A local theory of localities

Ellen Henke

University of Aberdeen

< 17 >

→ Ξ →

-≣->

母 ト く ヨ ト く ヨ ト

• Set of objects = set of all subgroups of *S*.

• Set of objects = set of all subgroups of S.

• For
$$P, Q \leq S$$
, we have

$$\mathsf{Hom}_\mathcal{F}(P,Q) := \{ c_g : P o Q \mid g \in G, P^g \leq Q \}.$$

• Set of objects = set of all subgroups of *S*.

• For
$$P, Q \leq S$$
, we have

$$\mathsf{Hom}_\mathcal{F}(P,Q) := \{ c_g : P o Q \mid g \in G, P^g \leq Q \}.$$

From now on, let \mathcal{F} be a saturated fusion system over S.

• Subsystems of \mathcal{F} , generation.

- 4 回 2 - 4 □ 2 - 4 □

æ

• Subsystems of \mathcal{F} , generation.

• $P^{\mathcal{F}} := \{ P\phi \colon \phi \in \operatorname{Hom}_{\mathcal{F}}(P, S) \}$ – \mathcal{F} -conjugates of P;

(本部) (本語) (本語) (語)

- Subsystems of \mathcal{F} , generation.
- For $P \leq S$
 - $P^{\mathcal{F}} := \{P\phi : \phi \in \operatorname{Hom}_{\mathcal{F}}(P, S)\} \mathcal{F}$ -conjugates of P;
 - $N_{\mathcal{F}}(P)$ subsystem over $N_{\mathcal{S}}(P)$,

・ 回 と ・ ヨ と ・ モ と …

æ

- Subsystems of \mathcal{F} , generation.
- For P ≤ S
 - $P^{\mathcal{F}} := \{P\phi : \phi \in \operatorname{Hom}_{\mathcal{F}}(P, S)\} \mathcal{F}$ -conjugates of P;
 - N_F(P) subsystem over N_S(P), saturated if P is fully normalized, i.e. |N_S(P)| ≥ |N_S(Q)| for all Q ∈ P^F;

伺 ト イヨト イヨト

- Subsystems of \mathcal{F} , generation.
- For P ≤ S
 - $P^{\mathcal{F}} := \{P\phi : \phi \in \operatorname{Hom}_{\mathcal{F}}(P, S)\} \mathcal{F}$ -conjugates of P;
 - N_F(P) subsystem over N_S(P), saturated if P is fully normalized, i.e. |N_S(P)| ≥ |N_S(Q)| for all Q ∈ P^F;
 - $C_{\mathcal{F}}(P)$ subsystem over $C_{\mathcal{S}}(P)$,

・ 回 と ・ ヨ と ・ ヨ と …

- Subsystems of \mathcal{F} , generation.
- For P ≤ S
 - $P^{\mathcal{F}} := \{P\phi : \phi \in \operatorname{Hom}_{\mathcal{F}}(P, S)\} \mathcal{F}$ -conjugates of P;
 - N_F(P) subsystem over N_S(P), saturated if P is fully normalized, i.e. |N_S(P)| ≥ |N_S(Q)| for all Q ∈ P^F;
 - C_F(P) subsystem over C_S(P), saturated if P is fully centralized, i.e. |C_S(P)| ≥ |C_S(Q)| for all Q ∈ P^F.

伺 ト イヨト イヨト

- Subsystems of \mathcal{F} , generation.
- For $P \leq S$
 - $P^{\mathcal{F}} := \{P\phi : \phi \in \operatorname{Hom}_{\mathcal{F}}(P, S)\}$ \mathcal{F} -conjugates of P;
 - N_F(P) subsystem over N_S(P), saturated if P is fully normalized, i.e. |N_S(P)| ≥ |N_S(Q)| for all Q ∈ P^F;
 - C_F(P) subsystem over C_S(P), saturated if P is fully centralized, i.e. |C_S(P)| ≥ |C_S(Q)| for all Q ∈ P^F.
- $O_p(\mathcal{F}) \leq S$ and $Z(\mathcal{F}) \leq S$.

