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General context

Buildings : geometric interpretation of semi-simple groups of algebraic
origin (semi-simple algebraic groups, classical groups, groups of mixed
type, (twisted) Chevalley groups).

Projective spaces and polar spaces: excellent permutation
representations for the classical groups. In fact, projective and polar
spaces are Grassmannians of certain Tits-buildings.

Parapolar spaces are point-line geometries introduced to approach in a
geometrical way the spherical Tits-buildings and algebraic (Chevalley)
groups mainly of exceptional types.
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The Klein Quadric

Consider a line L in P3(K) and consider two points x = (x0, · · · , x3)

and y = (y0, · · · , y3) and map (x , y) to the point in P5(K) with
coordinates pij = xiyj − yixj ,0 ≤ i < j ≤ 3.
This is a well-defined map from the lines of P3(K) to P5(K) and we
obtain a set of points satisfying the Plücker relation

p01p23 + p02p31 + p03p12 = 0
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A more abstract definition of the Klein Quadric

G: geometry defined from P3(F) where F is a skew field as follows

Points of G: Lines of P3(F)

Lines of G: Incident point-plane pairs

Planes of G are of two types: points and planes

Point and line of G are incident if the line belongs to the plane
pencil determined by the point and the plane.

Line and Plane are incident if the point or plane is one of the
elements of the incident pair.

Point and Plane: natural incidence of P3(F).
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Classical polar spaces

Describe the geometry of vector spaces carrying a form as
projective spaces describe the geometry of vector spaces

Alternating form: Symplectic polar space

(Anti)-Hermitian form: unitary polar space

quadratic form (which include symmetric bilinear forms char 6= 2):
orthogonal polar space
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Axiomatic polar spaces (Buekenhout-Shult)

A point-line geometry ∆ = (X ,L) is called a (non-degenerate)
polar space if the following axioms holds:

1 Every line contains at least three points.

2 No point is collinear to all other points.

3 Every nested sequence of singular subspaces is finite.

4 For any point x and any line L, either one or all points on L are
collinear to x .

Remark All maximal chains of non-empty singular subspaces have the
same length, called the rank of the polar space.
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Parapolar spaces

A point-line geometry Ω = (X ,L) is called a parapolar space if the following
axioms hold:

Ω is connected and, for each line L and each point p /∈ L, p is collinear to
either none, one or all of the points of L and there exists a pair
(p,L) ∈ X × L with p /∈ L such that p is collinear to no point of L.

For every pair of non-collinear points p and q in P, one of the following
holds:

(a) the convex closure of {p,q} is a polar space, called a symplecton;
(b) p⊥ ∩ q⊥ is a single point;
(c) p⊥ ∩ q⊥ = ∅.

Every line is contained in at least one symplecton.
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Point-residual

Let Ω = (X ,L) be a parapolar space and let p be one of its points. We
define the point-residual at p, denoted Ωp = (Xp,Lp), as follows:

Xp: set of lines through p;

Lp: set of planar line-pencils with vertex p contained in singular
planes through p which are contained in a symplecton of Ω.

Fact: A parapolar space is strong and of symplectic rank at least 3 if
and only if all point-residuals have diameter 2.
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The haircut axiom (Shult)

Inspired by an axiom by Cooperstein and Cohen.

(H) For any point p and any symp ξ with p /∈ ξ, the intersection p⊥ ∩ ξ
is never a submaximal singular subspace of ξ.

The above is a residual property:

Lemma

Suppose Ω is a parapolar space of symplectic rank at least 3. Then Ω

satisfies property (H) if and only if Ωp also has the property (H) for
each point p.
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Shult’s haircut theorem
Let Ω be a locally connected p.p.s. of symplectic rank at least 3, such that:

each singular space possesses a finite projective dimension; moreover,
there exists an upper bound on the rank of a symplecton.
the Haircut Axiom (H) holds.

