Nonadiabatic Charge and Energy Transfer

Aaron Kelly

Department of Chemistry
DALHOUSIE UNIVERSITY

Motivation

道

Situation

Challenge : $\quad \frac{\partial}{\partial t} \hat{\rho}(t)=-\frac{i}{\hbar}[\hat{H}, \hat{\rho}(t)]$

- High-dimensional (open) systems (nuclei, electrons, photons)
- Compatible with both model Hamiltonians and ab initio methods.
- "Accuracy" in different physical and chemical settings.
- Computational cost less than or equal to ...

Challenge : $\quad \frac{\partial}{\partial t} \hat{\rho}(t)=-\frac{i}{\hbar}[\hat{H}, \hat{\rho}(t)]$

- High-dimensional systems (nuclei, electrons, photons)
- Compatible with both model Hamiltonians and ab initio methods.
- "Accuracy" in different physical and chemical settings.
- Computational cost less than or equal to ... MEAN FIELD THEORY.
- Systematic improvability would also be nice....

Outline

- Quantum - classical dynamics and Ehrenfest mean-field theory
- The Nakajima-Zwanzig generalized quantum master equation
- Trajectory-based dynamics methods via wavefunction ansatze

Quantum Dynamics

$$
\frac{\partial}{\partial t} \hat{\rho}(t)=-\frac{i}{\hbar}[\hat{H}, \hat{\rho}(t)]
$$

Quantum Dynamics

$$
\frac{\partial}{\partial t} \hat{\rho}(t)=-\frac{i}{\hbar}[\hat{H}, \hat{\rho}(t)]
$$

$$
\hat{\rho}_{W}(R, P)=(2 \pi \hbar)^{-3 N} \int d Z e^{i P \cdot Z / \hbar}\left\langle R-\frac{Z}{2}\right| \hat{\rho}\left|R+\frac{Z}{2}\right\rangle
$$

Quantum Dynamics

$$
\frac{\partial}{\partial t} \hat{\rho}(t)=-\frac{i}{\hbar}[\hat{H}, \hat{\rho}(t)]
$$

$$
\hat{\rho}_{W}(R, P)=(2 \pi \hbar)^{-3 N} \int d Z e^{i P \cdot Z / \hbar}\left\langle R-\frac{Z}{2}\right| \hat{\rho}\left|R+\frac{Z}{2}\right\rangle
$$

$$
(\hat{A} \hat{B})_{W}(R, P)=\hat{A}_{W}(R, P) e^{\hbar \Lambda / 2 i} \hat{B}_{W}(R, P)
$$

Quantum Dynamics

$$
\frac{\partial}{\partial t} \hat{\rho}(t)=-\frac{i}{\hbar}[\hat{H}, \hat{\rho}(t)]
$$

$$
\hat{\rho}_{W}(R, P)=(2 \pi \hbar)^{-3 N} \int d Z e^{i P \cdot / / \hbar}\left\langle R-\frac{Z}{2}\right| \hat{\rho}\left|R+\frac{Z}{2}\right\rangle
$$

$$
(\hat{A} \hat{B})_{W}(R, P)=\hat{A}_{W}(R, P) e^{\hbar \Lambda / 2 i} \hat{B}_{W}(R, P)
$$

$$
\frac{\partial \hat{\rho}_{W}(R, P, t)}{\partial t}=-\frac{i}{\hbar}\left(\hat{H}_{W}(R, P) e^{\hbar \Lambda / 2 i} \hat{\rho}_{W}(R, P, t)-\hat{\rho}_{W}(R, P, t) e^{\hbar \Lambda / 2 i} \hat{H}_{W}(R, P)\right)
$$

Quantum Dynamics

$$
\begin{gathered}
\frac{\partial \hat{\rho}_{W}(R, P, t)}{\partial t}=-\frac{i}{\hbar}\left(\hat{H}_{W}(R, P) e^{\hbar \Lambda / 2 i} \hat{\rho}_{W}(R, P, t)-\hat{\rho}_{W}(R, P, t) e^{\hbar \Lambda / 2 i} \hat{H}_{W}(R, P)\right) \\
\mu=(m / M)^{1 / 2}
\end{gathered}
$$