・ 回 と ・ ヨ と ・ モ と …

- Subsystems of \mathcal{F} , generation.
- For $P \leq S$
 - $P^{\mathcal{F}} := \{P\phi \colon \phi \in \operatorname{Hom}_{\mathcal{F}}(P, S)\} \mathcal{F}$ -conjugates of P;
 - N_F(P) subsystem over N_S(P), saturated if P is fully normalized, i.e. |N_S(P)| ≥ |N_S(Q)| for all Q ∈ P^F;
 - C_F(P) subsystem over C_S(P), saturated if P is fully centralized, i.e. |C_S(P)| ≥ |C_S(Q)| for all Q ∈ P^F.
- $O_p(\mathcal{F}) \leq S$ and $Z(\mathcal{F}) \leq S$.
- Normal subsystems, subnormal subsystems (Puig, Aschbacher 2010).

・ 回 と ・ ヨ と ・ ヨ と …

- Subsystems of \mathcal{F} , generation.
- For $P \leq S$
 - $P^{\mathcal{F}} := \{P\phi \colon \phi \in \operatorname{Hom}_{\mathcal{F}}(P, S)\} \mathcal{F}$ -conjugates of P;
 - N_F(P) subsystem over N_S(P), saturated if P is fully normalized, i.e. |N_S(P)| ≥ |N_S(Q)| for all Q ∈ P^F;
 - C_F(P) subsystem over C_S(P), saturated if P is fully centralized, i.e. |C_S(P)| ≥ |C_S(Q)| for all Q ∈ P^F.

•
$$O_p(\mathcal{F}) \leq S$$
 and $Z(\mathcal{F}) \leq S$.

- Normal subsystems, subnormal subsystems (Puig, Aschbacher 2010).
- O^p(F), O^{p'}(F) (Puig, Broto–Castellana–Grodal–Levi–Oliver 2007).

個 と く ヨ と く ヨ と …

- Subsystems of \mathcal{F} , generation.
- For $P \leq S$
 - $P^{\mathcal{F}} := \{P\phi \colon \phi \in \operatorname{Hom}_{\mathcal{F}}(P, S)\} \mathcal{F}$ -conjugates of P;
 - N_F(P) subsystem over N_S(P), saturated if P is fully normalized, i.e. |N_S(P)| ≥ |N_S(Q)| for all Q ∈ P^F;
 - C_F(P) subsystem over C_S(P), saturated if P is fully centralized, i.e. |C_S(P)| ≥ |C_S(Q)| for all Q ∈ P^F.

•
$$O_p(\mathcal{F}) \leq S$$
 and $Z(\mathcal{F}) \leq S$.

- Normal subsystems, subnormal subsystems (Puig, Aschbacher 2010).
- O^p(F), O^{p'}(F) (Puig, Broto-Castellana-Grodal-Levi-Oliver 2007).
- Simple fusion systems, quasisimple fusion systems (Aschbacher 2011).

▲御★ ▲注★ ▲注★

• Components, $E(\mathcal{F})$, $F^*(\mathcal{F})$ (Aschbacher 2011).

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

 Components, E(F), F*(F) (Aschbacher 2011).
 E-balance. If P ≤ S is fully normalized, then E(N_F(P)) ⊆ E(F).

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Components, E(F), F*(F) (Aschbacher 2011).
 E-balance. If P ≤ S is fully normalized, then E(N_F(P)) ⊆ E(F).
- If *E*₁, *E*₂ ≤ *F*, then a product *E*₁*E*₂ is defined (special case Aschbacher 2011; general case Chermak-H. preprint 2018).

- Components, E(F), F*(F) (Aschbacher 2011).
 E-balance. If P ≤ S is fully normalized, then E(N_F(P)) ⊆ E(F).
- If $\mathcal{E}_1, \mathcal{E}_2 \trianglelefteq \mathcal{F}$, then a product $\mathcal{E}_1 \mathcal{E}_2$ is defined (special case Aschbacher 2011; general case Chermak-H. preprint 2018).
- If $\mathcal{E} \trianglelefteq \mathcal{F}$, then
 - $\mathcal{E}X$ is defined for all $X \leq S$ (Aschbacher 2011, revisited H. 2013);