Then Ω has uniform symplectic rank d ≥ 3 and Ω is

d = 3 Either An,d (L) or a homomorphic image A2n−1,n(L)/〈σ〉 where σ is a
polarity of A2n−1(L) of Witt index at most n − 5, n ≥ 5

d = 4 A Y1 geometry or a twisted version thereof, which includes E6,2(K) and
Dn,n(K),n ≥ 5);

d = 5 A homomorphic image of a building geometry Em+4,1(∗) with m ≥ 2,
which includes E6,1(K), E7,1(K), E8,1(K);

d = 6 E7,7(K);

d = 7 E8,8(K).
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Our Motivation

Shult characterized many Lie incidence geometries satisfying the
“Haircut Axiom” which expresses a gap in the spectrum of
dimensions of singular subspaces of symplecta arising from
intersecting the latter with the perp of a point.

In many exceptional Lie geometries, gaps appear in the spectrum
of the dimensions of the singular subspaces that occur as
intersections of two symplecta.

Intimate connections with our characterization work on the
projective varieties associated to the Freudenthal-Tits magic
square.

J. Schillewaert (UoA) ELG 12 / 21



Lacunarity

A k-lacunary parapolar space is a parapolar space such that

the intersection dimension of two symps is never exactly k ,

the symplectic rank is at least k + 1.

If k is not specified, we just say that the parapolar space is lacunary.
A parapolar space has minimum symplectic rank d if it has symplectic
rank at least d and there exists a symplecton of rank d .
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Grassmannians of vector spaces|Projective spaces
Let dimL V = n + 1 ∈ N ∪ {∞} and let ` ≤ (n + 1)/2.

V`: `-dimensional subspaces of V ,

L` family of subsets L(W ,U) of V` consisting of all `-spaces containing a
given (`− 1)-space W and being contained in a given (`+ 1)-space U,
with W ⊆ U.

point-line geometry (V`,L`) is denoted by An,`(L).

` = 1, we obtain a projective space of dimension n.

For ` > 1, we can view An,` also as the Grassmannian of
(`− 1)-dimensional subspaces of a projective space over L of dimension
n, defined similarly.

If n ≥ 5, it is a strong parapolar space of uniform symplectic rank 3; the
symplecta are of hyperbolic type, namely, isomorphic to A3,2(L).
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Cartesian product spaces

Let Ωi = (Xi ,Li), i = 1,2, be two parapolar spaces.
Define Ω := Ω1 × Ω2 as the point-line geometry with point set X1 × X2

and line set

{{p1} × L2 : p1 ∈ X1,L2 ∈ L2} ∪ {L1 × {p2} : L1 ∈ L1,p2 ∈ X2}.

This is again a parapolar space with symps

{p1} × ξ2, p1 ∈ X1, ξ2 ∈ Ξ2,

ξ1 × {p2}, ξ1 ∈ Ξ1, p2 ∈ X2

L1 × L2, L1 ∈ L1, L2 ∈ L2.

If both Ω1 and Ω2 are strong, then also Ω is strong. Its diameter equals
Diam Ω1 + Diam Ω2, and it always has minimum symplectic rank 2.
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Classification of minus one lacunary parapolar spaces

Let Ω = (X ,Ξ) be a geometry with Ξ a family of subsets of X such that

Each member of Ξ is a polar space whose point set is a subset of X ;

In (X ,L) each member of Ξ is a convex subspace;

Every pair of points is contained in at least one member of Ξ;

Every pair of members of Ξ intersects exactly at a nonempty singular subspace
of both.

Then, Ω arises from one of:

The Cartesian product of a thick line and an arbitrary projective plane

The Cartesian product of two arbitrary projective planes

The line-Grassmannian of any projective space of dimension 4 or 5;

The Lie incidence geometry E6,1(K), K any field.
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Freudenthal-Tits Magic Square



Symplectic rank at least k + 3

d S k = −1 k = 0 k = 1 k = 2 k = 3 k = 4

k + 3
{k + 2, k + 3} A1,1(∗)× A2,1(∗) A4,2(L) D5,5(K) E6,1(K) E7,7(K) E8,8(K)

{k + 3} A2,1(∗)× A2,1(∗) A5,3(L) E6,2(K)

k + 4
{k + 3, k + 4} A4,2(L) D5,5(K) E6,1(K) E7,7(K) E8,8(K)

{k + 3, k + 5} A5,2(L) D6,6(K) E7,1(K)

k + 6 {k + 5, k + 6} E6,1(K) E7,7(K) E8,8(K)

Table: The k -lacunary parapolar spaces with symplectic rank d ≥ k + 3.

