24}, F_{2}, F_{1}, U_{7}(2),{ }^{2} D_{5}(2)$, or ${ }^{2} E_{6}(2)$.

Red: Non-constrained Black: Constrained

Theorem (Theorem \mathcal{C}_{5}, Stage 3)

Either $G \cong \Omega_{7}(3)$ or $\Omega_{8}^{ \pm}(3)$, or there exists a constrained or non-constrained $\{2,3\}$-neighborhood in G matching a known group $G^{*}=C o_{1}, F i_{22}, F i_{23}, F i i_{4}^{\prime}, F i_{24}, F_{2}, F_{1}, U_{7}(2),{ }^{2} D_{5}(2)$, or ${ }^{2} E_{6}(2)$.

Red: Non-constrained
Black: Constrained

Theorem (Theorem \mathcal{C}_{5}, Stage 4)

$G \cong G^{*}$.
-THANK YOU-

