Efficient non-Markovian quantum dynamics using time-evolving matrix product operators

Jonathan Keeling

Charge and Energy Transfer Processes: Open Problems in Open Quantum Systems

t Andrews

Jonathan Keeling

BIRS, August 2019 1

Why non-Markovian¹

Non-time-local equations

- Born + Markov + Secular
 - \rightarrow Lindblad Master equation:

$$\partial_t \rho = \sum_i \kappa_i \mathcal{L}[X_i], \quad \mathcal{L}[X] = X \rho X^{\dagger} - \frac{1}{2} [X^{\dagger} X, \rho]_+$$

• Markov good at optical frequencies

• Why non-Markovian?

 Strong energy shifts
 Can still be time local (non-secular, non-positive): ∂_tρ = ∑X_iX_kJ(E_i − E_j)|i⟩⟨j|ρ|k⟩(l| + ... _{jkl}
 Non-time-local equations

- Born + Markov + Secular
 - \rightarrow Lindblad Master equation:

$$\partial_t \rho = \sum_i \kappa_i \mathcal{L}[X_i], \quad \mathcal{L}[X] = X \rho X^{\dagger} - \frac{1}{2} [X^{\dagger} X, \rho]_+$$

• Markov good at optical frequencies

- Why non-Markovian?
 - Strong energy shifts

▶ Can still be time local (non-secular, non-positive): $\partial_t \rho = \sum_{j \neq l} X_{ij} X_{kl} J (E_l - E_j) |l\rangle (j|\rho|k\rangle \langle l| + ...$ Jon-time-local equations

- Born + Markov + Secular
 - \rightarrow Lindblad Master equation:

$$\partial_t \rho = \sum_i \kappa_i \mathcal{L}[X_i], \quad \mathcal{L}[X] = X \rho X^{\dagger} - \frac{1}{2} [X^{\dagger} X, \rho]_+$$

• Markov good at optical frequencies

- Why non-Markovian?
 - Strong energy shifts
 - Can still be time local (non-secular, non-positive): ∂_tρ =

 $\sum_{ijkl} \dot{X}_{ij} X_{kl} J(E_i - E_j) |i\rangle \langle j|\rho|k\rangle \langle l| + \dots$

Non-time-local equations

- Born + Markov + Secular
 - \rightarrow Lindblad Master equation:

$$\partial_t \rho = \sum_i \kappa_i \mathcal{L}[X_i], \quad \mathcal{L}[X] = X \rho X^{\dagger} - \frac{1}{2} [X^{\dagger} X, \rho]_+$$

• Markov good at optical frequencies

Born + Markov + Secular
 → Lindblad Master equation:

$$\partial_t \rho = \sum_i \kappa_i \mathcal{L}[X_i], \quad \mathcal{L}[X] = X \rho X^{\dagger} - \frac{1}{2} [X^{\dagger} X, \rho]_+$$

• Markov good at optical frequencies

Why non-Markovian?

- Strong energy shifts
- Can still be time local (non-secular, non-positive): $\partial_t \rho =$ $\sum_{ijkl} X_{ij} X_{kl} J(E_i - E_j) |i\rangle \langle j|\rho|k\rangle \langle l| + \dots$
- Non-time-local equations
 - Strong coupling to bath

Born + Markov + Secular
 → Lindblad Master equation:

$$\partial_t \rho = \sum_i \kappa_i \mathcal{L}[X_i], \quad \mathcal{L}[X] = X \rho X^{\dagger} - \frac{1}{2} [X^{\dagger} X, \rho]_+$$

• Markov good at optical frequencies

Why non-Markovian?

- Strong energy shifts
- Can still be time local (non-secular, non-positive): $\partial_t \rho =$ $\sum_{ijkl} X_{ij} X_{kl} J(E_i - E_j) |i\rangle \langle j|\rho|k\rangle \langle l| + \dots$
- Non-time-local equations
 - Strong coupling to bath
 - ► Ultra-strong coupling: need J(ω < 0) = 0 e.g. [Ciuti and Carusotto, PRA '06]

Information return from bath

Born + Markov + Secular
 → Lindblad Master equation:

$$\partial_t \rho = \sum_i \kappa_i \mathcal{L}[X_i], \quad \mathcal{L}[X] = X \rho X^{\dagger} - \frac{1}{2} [X^{\dagger} X, \rho]_+$$