S: set of dimensions of maximal singular subspaces

white cells: Strong & diam 2, grey cells: diam 3,

Going one cell to the left: point-residual.

name in white: non-strong, point-residual automatically yields
strong ones.
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Minimum symplectic rank k + 2
symps S k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

non-thick

{1,−}
(k = 0)
{k +1, n−1}

(k ≥ 1)

A1 × LS
An,2(L)

n≥4

D5,5(K) E6,1(K) E7,7(K) E8,8(K)

D6,6(K) E7,1(K)

D7,7(K) E8,1(K)h

Dn,n(K)h

n≥9
En,1(∗)h

n≥8

∅ GQ
{k + 1} A1 × A1 × A1 D4,2(K)

{k + 1, n + k − 2} A1×Dn−1,1(K)
n≥4

Dn,2(K)
n≥5

mixed {k + 1, n + k − 2} A1 × Bn−1,1(∗)
n≥3

Bn,2(∗)
n≥4

thick {k + 1} B3,3(∗) F4,1(∗)

Table: The k -lacunary parapolar spaces with minimum symplectic rank k + 2.

(.h): locally connected homomorphic image.

(*): not necessarily uniquely determined algebraic structure

∅: no projective subspaces, −: not all projective.
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Outline of the proof

Induction on lacunarity using point-residuals.

k = 0: Strong (assumption if min symp rank is 2) and for rank at
least 3 use classification for k = −1 showing that all
point-residuals have diameter 2. Also diameter is either 2 or 3.
Then reduce to well-known theorems by "Co-Co-S".

k = 1: First show that minimum symplectic rank is 3. Then show
residuals have same Coxeter type, then "Co-Co-S".

k ≥ 2: no symps of rank 2 anymore. Induction and Shult haircut

In fact, we don’t need the above theorems, but the length of the
paper would increase dramatically. Moreover one (probably) can
obtain (versions of) these theorems as corollaries.
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The main theorem

Let Ω = (X ,L) be a locally connected lacunary parapolar space with
symplectic rank at least 3. Then Ω is one of the following Lie incidence
geometries (K: any commutative field, L : arbitrary skew field):

(A) A5,3(L) or the line Grassmannian of a not necessarily finite-dimensional
projective space of dimension at least 4;

(B) The line Grassmannian of a thick polar space of rank at least 4;

(D) Dn,2(K), n ≥ 4, or a homomorphic image of Dn,n(K), n ≥ 5
(isomorphic image if n ≤ 9);

(E) E6,1(K), E6,2(K), E7,1(K), E7,7(K), E8,8(K), a homomorphic image of
E8,1(K), a homomorphic image of En,1(∗), with n ≥ 9 and En(∗) any
building of type En;

(F) Any metasymplectic space.
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Parameters of Some exceptional geometries

Ω Diam Ω d S strong long root
E6,1(K) 2 5 {4,5} X

E6,2(K) 3 4 {4} X

E7,7(K) 3 6 {5,6} X

E7,1(K) 3 5 {4,6} X

E8,8(K) 3 7 {6,7} X

E8,1(K) 5 5 {4,7}
F4,1(∗) 3 3 {2} X
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Local connectedness

Let Ω = (X ,L) be a parapolar space and p one of its points. We call Ω

locally connected at p if each two lines through p are contained in a
finite sequence of singular planes consecutively intersecting in lines
through p.

Lemma
Let Ω = (X ,L) be a parapolar space with symplectic rank at least 3.
Then Ω is locally connected if and only if Ωp is connected for all p ∈ X.
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Overview of the locally disconnected case

We show a general theorem how locally disconnected parapolar
spaces are built from locally connected ones, and then apply this
to lacunary parapolar spaces with symplectic rank a least 3 to
arrive at a universal construction for locally disconnected
parapolar spaces, using as building blocks the locally connected
ones classified in the previous sections.

The case k = 0 does not show up since automatically locally
connected

The case k = −1 is special, since (−1)-lacunarity of the building
blocks is not preserved under the construction of the global,
locally disconnected, parapolar space, unlike the cases k ≥ 1.
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Local connectedness and the residu

Ω = (X ,L): arbitrary parapolar space of symplectic rank at least 3.