回 と く ヨ と く ヨ と

- Components, E(F), F*(F) (Aschbacher 2011).
 E-balance. If P ≤ S is fully normalized, then E(N_F(P)) ⊆ E(F).
- If $\mathcal{E}_1, \mathcal{E}_2 \leq \mathcal{F}$, then a product $\mathcal{E}_1\mathcal{E}_2$ is defined (special case Aschbacher 2011; general case Chermak-H. preprint 2018).
- If $\mathcal{E} \trianglelefteq \mathcal{F}$, then
 - $\mathcal{E}X$ is defined for all $X \leq S$ (Aschbacher 2011, revisited H. 2013);
 - $C_{\mathcal{F}}(\mathcal{E})$ is defined (Aschbacher 2011; revisited H. 2018);

・日・ ・ ヨ・ ・ ヨ・

- Components, E(F), F*(F) (Aschbacher 2011).
 E-balance. If P ≤ S is fully normalized, then E(N_F(P)) ⊆ E(F).
- If *E*₁, *E*₂ ≤ *F*, then a product *E*₁*E*₂ is defined (special case Aschbacher 2011; general case Chermak-H. preprint 2018).
- If $\mathcal{E} \trianglelefteq \mathcal{F}$, then
 - $\mathcal{E}X$ is defined for all $X \leq S$ (Aschbacher 2011, revisited H. 2013);
 - $C_{\mathcal{F}}(\mathcal{E})$ is defined (Aschbacher 2011; revisited H. 2018);
 - *N*_E(*P*) is defined if *P* ≤ *S* is fully normalized (Aschbacher 2011, revisited H.-G. preprint 2018).

イロト イヨト イヨト イヨト

- Components, E(F), F*(F) (Aschbacher 2011).
 E-balance. If P ≤ S is fully normalized, then E(N_F(P)) ⊆ E(F).
- If *E*₁, *E*₂ ≤ *F*, then a product *E*₁*E*₂ is defined (special case Aschbacher 2011; general case Chermak-H. preprint 2018).
- If $\mathcal{E} \trianglelefteq \mathcal{F}$, then
 - $\mathcal{E}X$ is defined for all $X \leq S$ (Aschbacher 2011, revisited H. 2013);
 - $C_{\mathcal{F}}(\mathcal{E})$ is defined (Aschbacher 2011; revisited H. 2018);
 - *N*_E(*P*) is defined if *P* ≤ *S* is fully normalized (Aschbacher 2011, revisited H.-G. preprint 2018).
- If C is a component of F, then C_F(C), N_F(C) are defined (Aschbacher 2019).

・ロン ・回 と ・ ヨン ・ ヨン

- Components, E(F), F*(F) (Aschbacher 2011).
 E-balance. If P ≤ S is fully normalized, then E(N_F(P)) ⊆ E(F).
- If *E*₁, *E*₂ ≤ *F*, then a product *E*₁*E*₂ is defined (special case Aschbacher 2011; general case Chermak-H. preprint 2018).
- If $\mathcal{E} \trianglelefteq \mathcal{F}$, then
 - $\mathcal{E}X$ is defined for all $X \leq S$ (Aschbacher 2011, revisited H. 2013);
 - $C_{\mathcal{F}}(\mathcal{E})$ is defined (Aschbacher 2011; revisited H. 2018);
 - *N*_E(*P*) is defined if *P* ≤ *S* is fully normalized (Aschbacher 2011, revisited H.-G. preprint 2018).
- If C is a component of F, then C_F(C), N_F(C) are defined (Aschbacher 2019).
- If D is a product of components, then C_F(D), N_F(D) are defined (H. preprint 2019).

Definition

- A finite group G is of characteristic p if $C_G(O_p(G)) \leq O_p(G)$.
- \mathcal{F} is constrained if $C_{\mathcal{S}}(O_{p}(\mathcal{F})) \leq O_{p}(\mathcal{F})$.

Definition

- A finite group G is of characteristic p if $C_G(O_p(G)) \leq O_p(G)$.
- \mathcal{F} is constrained if $C_{\mathcal{S}}(O_{p}(\mathcal{F})) \leq O_{p}(\mathcal{F})$.

Theorem (Broto–Castellana–Grodal–Levi–Oliver 2005)

If \mathcal{F} is constrained, then there exists a unique finite group G of characteristic p such that $S \in Syl_p(G)$ and $\mathcal{F} = \mathcal{F}_S(G)$.