Quantum Dynamics

$$
\begin{gathered}
\frac{\partial \hat{\rho}_{W}(R, P, t)}{\partial t}=-\frac{i}{\hbar}\left(\hat{H}_{W}(R, P) e^{\hbar \Lambda / 2 i} \hat{\rho}_{W}(R, P, t)-\hat{\rho}_{W}(R, P, t) e^{\hbar \Lambda / 2 i} \hat{H}_{W}(R, P)\right) \\
\mu=(m / M)^{1 / 2} \\
\frac{\partial \hat{\rho}_{W}^{\prime}\left(R^{\prime}, P^{\prime}, t^{\prime}\right)}{\partial t^{\prime}}=-i\left(\hat{H}_{W}^{\prime}\left(R^{\prime}, P^{\prime}\right) e^{\mu \Lambda^{\prime} / 2 i} \hat{\rho}_{W}^{\prime}\left(R^{\prime}, P^{\prime}, t^{\prime}\right)-\hat{\rho}_{W}^{\prime}\left(R^{\prime}, P^{\prime}, t^{\prime}\right) e^{\mu \Lambda^{\prime} 2 i} \hat{H}_{W}^{\prime}\left(R^{\prime}, P^{\prime}\right)\right)
\end{gathered}
$$

Quantum-Classical Dynamics

$$
\begin{aligned}
\frac{\partial \hat{\rho}_{W}(R, P, t)}{\partial t}= & -\frac{i}{\hbar}\left[\hat{H}_{W}(R, P), \hat{\rho}_{W}(R, P, t)\right] \\
& +\frac{1}{2}\left(\left\{\hat{H}_{W}(R, P), \hat{\rho}_{W}(R, P, t)\right\}-\left\{\hat{\rho}_{W}(R, P, t), \hat{H}_{W}(R, P)\right\}\right)
\end{aligned}
$$

$$
\frac{\partial \hat{\rho}_{W}(R, P, t)}{\partial t}=-i \hat{\mathscr{L}} \hat{\rho}_{W}(R, P, t)
$$

Kapral and Ciccotti, JCP, 1999.

Quantum-Classical Dynamics

$$
\begin{gathered}
\frac{\partial \hat{\rho}_{W}(R, P, t)}{\partial t}=-\frac{i}{\hbar}\left[\hat{H}_{W}(R, P), \hat{\rho}_{W}(R, P, t)\right]+\frac{1}{2}\left(\left\{\hat{H}_{W}(R, P), \hat{\rho}_{W}(R, P, t)\right\}-\left\{\hat{\rho}_{W}(R, P, t), \hat{H}_{W}(R, P)\right\}\right) \\
\hat{H}_{W}=H_{e}(X)+\hat{H}_{s}(\hat{q})+\hat{V}_{c}(\hat{q}, R)
\end{gathered}
$$

System-Bath Model

Surface Hopping

- A natural choice for trajectory-based simulations is to work in the adiabatic basis, which often leads to surface-hopping type algorithms.
- e.g. Fewest Switches Surface Hopping (FSSH)
- However, other (more rigorous) surface-hopping schemes are also available
- e.g. Momentum-jump approximation to the QCLE

QCLE - Surface Hopping

Hierarchy of Trajectory Based Approaches

Mean Field Theory from Quantum-Classical Dynamics

$$
\hat{\rho}_{s}(t)=\int d X \hat{\rho}_{W}(X, t) \quad \rho_{e}(X, t)=\operatorname{Tr}^{\prime} \hat{\rho}_{W}(X, t)
$$

Mean Field Theory is "Uncorrelated" Quantum-Classical Dynamics

$$
\hat{\rho}_{s}(t)=\int d X \hat{\rho}_{W}(X, t) \quad \rho_{e}(X, t)=\operatorname{Tr}^{\prime} \hat{\rho}_{W}(X, t)
$$

$$
\hat{\rho}_{W}(X, t) \equiv \hat{\rho}_{s}(t) \rho_{e}(X, t)+\hat{\rho}_{c o r}(X, t)
$$

Mean Field Theory is "Uncorrelated" Quantum-Classical Dynamics

$$
\hat{\rho}_{s}(t)=\int d X \hat{\rho}_{W}(X, t) \quad \rho_{e}(X, t)=\operatorname{Tr}^{\prime} \hat{\rho}_{W}(X, t)
$$

$$
\hat{\rho}_{W}(X, t) \equiv \hat{\rho}_{s}(t) \rho_{e}(X, t)+\hat{\rho}_{c o r}(Y, t)
$$

Mean Field Theory from Quantum-Classical Dynamics

$$
\frac{\partial \rho_{e}(X, t)}{\partial t}=\left\{H_{e}+\operatorname{Tr}^{\prime} \hat{V}_{c} \hat{\rho}_{s}(t), \rho_{e}(X, t)\right\}
$$