• Markov good at optical frequencies

- Why non-Markovian?
 - Strong energy shifts
 - Can still be time local (non-secular, non-positive): $\partial_t \rho =$ $\sum_{ijkl} X_{ij} X_{kl} J(E_i - E_j) |i\rangle \langle j|\rho|k\rangle \langle l| + \dots$
- Non-time-local equations
 - Strong coupling to bath
 - ► Ultra-strong coupling: need J(ω < 0) = 0 e.g. [Ciuti and Carusotto, PRA '06]
 - Structured baths
 - ★ Vibrational resonances
 - * Spatial structure

Born + Markov + Secular
 → Lindblad Master equation:

$$\partial_t \rho = \sum_i \kappa_i \mathcal{L}[X_i], \quad \mathcal{L}[X] = X \rho X^{\dagger} - \frac{1}{2} [X^{\dagger} X, \rho]_+$$

• Markov good at optical frequencies

- Why non-Markovian?
 - Strong energy shifts
 - Can still be time local (non-secular, non-positive): $\partial_t \rho =$ $\sum_{ijkl} X_{ij} X_{kl} J(E_i - E_j) |i\rangle \langle j|\rho|k\rangle \langle l| + \dots$
- Non-time-local equations
 - Strong coupling to bath
 - ► Ultra-strong coupling: need J(ω < 0) = 0 e.g. [Ciuti and Carusotto, PRA '06]
 - Structured baths
 - ★ Vibrational resonances

- ★ Spatial structure
- Information return from bath

Born + Markov + Secular
 → Lindblad Master equation:

$$\partial_t \rho = \sum_i \kappa_i \mathcal{L}[X_i], \quad \mathcal{L}[X] = X \rho X^{\dagger} - \frac{1}{2} [X^{\dagger} X, \rho]_+$$

• Markov good at optical frequencies

- Why non-Markovian?
 - Strong energy shifts
 - Can still be time local (non-secular, non-positive): $\partial_t \rho =$ $\sum_{ijkl} X_{ij} X_{kl} J(E_i - E_j) |i\rangle \langle j|\rho|k\rangle \langle l| + \dots$
- Non-time-local equations
 - Strong coupling to bath
 - ► Ultra-strong coupling: need J(ω < 0) = 0 e.g. [Ciuti and Carusotto, PRA '06]
 - Structured baths
 - ★ Vibrational resonances
 - ★ Spatial structure
 - Information return from bath
 - Unknown system eigenstates

Exactly soluble problems ...

▶ e.g. Bosonic: $H = \Psi_{I}^{\dagger}M_{I}\Psi_{I} + \sum \xi_{I,k}(\psi_{I} + \psi_{I}^{\dagger})(b_{k}^{\dagger} + b_{k}) + H_{\text{bath}}$,

▶ Independent Boson model, $H = \sigma_z (A + \sum_k \xi_k (b_k^{\dagger} + b_k)) + H_{\text{bath}}$

- Polaron master equation $H \rightarrow e^{-V} H e^{V}, \quad V = \sum_{k} \xi_{k} (b_{k} - b_{k}^{\dagger}) X_{sys}$ Renormalize system parameters Perturbative remaining coupling [Jang, J. Chem. Phys '09, McCutcheon *et al.* PRB '11, Roy and Hughes PRB '12]
 - [Chen *et al.* J. Chem. F

• Exactly soluble problems ...

• e.g. Bosonic:
$$H = \Psi_i^{\dagger} M_{ij} \Psi_j + \sum_{i,k} \xi_{i,k} (\psi_i + \psi_i^{\dagger}) (b_k^{\dagger} + b_k) + H_{\text{bath}},$$

• Independent Boson model, $H = \sigma_z (A + \sum_k \xi_k (b_k^{\dagger} + b_k)) + H_{\text{bath}}$

$H \rightarrow e^{-V} H e^{V}, \quad V = \sum_{k} \xi_k (b_k - b_k^{\dagger}) \chi_{sys}$ Renormalize system parameters [Jang, J. Chem. Phys '09, McCutcheon *et al.* PRB '11, Roy and Hughes PRB '12]

[Chen et al. J. Chem. Phys. '17]

BIRS, August 2019

• Exactly soluble problems ...