For p ∈ X : Cp is the set of connected components of Ωp.

Ω is locally connected if and only if Ωp is connected.

We now provide a construction which introduces a copy of a point
p for each connected component of Ωp.
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Construction

Let Ω = (X ,L) be an arbitrary parapolar space with symplectic rank at
least 3. The unbuttoning of Ω is defined as the following point-line
geometry Ω̃ = (X̃ , L̃):

X̃ = {(p,Υ) : p ∈ X and Υ ∈ Cp} (connected components of Ωp);

for each line L ∈ L, we define L̃ = {(p,Υ) ∈ X̃ : p ∈ L ∈ Υ},

L̃ = {L̃ : L ∈ L}.

So two points (p1,Υ1) and (p2,Υ2), with Υi ∈ Ωpi for i = 1,2, are
collinear in Ω̃ if and only if p1 ⊥ p2 and the line p1p2 is an element of
both Υ1 and Υ2.
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Unbuttoning gives locally connected spaces

Proposition
Let Ω = (X ,L) be a not necessarily locally connected parapolar space.
Then its unbuttoning Ω̃ is the disjoint union of locally connected
(para)polar spaces.
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Characterisation of the locally disconnected case

There is a converse to unbuttoning where you "glue" a family of disjoint
k -lacunary spaces together called k -buttoning.

Theorem
Let Ω = (X ,L) be a k-lacunary parapolar space with symplectic rank
at least 3 and k ≥ −1. Then either Ω is locally connected (and hence
is one of the parapolar spaces of rank at least 3 we mentioned), or Ω is
a k-buttoned parapolar space.
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The converse procedure

We are now interested in a reverse procedure.
Which parapolar spaces can we obtain by collecting connected locally
(para)polar spaces and identifying certain points? (We may restrict to
symplectic rank at least 3).
The next slide basically says that, in Ω, you cannot walk from a point p
to itself in less than five steps using two different components of Ωp to
start and come back in.
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A restriction

Let Ω = (X ,L) have symplectic rank at least 3 and let Ω̃ be its
unbuttoning. Let p ∈ X be such that Ωp is disconnected and let
Υ

(p)
1 6= Υ

(p)
2 .

Let q, r , s ∈ X \ {p} be arbitrary (not necessarily distinct) and let
Υ

(q)
1 ,Υ

(q)
2 ,Υ

(r)
1 ,Υ

(r)
2 ,Υ

(s)
1 ,Υ

(s)
2 be not necessarily distinct. Then

` := δ((p,Υ(p)
2 ), (q,Υ(q)

1 )) + δ((q,Υ(q)
2 ), (r ,Υ(r)

1 ))

+δ((r ,Υ(r)
2 ), (s,Υ(s)

1 )) + δ((s,Υ(s)
2 ), (p,Υ(p)

1 )) ≥ 5.
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k -Buttoning (Case k = −1 is more subtle)
Let F = {Ωi = (Xi ,Li ) : i ∈ I} be a family of (disjoint) k -lacunary locally
connected (para)polar spaces of symplectic rank at least 3, 0 6= k ≥ −1. Let
R be an equivalence relation on X̃ =

⋃
i∈I Xi , satisfying:

(C1) Let p̃, q̃, r̃ , s̃ be four (not necessarily distinct, but p̃ /∈ {q̃, r̃ , s̃})
equivalence classes with respect to R, and let p1,p2 ∈ p̃, with p1 6= p2. If
q1,q2 ∈ q̃, r1, r2 ∈ r̃ and s1, s2 ∈ s̃, then

δ(p2,q1) + δ(q2, r1) + δ(r2, s1) + δ(s2,p1) ≥ 5.

(C2) The graph with vertex set F , Ωi where Ωj , i , j ∈ I, are adjacent if they
contain points in the same equivalence class, is connected.

Set X = X̃/R. For each line L contained in some member of F , we put
L̃ := {p̃ | p ∈ L} and define L as {L̃ | L ∈ Li for some i ∈ I}. Then we denote
the geometry Ω = (X ,L) by Ω(F ,R). If R is non-trivial, then we call Ω a
k-buttoned geometry. �
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