Mean Field Theory from Quantum-Classical Dynamics

$$
\begin{gathered}
\frac{\partial \rho_{e}(X, t)}{\partial t}=\left\{H_{e}+\operatorname{Tr}^{\prime} \hat{V}_{c} \hat{\rho}_{s}(t), \rho_{e}(X, t)\right\} \\
\dot{R}(t)=\frac{P(t)}{M}, \quad \dot{P}(t)=-\frac{\partial V_{\mathrm{eff}}(R(t))}{\partial R(t)}
\end{gathered}
$$

Mean Field Theory from Quantum-Classical Dynamics

$$
\begin{gathered}
\frac{\partial \rho_{e}(X, t)}{\partial t}=\left\{H_{e}+\operatorname{Tr}^{\prime} \hat{V}_{c} \hat{\rho}_{s}(t), \rho_{e}(X, t)\right\} \\
\dot{R}(t)=\frac{P(t)}{M}, \quad \dot{P}(t)=-\frac{\partial V_{\mathrm{eff}}(R(t))}{\partial R(t)} \\
\frac{\partial \hat{\rho}_{s}(t)}{\partial t}=-\frac{i}{\hbar}\left[\hat{H}_{s}+\int d X \hat{V}_{c} \rho_{e}(X, t), \hat{\rho}_{s}(t)\right]
\end{gathered}
$$

Heat Transport through a Molecular Junction

$$
g_{\lambda}(\omega)=\frac{\pi}{2} \xi_{\lambda} \omega \exp \left(-\omega / \omega_{c, \lambda}\right)
$$

Heat Transport through a Molecular Junction

AK, JCP 2019

Heat Transport through a Molecular Junction

AK, JCP 2019

Spontaneous Emission of Radiation (in a Cavity)

Spontaneous Emission of Radiation (in a Cavity)

Norah Hoffmann et al., PRA 2019

Spontaneous Emission of Radiation (in a Cavity)

Norah Hoffmann et al., PRA 2019

The Generalized Quantum Master Equation: Reduced Dynamics

Liouville -
von Neumann
Equation

$$
\frac{\partial}{\partial t} \hat{\rho}(t)=-\frac{i}{\hbar}[\hat{H}, \hat{\rho}(t)]
$$

The Generalized Quantum Master Equation: Reduced Dynamics

The Generalized Quantum Master Equation

$$
\begin{aligned}
& \frac{d}{d t} \hat{\rho}_{s}(t)=-\frac{i}{\hbar} \mathcal{L}_{s} \hat{\rho}_{s}(t)-\int_{0}^{t} d \tau \mathcal{K}(\tau) \hat{\rho}_{s}(t-\tau) \\
& \text { Simple: } \mathcal{L}_{s}=\left[\hat{H}_{s}, \cdot\right] \quad \text { Not so simple: } \mathcal{K}(\tau)
\end{aligned}
$$

The Generalized Quantum Master Equation

$$
\begin{aligned}
& \frac{d}{d t} \hat{\rho}_{s}(t)=-\frac{i}{\hbar} \mathcal{L}_{s} \hat{\rho}_{s}(t)-\int_{0}^{t} d \tau \mathcal{K}(\tau) \hat{\rho}_{s}(t-\tau) \\
& \text { Simple: } \mathcal{L}_{s}=\left[\hat{H}_{s}, \cdot\right] \quad \quad \text { Not so simple: } \mathcal{K}(\tau)
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{K}(t)=\mathcal{K}_{1}(t)-i \int_{0}^{t} d \tau \mathcal{K}_{3}(t-\tau) \mathcal{K}(\tau) \\
& \mathcal{K}_{1}(\tau)=\operatorname{Tr}_{b}\left\{\mathcal{L}_{s b} e^{-i \mathcal{L} \tau} \mathcal{L}_{s b} \hat{\rho}_{b}^{e q}\right\} \\
& \mathcal{K}_{3}(\tau)=\operatorname{Tr}_{b}\left\{e^{-i \mathcal{L} \tau} \mathcal{L}_{s b} \hat{\rho}_{b}^{e q}\right\}
\end{aligned}
$$

Photo-induced Electron Transfer

Disparate Time Scales in the Electron - Transfer Regime Lead to Massive Computational Speed-ups

Donor State Population Evolution

Pfalzgraff, Kelly, and Markland, JPCL, 2015.