個 と く ヨ と く ヨ と

Definition

- A finite group G is of characteristic p if $C_G(O_p(G)) \leq O_p(G)$.
- \mathcal{F} is constrained if $C_{\mathcal{S}}(O_{p}(\mathcal{F})) \leq O_{p}(\mathcal{F})$.

Theorem (Broto–Castellana–Grodal–Levi–Oliver 2005)

If \mathcal{F} is constrained, then there exists a unique finite group G of characteristic p such that $S \in Syl_p(G)$ and $\mathcal{F} = \mathcal{F}_S(G)$.

In particular, if $P \leq S$ is fully normalized and $N_{\mathcal{F}}(P)$ is constrained, then we can realize $N_{\mathcal{F}}(P)$ by a group of characteristic p.

Definition

- A finite group G is of characteristic p if $C_G(O_p(G)) \leq O_p(G)$.
- \mathcal{F} is constrained if $C_{\mathcal{S}}(O_{p}(\mathcal{F})) \leq O_{p}(\mathcal{F})$.

Theorem (Broto–Castellana–Grodal–Levi–Oliver 2005)

If \mathcal{F} is constrained, then there exists a unique finite group G of characteristic p such that $S \in Syl_p(G)$ and $\mathcal{F} = \mathcal{F}_S(G)$.

In particular, if $P \leq S$ is fully normalized and $N_{\mathcal{F}}(P)$ is constrained, then we can realize $N_{\mathcal{F}}(P)$ by a group of characteristic p.

Subcentric subgroups:

 $\mathcal{F}^{s} := \{\mathcal{F}\text{-conjugates of such subgroups } P \leq S\}$

(日) (部) (注) (注) (言)

A partial group is a set \mathcal{L} together with

- $D \subseteq W(\mathcal{L})$, where $W(\mathcal{L})$ is the set of words in \mathcal{L} ;
- $\Pi : \mathbf{D} \to \mathcal{L}$ ("partial product");

▲ 同 ▶ | ▲ 臣 ▶

A partial group is a set \mathcal{L} together with

- $D \subseteq W(\mathcal{L})$, where $W(\mathcal{L})$ is the set of words in \mathcal{L} ;
- $\Pi : \mathbf{D} \to \mathcal{L}$ ("partial product");
- an involutory bijection $\mathcal{L} \to \mathcal{L}, f \mapsto f^{-1}$ ("inversion")

such that certain axioms hold.

A partial group is a set \mathcal{L} together with

- $D \subseteq W(\mathcal{L})$, where $W(\mathcal{L})$ is the set of words in \mathcal{L} ;
- $\Pi : \mathbf{D} \to \mathcal{L}$ ("partial product");
- an involutory bijection $\mathcal{L} \to \mathcal{L}, f \mapsto f^{-1}$ ("inversion")

such that certain axioms hold.

E.g. $\mathcal{L} \subseteq \mathbf{D}$, $\Pi|_{\mathcal{L}} = id_{\mathcal{L}}$, $\emptyset \in \mathcal{L}$, "associativity", inverses well-behaved with respect to $\mathbf{1} := \Pi(\emptyset)$.

▲ 同 ▶ | ▲ 臣 ▶

A partial group is a set \mathcal{L} together with

- $D \subseteq W(\mathcal{L})$, where $W(\mathcal{L})$ is the set of words in \mathcal{L} ;
- $\Pi \colon \mathbf{D} \to \mathcal{L}$ ("partial product");
- an involutory bijection $\mathcal{L} \to \mathcal{L}, f \mapsto f^{-1}$ ("inversion")

such that certain axioms hold.

E.g. $\mathcal{L} \subseteq \mathbf{D}$, $\Pi|_{\mathcal{L}} = id_{\mathcal{L}}$, $\emptyset \in \mathcal{L}$, "associativity", inverses well-behaved with respect to $\mathbf{1} := \Pi(\emptyset)$.

• If $f,g \in \mathcal{L}$ such that $(f^{-1},g,f) \in \mathbf{D}$, set $g^f := \Pi(f^{-1},g,f)$.

▲祠 → ▲ 注 → ▲ 注 →

A partial group is a set \mathcal{L} together with

- $D \subseteq W(\mathcal{L})$, where $W(\mathcal{L})$ is the set of words in \mathcal{L} ;
- $\Pi : \mathbf{D} \to \mathcal{L}$ ("partial product");
- an involutory bijection $\mathcal{L} \to \mathcal{L}, f \mapsto f^{-1}$ ("inversion")

such that certain axioms hold.