• e.g. Bosonic:
$$H = \Psi_i^{\dagger} M_{ij} \Psi_j + \sum_{i,k} \xi_{i,k} (\psi_i + \psi_i^{\dagger}) (b_k^{\dagger} + b_k) + H_{\text{bath}},$$

• Independent Boson model, $H = \sigma_z (A + \sum_k \xi_k (b_k^{\dagger} + b_k)) + H_{\text{bath}}$

Polaron master equation

$$H \rightarrow e^{-V}He^{V}, \quad V = \sum_{k} \xi_{k}(b_{k} - b_{k}^{\dagger})X_{sys}$$

 Renormalize system parameters
 Perturbative remaining coupling

[Jang, J. Chem. Phys '09, McCutcheon et al. PRB '11, Roy and Hughes PRB '12]

Re-sum perturbation theory:

BIRS, August 2019

• Exactly soluble problems ...

• e.g. Bosonic:
$$H = \Psi_i^{\dagger} M_{ij} \Psi_j + \sum_{i,k} \xi_{i,k} (\psi_i + \psi_i^{\dagger}) (b_k^{\dagger} + b_k) + H_{\text{bath}},$$

• Independent Boson model, $H = \sigma_z (A + \sum_k \xi_k (b_k^{\dagger} + b_k)) + H_{\text{bath}}$

Polaron master equation

$$H \rightarrow e^{-V} H e^{V}$$
, $V = \sum_{k} \xi_k (b_k - b_k^{\dagger}) X_{sys}$
 Renormalize system parameters
 Perturbative remaining coupling

[Jang, J. Chem. Phys '09, McCutcheon et al. PRB '11, Roy and Hughes PRB '12]

• Re-sum perturbation theory:

[Chen et al. J. Chem. Phys. '17]

• Increase no. coupled EOM

[Tanimura & Kubo, JPSJ '89]

Increase system — include resonant modes

[Garraway PRA '97, Iles-Smith et al. PRA '14, Schröder et al. '17]

Augment state space/history: QUAPI

<ロト < @ ト < E ト < E ト 差目 の </p>

• Increase no. coupled EOM

[Tanimura & Kubo, JPSJ '89]

• Increase system — include resonant modes

[Garraway PRA '97, Iles-Smith et al. PRA '14, Schröder et al. '17]

Include bath \rightarrow chain mapping (TEDOPA — previous talk)

[Woods et al., J. Math. Phys. '14] Augment state space/history: QUAPI

• Increase no. coupled EOM

[Tanimura & Kubo, JPSJ '89]

• Increase system — include resonant modes

[Garraway PRA '97, Iles-Smith et al. PRA '14, Schröder et al. '17]

Include bath ightarrow chain mapping (TEDOPA — previous talk

[Woods et al., J. Math. Phys. '14] Augment state space/history: QUAPI

Increase no. coupled EOM

[Tanimura & Kubo, JPSJ '89]

• Increase system — include resonant modes

[Garraway PRA '97, Iles-Smith et al. PRA '14, Schröder et al. '17]

- Include bath \rightarrow chain mapping (TEDOPA — previous talk)

Increase no. coupled EOM

[Tanimura & Kubo, JPSJ '89]

• Increase system — include resonant modes

[Garraway PRA '97, Iles-Smith et al. PRA '14, Schröder et al. '17]

 \blacktriangleright Include bath \rightarrow chain mapping (TEDOPA — previous talk)

Why Non-Markovian problems

- 2 Introduction to MPS
- QUAPI and TEMPO algorithm

Applications

- Spin-Boson problem
- Information backflow: Revivals

BIRS, August 2019

Why Non-Markovian problems

3 QUAPI and TEMPO algorithm

4 Applications

- Spin-Boson problem
- Information backflow: Revivals

Introduction to matrix product states

• Matrix product state:

• Local dimension: $i_1 = 1 \dots d$, Bond dimension $\alpha_1 = 1 \dots \chi_1$.

• Wavefunction: $|\Psi\rangle = \sum_{\{i\}} T_{h_i k_i h_i \dots} |i_1\rangle \otimes |i_2\rangle \dots$

Density matrix $\langle \sigma_1, \sigma_2, \dots |
ho | \sigma_1', \sigma_2' \dots
angle = \sum_{\{j\}} T_{h,k,k,\dots} \tau_{\sigma_1,\sigma_1'}^{1,n} \tau_{\sigma_2,\sigma_2'}^{1,n}$

Classical probabilities

Introduction to matrix product states

• Matrix product state:

- Local dimension: $i_1 = 1 \dots d$, Bond dimension $\alpha_1 = 1 \dots \chi_1$.
- Size $\sum_i d\chi_i^2$ vs d^N
- Uses:
 - Wavefunction: $|\Psi\rangle = \sum_{\{j\}} T_{h,b,b,\dots} |h\rangle \otimes |b\rangle \dots$
 - Density matrix $(\sigma_1, \sigma_2, \dots | \rho | \sigma'_1, \sigma'_2 \dots) = \sum_{\{h\}} T_{h, k, k, \dots} \tau^{1, h}_{\sigma_1, \sigma'_1} \tau^{1, k}_{\sigma_2, \sigma'_2}$
 - Classical probabilities

BIRS, August 2019

Introduction to matrix product states

• Matrix product state:

- Local dimension: $i_1 = 1 \dots d$, Bond dimension $\alpha_1 = 1 \dots \chi_1$.
- Size $\sum_i d\chi_i^2$ vs d^N
- Uses:
 - Wavefunction: $|\Psi\rangle = \sum_{\{i_j\}} T_{i_1,i_2,i_3,\dots} |i_1\rangle \otimes |i_2\rangle \dots$
 - Density matrix $\langle \sigma_1, \sigma_2, \dots | \rho | \sigma'_1, \sigma'_2 \dots \rangle = \sum_{\{i_j\}} T_{i_1, i_2, i_3, \dots} \tau_{\sigma_1, \sigma'_1}^{1, i_1} \tau_{\sigma_2, \sigma'_2}^{1, i_2}$
 - Classical probabilities

Singular value decomposition

- Repeat on each leg
- Truncation: Keep $|\lambda| > \lambda_c$ or $|\alpha_i| < \chi$
- Bond dimension χ_n: Storage Ndχ² vs d^Λ

BIRS, August 2019

• Singular value decomposition

- Repeat on each leg
- Truncation: Keep $|\lambda| > \lambda_0$ or $|\alpha_i| < \chi$
- Bond dimension χ_n: Storage Ndχ² vs d^λ

• Singular value decomposition

$$T_{i_1,\ldots,i_N} = T_{i_1,l} = U_{i_1,\alpha_1}^{(1)} \lambda_{\alpha_1}^{(1)} [V^{(1)\dagger}]_{\alpha_1,l}.$$

$TT^{\dagger} = U \Lambda^2 U^{\dagger}, \qquad T^{\dagger}T = V \Lambda^2 V^{\dagger}$

- Repeat on each leg
- Truncation: Keep $|\lambda| > \lambda_c$ or $|\alpha_l| < 1$
- Bond dimension χ_{η} : Storage Nd χ^2 vs d^N

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回日 うく?

Singular value decomposition

$$T_{i_1,\ldots,i_N} = T_{i_1,I} = U_{i_1,\alpha_1}^{(1)} \lambda_{\alpha_1}^{(1)} [V^{(1)\dagger}]_{\alpha_1,I}.$$

 $TT^{\dagger} = U\Lambda^2 U^{\dagger}, \qquad T^{\dagger}T = V\Lambda^2 V^{\dagger} \text{ Get: } A^{1,i_1}_{\alpha_1} = U^{(1)}_{i_1,\alpha_1} \sqrt{\lambda^{(1)}_{\alpha_1}}$

- Repeat on each leg.
- Truncation: Keep $|\lambda| > \lambda_c$ or $|\alpha_i| < j$
- Bond dimension χ_n : Storage $Nd\chi^2$ vs d^N

Singular value decomposition

$$T_{i_1,\ldots,i_N} = T_{i_1,I} = U_{i_1,\alpha_1}^{(1)} \lambda_{\alpha_1}^{(1)} [V^{(1)\dagger}]_{\alpha_1,I}.$$

 $TT^{\dagger} = U\Lambda^2 U^{\dagger}, \qquad T^{\dagger}T = V\Lambda^2 V^{\dagger} \text{ Get: } A^{1,i_1}_{\alpha_1} = U^{(1)}_{i_1,\alpha_1} \sqrt{\lambda^{(1)}_{\alpha_1}}$

Repeat on each leg

Singular value decomposition

$$T_{i_1,\ldots,i_N} = T_{i_1,I} = U_{i_1,\alpha_1}^{(1)} \lambda_{\alpha_1}^{(1)} [V^{(1)\dagger}]_{\alpha_1,I}.$$

 $TT^{\dagger} = U\Lambda^2 U^{\dagger}, \qquad T^{\dagger}T = V\Lambda^2 V^{\dagger} \text{ Get: } A^{1,i_1}_{\alpha_1} = U^{(1)}_{i_1,\alpha_1} \sqrt{\lambda^{(1)}_{\alpha_1}}$