Electron Transfer Rates

萤

Exciton Transport in LHC-II

W. Pfalzgraff, A. Montoya-Castillo,
A. Kelly, and T.E. Markland, JCP, 2019.

Exciton Transport in LHC-II

W. Pfalzgraff, A. Montoya-Castillo,
A. Kelly, and T.E. Markland, JCP, 2019.

Going Beyond Mean Field Theory: Mapping - QCLE

$$
H_{m}(\mathcal{X})=\frac{P^{2}}{2 M}+V_{0}(R)+\frac{1}{2 \hbar} \bar{h}^{\lambda \lambda^{\prime}}(R)\left(r_{\lambda} r_{\lambda^{\prime}}+p_{\lambda} p_{\lambda^{\prime}}\right)
$$

Going Beyond Mean Field Theory: Mapping - QCLE

$$
\begin{aligned}
H_{m}(\mathcal{X}) & =\frac{P^{2}}{2 M}+V_{0}(R)+\frac{1}{2 \hbar} \bar{h}^{\lambda \lambda^{\prime}}(R)\left(r_{\lambda} r_{\lambda^{\prime}}+p_{\lambda} p_{\lambda^{\prime}}\right) \\
\dot{r}_{\lambda} & =\frac{\partial H_{m}}{\partial p_{\lambda}}, \quad \dot{p}_{\lambda}=-\frac{\partial H_{m}}{\partial r_{\lambda}}, \quad \dot{R}=\frac{\partial H_{m}}{\partial P}, \\
\dot{P} & =-\frac{\partial H_{m}}{\partial R}+\frac{\hbar}{8 \rho_{m}^{\mathcal{P}}} \frac{\partial \bar{h}^{\lambda^{\prime}}}{\partial R}\left(\frac{\partial^{2}}{\partial r_{\lambda^{\prime}} \partial r_{\lambda}}+\frac{\partial^{2}}{\partial p_{\lambda^{\prime}} \partial p_{\lambda}}\right) \rho_{m}^{\mathcal{P}}
\end{aligned}
$$

Going Beyond Mean Field Theory: Mapping - QCLE

$$
\begin{aligned}
H_{m}(\mathcal{X}) & =\frac{P^{2}}{2 M}+V_{0}(R)+\frac{1}{2 \hbar} \bar{h}^{\lambda \lambda^{\prime}}(R)\left(r_{\lambda} r_{\lambda^{\prime}}+p_{\lambda} p_{\lambda^{\prime}}\right) \\
\dot{r}_{\lambda} & =\frac{\partial H_{m}}{\partial p_{\lambda}}, \quad \dot{p}_{\lambda}=-\frac{\partial H_{m}}{\partial r_{\lambda}}, \quad \dot{R}=\frac{\partial H_{m}}{\partial P}, \\
\dot{P} & =-\frac{\partial H_{m}}{\partial R}+\frac{\hbar}{8 \rho_{m}^{\mathcal{P}}} \frac{\partial \bar{h}^{\lambda \lambda^{\prime}}}{\partial R}\left(\frac{\partial^{2}}{\partial r_{\lambda^{\prime}} \partial r_{\lambda}}+\frac{\partial^{2}}{\partial p_{\lambda^{\prime}} \partial p_{\lambda}}\right) \rho_{m}^{\mathcal{P}}
\end{aligned}
$$

Going Beyond Mean Field Theory

$$
H_{m}(\mathcal{X})=\frac{P^{2}}{2 M}+V_{0}(R)+\frac{1}{2 \hbar} \bar{\hbar}^{\lambda \lambda^{\prime}}(R)\left(r_{\lambda} r_{\lambda^{\prime}}+p_{\lambda} p_{\lambda^{\prime}}\right)
$$

Poisson Bracket Mapping Equation

$$
\frac{\partial}{\partial t} \rho_{m}^{\mathcal{P}}(\mathcal{X}, t)=\left\{H_{m}, \rho_{m}^{\mathcal{P}}\right\}_{\mathcal{X}} \equiv-i \mathcal{L}_{m}^{P B} \rho_{m}^{\mathcal{P}}(\mathcal{X}, t)
$$