E.g. $\mathcal{L} \subseteq \mathbf{D}$, $\Pi|_{\mathcal{L}} = id_{\mathcal{L}}$, $\emptyset \in \mathcal{L}$, "associativity", inverses well-behaved with respect to $\mathbf{1} := \Pi(\emptyset)$.

- If $f, g \in \mathcal{L}$ such that $(f^{-1}, g, f) \in \mathbf{D}$, set $g^f := \Pi(f^{-1}, g, f)$.
- If $f \in \mathcal{L}$, $P \subseteq \mathcal{L}$, set $P^f := \{x^f : x \in P\}$ if this is defined.

イロト イポト イヨト イヨト 三国

Let \mathcal{L} be a partial group with product $\Pi \colon \mathbf{D} \to \mathcal{L}$.

・ロト ・回ト ・ヨト

< ≣⇒

æ

Let \mathcal{L} be a partial group with product $\Pi \colon \mathbf{D} \to \mathcal{L}$.

 $\bullet \ \mathcal{H} \subseteq \mathcal{L}$ is called a $\mbox{partial subgroup}$ if

•
$$f \in \mathcal{H} \Longrightarrow f^{-1} \in \mathcal{H};$$

•
$$w \in \mathbf{W}(\mathcal{H}) \cap \mathbf{D} \Longrightarrow \Pi(w) \in \mathcal{H}.$$

≣ ▶

Let \mathcal{L} be a partial group with product $\Pi \colon \mathbf{D} \to \mathcal{L}$.

 $\bullet \ \mathcal{H} \subseteq \mathcal{L}$ is called a $\mbox{partial subgroup}$ if

•
$$f \in \mathcal{H} \Longrightarrow f^{-1} \in \mathcal{H};$$

- $w \in \mathbf{W}(\mathcal{H}) \cap \mathbf{D} \Longrightarrow \Pi(w) \in \mathcal{H}.$
- If *H* is a partial subgroup with W(*H*) ⊆ D, then *H* is called a subgroup.

Let \mathcal{L} be a partial group with product $\Pi \colon \mathbf{D} \to \mathcal{L}$.

 $\bullet \ \mathcal{H} \subseteq \mathcal{L}$ is called a $\ partial \ subgroup \ if$

$$f \in \mathcal{H} \Longrightarrow f^{-1} \in \mathcal{H};$$

•
$$w \in \mathbf{W}(\mathcal{H}) \cap \mathbf{D} \Longrightarrow \Pi(w) \in \mathcal{H}.$$

- If *H* is a partial subgroup with W(*H*) ⊆ D, then *H* is called a subgroup.
- \bullet A partial subgroup ${\cal N}$ is called a $\mbox{ partial normal subgroup}$ if

$$f \in \mathcal{L}, n \in \mathcal{N}, (f^{-1}, n, f) \in \mathbf{D} \Longrightarrow n^f \in \mathcal{N}.$$

(Write $\mathcal{N} \trianglelefteq \mathcal{L}$.)

Let's look at the concepts defined in fusion systems mentioned earlier.

・ロン ・回と ・ヨン・

æ

Let's look at the concepts defined in fusion systems mentioned earlier.

Some are needed to prove the one-to-one correspondences given by Theorem A (marked in $\ red$).

Let's look at the concepts defined in fusion systems mentioned earlier.

Some are needed to prove the one-to-one correspondences given by Theorem A (marked in red).

Others can be revisited or even newly proved using these one-to-one correspondences (marked in green).

- Subsystems of \mathcal{F} , generation.
- For $P \leq S$
 - $P^{\mathcal{F}} := \{ P\phi \colon \phi \in \operatorname{Hom}_{\mathcal{F}}(P, S) \} \mathcal{F}$ -conjugates of P;
 - N_F(P) subsystem over N_S(P), saturated if P is fully normalized, i.e. |N_S(P)| ≥ |N_S(Q)| for all Q ∈ P^F;
 - C_F(P) subsystem over C_S(P), saturated if P is fully centralized, i.e. |C_S(P)| ≥ |C_S(Q)| for all Q ∈ P^F.
- $O_p(\mathcal{F}) \leq S$ and $Z(\mathcal{F}) \leq S$.
- Normal subsystems, subnormal subsystems (Puig, Aschbacher 2010).
- $O^{p}(\mathcal{F})$, $O^{p'}(\mathcal{F})$ (Puig, Broto–Castellana–Grodal–Levi–Oliver 2007).
- Simple fusion systems, quasisimple fusion systems.