Going Beyond Mean Field Theory:

$$
\begin{aligned}
\overline{B(t)} & =\int d \mathcal{X} B_{m}(\mathcal{X}) \rho_{m}^{\mathcal{P}}(\mathcal{X}, t) \\
\hat{\rho}_{m}^{\mathcal{P}}(X) & =\left|m_{\lambda}\right\rangle\left\langle m_{\lambda}\right| \hat{\rho}_{m}(X)\left|m_{\lambda^{\prime}}\right\rangle\left\langle m_{\lambda^{\prime}}\right| \\
\overline{B(t)} & =\int d \mathcal{X} B_{m}^{\mathcal{P}}(\mathcal{X}) \rho_{m}^{\mathcal{P}}(\mathcal{X}, t)
\end{aligned}
$$

Improving Linearized Semiclassics with "Minimal Effort"

$$
\begin{gathered}
P_{n \leftarrow m}(t)=\operatorname{Tr}\left[\hat{\rho}_{\mathrm{b}}|m\rangle\langle m| \mathrm{e}^{\mathrm{i} \hat{H} t}|n\rangle\langle n| \mathrm{e}^{-\mathrm{i} \hat{H} t}\right] \\
|n\rangle\langle n|=\frac{1}{S}\left(\hat{\mathbb{I}}+\hat{Q}_{n}\right) \\
\hat{Q}_{n}=(S-1)|n\rangle\langle n|-\sum_{m \neq n}^{S}|m\rangle\langle m|
\end{gathered}
$$

Improving Linearized Semiclassics with "Minimal Effort"

$$
\begin{gathered}
P_{n \leftarrow m}(t)=\operatorname{Tr}\left[\hat{\rho}_{\mathrm{b}}|m\rangle\langle m| \mathrm{e}^{\mathrm{i} \hat{H} t}|n\rangle\langle n| \mathrm{e}^{-\mathrm{i} \hat{H} t}\right] \\
|n\rangle\langle n|=\frac{1}{S}\left(\hat{\mathbb{I}}+\hat{Q}_{n}\right) \quad \hat{Q}_{n}=(S-1)|n\rangle\langle n|-\sum_{m \neq n}^{S}|m\rangle\langle m| \\
P_{n \leftarrow m}(t)=\frac{1}{S^{2}}\left(S+\operatorname{Tr}\left[\hat{\rho}_{\mathrm{b}} \hat{\mathrm{I}} \mathrm{e}^{\mathrm{i} \hat{\mathrm{H} t} t} \hat{Q}_{n} \mathrm{e}^{-\mathrm{i} \hat{H} t}\right]+\operatorname{Tr}\left[\hat{\rho}_{\mathrm{b}} \hat{Q}_{m} \mathrm{e}^{\mathrm{i} \hat{H} t} \hat{Q}_{n} \mathrm{e}^{-\mathrm{i} \hat{H} t}\right]\right)
\end{gathered}
$$

Improving Linearized Semiclassics with "Minimal Effort"

$$
\begin{gathered}
\qquad \hat{Q}_{n}=(S-1)|n\rangle\langle n|-\sum_{m \neq n}^{S}|m\rangle\langle m| \\
P_{n \leftarrow m}(t)=\frac{1}{S^{2}}\left(S+\operatorname{Tr}\left[\hat{\rho}_{\mathrm{b}} \hat{\mathbb{\Pi}} \mathrm{e}^{\mathrm{i} \hat{H}} \hat{Q}_{n} \mathrm{e}^{-\mathrm{i} \hat{H} t}\right]+\operatorname{Tr}\left[\hat{\rho}_{\mathrm{b}} \hat{Q}_{m} \mathrm{e}^{\mathrm{i} \hat{H} t} \hat{Q}_{n} \mathrm{e}^{-\mathrm{i} \hat{H} t}\right]\right) \\
C_{\mathbb{I} Q_{n}}(t)=\left\langle\phi^{a}(\mathrm{X}, \mathrm{P}) Q_{n}(\mathrm{X}(t), \mathrm{P}(t))\right\rangle \\
C_{Q_{m} Q_{n}}(t)=\left\langle\phi^{a}(\mathrm{X}, \mathrm{P}) Q_{m}(\mathrm{X}, \mathrm{P}) Q_{n}(\mathrm{X}(t), \mathrm{P}(t))\right\rangle
\end{gathered}
$$

Improving Linearized Semiclassics with "Minimal Effort"

Debye Spectral Density

Improving Linearized Semiclassics with "Minimal Effort"

Improving Linearized Semiclassics with "Minimal Effort"

Going Beyond Mean Field Theory (II)

$$
\begin{gathered}
\text { Recall: Mean Field Theory } \\
\Psi(r, R, t)=\psi(r, t) \chi(R, t)
\end{gathered}
$$