・ロト ・回ト ・ヨト ・ヨト

- Subsystems of \mathcal{F} , generation.
- For P ≤ S
 - $P^{\mathcal{F}} := \{P\phi : \phi \in \operatorname{Hom}_{\mathcal{F}}(P, S)\} \mathcal{F}$ -conjugates of P;
 - N_F(P) subsystem over N_S(P), saturated if P is fully normalized, i.e. |N_S(P)| ≥ |N_S(Q)| for all Q ∈ P^F;
 - C_F(P) subsystem over C_S(P), saturated if P is fully centralized, i.e. |C_S(P)| ≥ |C_S(Q)| for all Q ∈ P^F.
- $O_p(\mathcal{F}) \leq S$ and $Z(\mathcal{F}) \leq S$.
- Normal subsystems, subnormal subsystems (Puig, Aschbacher 2010).
- $O^{p}(\mathcal{F})$, $O^{p'}(\mathcal{F})$ (Puig, Broto–Castellana–Grodal–Levi–Oliver 2007).
- Simple fusion systems, quasisimple fusion systems.

(ロ) (同) (E) (E) (E)

• Components, $E(\mathcal{F})$, $F^*(\mathcal{F})$ (Aschbacher 2011).

回り くほり くほう

 Components, E(F), F*(F) (Aschbacher 2011).
 E-balance. If P ≤ S is fully normalized, then E(N_F(P)) ⊆ E(F).

向下 イヨト イヨト

- Components, E(F), F*(F) (Aschbacher 2011).
 E-balance. If P ≤ S is fully normalized, then E(N_F(P)) ⊆ E(F).
- If $\mathcal{E}_1, \mathcal{E}_2 \trianglelefteq \mathcal{F}$, then a product $\mathcal{E}_1 \mathcal{E}_2$ is defined.

- Components, E(F), F*(F) (Aschbacher 2011).
 E-balance. If P ≤ S is fully normalized, then E(N_F(P)) ⊆ E(F).
- If $\mathcal{E}_1, \mathcal{E}_2 \trianglelefteq \mathcal{F}$, then a product $\mathcal{E}_1 \mathcal{E}_2$ is defined.
 - special case (including central products) due to Aschbacher 2011;

向下 イヨト イヨト

- Components, E(F), F*(F) (Aschbacher 2011).
 E-balance. If P ≤ S is fully normalized, then E(N_F(P)) ⊆ E(F).
- If $\mathcal{E}_1, \mathcal{E}_2 \trianglelefteq \mathcal{F}$, then a product $\mathcal{E}_1 \mathcal{E}_2$ is defined.
 - special case (including central products) due to Aschbacher 2011;
 - central products of normal subsystems revisited H. 2018;

通 とう ほうとう ほうど

- Components, E(F), F*(F) (Aschbacher 2011).
 E-balance. If P ≤ S is fully normalized, then E(N_F(P)) ⊆ E(F).
- If $\mathcal{E}_1, \mathcal{E}_2 \trianglelefteq \mathcal{F}$, then a product $\mathcal{E}_1 \mathcal{E}_2$ is defined.
 - special case (including central products) due to Aschbacher 2011;
 - central products of normal subsystems revisited H. 2018;
 - general case treated in Chermak-H. preprint 2018.

向下 イヨト イヨト

- Components, E(F), F*(F) (Aschbacher 2011).
 E-balance. If P ≤ S is fully normalized, then E(N_F(P)) ⊆ E(F).
- If $\mathcal{E}_1, \mathcal{E}_2 \trianglelefteq \mathcal{F}$, then a product $\mathcal{E}_1 \mathcal{E}_2$ is defined.
 - special case (including central products) due to Aschbacher 2011;
 - central products of normal subsystems revisited H. 2018;
 - general case treated in Chermak-H. preprint 2018.