Coupled Mean-Field Trajectories

$$
\Psi(r, R, t)=\psi(r, t) \chi(R, t)
$$

Wavefunction Ansatz:

$$
|\psi(t, \theta)\rangle=\hat{U}(0, t)|\alpha\rangle \otimes|z\rangle+e^{i \theta} \hat{U}(0, t)|\beta\rangle \otimes\left|z^{\prime}\right\rangle
$$

Going Beyond Mean Field Theory

$$
\begin{aligned}
& \langle\hat{B}(t)\rangle=\operatorname{Tr}[\hat{B}(t) \hat{\rho}] \\
& \begin{aligned}
&\langle\hat{B}(t)\rangle=\sum_{\alpha \beta} \int \frac{d^{2} z}{\pi^{N_{b}}} \int \frac{d^{2} z^{\prime}}{\pi^{N_{b}}}\{\langle\alpha| \otimes\langle z|\} \hat{\rho}\left\{|\beta\rangle \otimes\left|z^{\prime}\right\rangle\right\} \\
& \times \frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta e^{-i \theta}\langle\psi(t, \theta)| \hat{B}|\psi(t, \theta)\rangle
\end{aligned}
\end{aligned}
$$

Going Beyond Mean Field Theory

$$
\langle\hat{B}(t)\rangle=\operatorname{Tr}[\hat{B}(t) \hat{\rho}]
$$

$$
\langle\hat{\boldsymbol{B}}(t)\rangle=\sum_{\alpha \beta} \int \frac{d^{2} z}{\pi^{N_{b}}} \int \frac{d^{2} z^{\prime}}{\pi^{N_{b}}}\{\langle\alpha| \otimes\langle z|\} \hat{\rho}\left\{|\beta\rangle \otimes\left|z^{\prime}\right\rangle\right\}
$$

$$
\times \frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta e^{-i \theta}\langle\psi(t, \theta)| \hat{B}|\psi(t, \theta)\rangle
$$

$|\psi(t, \theta)\rangle=\hat{U}(0, t)|\alpha\rangle \otimes|z\rangle+e^{i \theta} \hat{U}(0, t)|\beta\rangle \otimes\left|z^{\prime}\right\rangle$

Dynamics Algorithm from the Time-Dependent Variational Principle

$$
\begin{aligned}
& |\tilde{\psi}(t)\rangle=|\alpha(t)\rangle \otimes|z(t)\rangle+|\beta(t)\rangle \otimes\left|z^{\prime}(t)\right\rangle \\
& L=i \hbar \frac{\langle\tilde{\psi}(t) \mid \dot{\tilde{\psi}}(t)\rangle-\langle\dot{\tilde{\psi}}(t) \mid \tilde{\psi}(t)\rangle}{2}-\langle\tilde{\psi}(t)| \hat{H}|\tilde{\psi}(t)\rangle
\end{aligned}
$$

$$
\frac{d}{d t} \frac{\partial L}{\partial\langle\dot{\alpha}(t)|}-\frac{\partial L}{\partial\langle\alpha(t)|}=0
$$

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{z}_{n}^{*}}-\frac{\partial L}{\partial z_{n}^{*}}=0
$$

"Molecular Wires" : Charge Transport and Polaron Formation

Holstein Polaron Model

$$
\begin{aligned}
& \hat{H}=\hat{H}_{k i n}+\hat{H}_{p h}+\hat{H}_{c o u p} \\
& \hat{H}_{k i n}=-t_{0} \sum_{j}\left(c_{j}^{\dagger} c_{j+1}+c_{j+1}^{\dagger} c_{j}\right) \\
& \hat{H}_{p h}=\omega_{0} \sum_{j} a_{j}^{\dagger} a_{j} \\
& \hat{H}_{\text {coup }}=-\gamma \sum_{j}\left(a_{j}+a^{\dagger}\right) \hat{n}_{j}
\end{aligned}
$$

$$
\lambda=\frac{\gamma^{2}}{2 t_{0} \omega_{0}}
$$

+ Periodic Boundary Conditions

Real-time Dynamics of Polaron Formation (at zero Kelvin)

S.A. Sato, A. Rubio, and A. Kelly, (In Progress)

Summary

- Trajectory-based quantum-classical approaches to quantum dynamics can accurately capture the physics of a wide range of energy and charge transfer problems.
- Applications to spectroscopy and transport properties are ongoing.

NSERC CRSNG