Theorem (H. 2015)

Let (\mathcal{L}, Δ, S) be a locality. If $\mathcal{N}_1, \mathcal{N}_2 \trianglelefteq \mathcal{L}$, then

$$\mathcal{N}_1\mathcal{N}_2 := \{\Pi(x,y) \colon x \in \mathcal{N}_1, \ y \in \mathcal{N}_2\}$$

is a partial normal subgroup of \mathcal{L} .

- If $\mathcal{E} \trianglelefteq \mathcal{F}$, then
 - $\mathcal{E}X$ is defined for all $X \leq S$ (Aschbacher 2011, revisited H. 2013);

・ロト ・回ト ・ヨト ・ヨト

æ

- If $\mathcal{E} \trianglelefteq \mathcal{F}$, then
 - $\mathcal{E}X$ is defined for all $X \leq S$ (Aschbacher 2011, revisited H. 2013);
 - $C_{\mathcal{F}}(\mathcal{E})$ is defined (Aschbacher 2011; revisited H. 2018);

回 と く ヨ と く ヨ と

- If $\mathcal{E} \trianglelefteq \mathcal{F}$, then
 - $\mathcal{E}X$ is defined for all $X \leq S$ (Aschbacher 2011, revisited H. 2013);
 - $C_{\mathcal{F}}(\mathcal{E})$ is defined (Aschbacher 2011; revisited H. 2018);
 - $N_{\mathcal{E}}(P)$ is defined if $P \leq S$ is fully normalized (Aschbacher 2013, revisited G.-H. preprint).

個 と く ヨ と く ヨ と

- If $\mathcal{E} \trianglelefteq \mathcal{F}$, then
 - $\mathcal{E}X$ is defined for all $X \leq S$ (Aschbacher 2011, revisited H. 2013);
 - $C_{\mathcal{F}}(\mathcal{E})$ is defined (Aschbacher 2011; revisited H. 2018);
 - $N_{\mathcal{E}}(P)$ is defined if $P \leq S$ is fully normalized (Aschbacher 2013, revisited G.-H. preprint).
- If C is a component of F, then C_F(C), N_F(C) are defined (Aschbacher 2019).
- If D is a product of components, then C_F(D), N_F(D) are defined (H. preprint 2019).

回 と く ヨ と く ヨ と

Let \mathcal{L} be a partial group. Then a subset $\mathcal{H} \subseteq \mathcal{L}$ is called an **im-partial subgroup** of \mathcal{L} if

•
$$f \in \mathcal{H} \Longrightarrow f^{-1} \in \mathcal{H}.$$

イロト イヨト イヨト イヨト

æ

Let \mathcal{L} be a partial group. Then a subset $\mathcal{H} \subseteq \mathcal{L}$ is called an **im-partial subgroup** of \mathcal{L} if

•
$$f \in \mathcal{H} \Longrightarrow f^{-1} \in \mathcal{H}.$$

There exists D₀ ⊆ W(H) ∩ D such that Π(w) ∈ H for all w ∈ D₀;

Let \mathcal{L} be a partial group. Then a subset $\mathcal{H} \subseteq \mathcal{L}$ is called an **im-partial subgroup** of \mathcal{L} if

•
$$f \in \mathcal{H} \Longrightarrow f^{-1} \in \mathcal{H}.$$

- There exists D₀ ⊆ W(H) ∩ D such that Π(w) ∈ H for all w ∈ D₀;
- \mathcal{H} together with $\Pi|_{D_0} \colon D_0 \to \mathcal{H}$ and $\mathcal{H} \to \mathcal{H}, f \mapsto f^{-1}$ is a partial group.

Let \mathcal{L} be a partial group. Then a subset $\mathcal{H} \subseteq \mathcal{L}$ is called an **im-partial subgroup** of \mathcal{L} if

•
$$f \in \mathcal{H} \Longrightarrow f^{-1} \in \mathcal{H}.$$

- There exists D₀ ⊆ W(H) ∩ D such that Π(w) ∈ H for all w ∈ D₀;
- \mathcal{H} together with $\Pi|_{D_0} \colon D_0 \to \mathcal{H}$ and $\mathcal{H} \to \mathcal{H}, f \mapsto f^{-1}$ is a partial group.