- Repeat on each leg
- Truncation: Keep $|\lambda| > \lambda_c$ or $|\alpha_i| < \chi$

1.5

• Singular value decomposition

$$T_{i_1,\ldots,i_N} = T_{i_1,I} = U_{i_1,\alpha_1}^{(1)} \lambda_{\alpha_1}^{(1)} [V^{(1)\dagger}]_{\alpha_1,I}.$$

 $TT^{\dagger} = U\Lambda^2 U^{\dagger}, \qquad T^{\dagger}T = V\Lambda^2 V^{\dagger} \text{ Get: } A^{1,i_1}_{\alpha_1} = U^{(1)}_{i_1,\alpha_1} \sqrt{\lambda^{(1)}_{\alpha_1}}$

- Repeat on each leg
- Truncation: Keep $|\lambda| > \lambda_c$ or $|\alpha_i| < \chi$
- ► Bond dimension χ_n : Storage $Nd\chi^2$ vs d^N

Why Non-Markovian problems

2 Introduction to MPS

4 Applications

- Spin-Boson problem
- Information backflow: Revivals

• System + harmonic bath

$$H = H_{S} + O \sum_{k} \xi_{k} (b_{k}^{\dagger} + b_{k}) + H_{B}$$

- Write p_j(t) as path sum/integral
 - ► Discrete sum for system $1 = \sum_{i} |j\rangle \langle j|$
 - Coordinate path integral for bath

$$1 = \int dx_n |x_n\rangle \langle x_n |$$

• Discretize times, $t_N = N \Delta$

Path sum (doubled indices) $j = (j_f, j_b)$:

$$\rho_{J_N}(t_N) = \sum_{h \cdots h_{N-1}} \left(\prod_{n=1}^N \prod_{k=0}^{n-1} l_k(J_n, j_{n-k}) \right) \rho_h(t_1)$$

ADT; products \rightarrow Growth.

Problem: nth Tensor size ~ d²

• System + harmonic bath

$$H = H_{S} + O\sum_{k} \xi_{k} (b_{k}^{\dagger} + b_{k}) + H_{B}$$

- Write $\rho_j(t)$ as path sum/integral
 - Discrete sum for system

$$\mathbb{I} = \sum_{j} |J\rangle \langle J|$$

 Coordinate path integral for bath

$$\mathbb{1} = \int dx_n |x_n\rangle \langle x_n|$$

• Discretize times, $t_N = N\Delta$

Path sum (doubled indices) $j = (j_f, j_b)$:

 $\rho_{J_N}(t_N) = \sum_{h \cdots h_{N-1}} \left(\prod_{n=1}^N \prod_{k=0}^{n-1} l_k (j_n, j_{n-k}) \right) \rho_{J_1}(t_1)$ ADT; products \rightarrow Growth.

$$\begin{aligned} \mathcal{A}^{h,b,b,h} &= \mathcal{B}^{h,b,h,h}_{\ b,k,h} \mathcal{A}^{b,k,h} \\ \mathcal{B}^{h,h-1,\dots,h}_{\ h-1,\dots,h} &= \left(\prod_{k=1}^{n-1} \delta^{h-k}_{h-k}\right) \prod_{k=0}^{n-1} I_k(h,h-k). \end{aligned}$$

Problem: nth Tensor size ~ d⁴

• System + harmonic bath

$$H = H_{S} + O \sum_{k} \xi_{k} (b_{k}^{\dagger} + b_{k}) + H_{B}$$

- Write $\rho_j(t)$ as path sum/integral
 - Discrete sum for system

$$\mathbb{I} = \sum_{j} |j\rangle\langle j|$$

 Coordinate path integral for bath

$$\mathbb{1} = \int dx_n |x_n\rangle \langle x_n|$$

• Discretize times, $t_N = N\Delta$

• Integrate out bath.

Path sum (doubled indices) $j = (j_f, j_b)$:

 $\rho_{ln}(t_N) = \sum_{h \cdots h - 1} \left(\prod_{n=1}^N \prod_{k=0}^{n-1} l_k (j_n, j_{n-k}) \right) \rho_h(t_1)$ ADT; products \rightarrow Growth.

$$\begin{array}{l}
\mathcal{A}^{k,l_{2},l_{2},l_{1}} = B^{l_{1},l_{2},l_{2},l_{1},l_{1}}\mathcal{A}^{l_{2},l_{2},l_{1}} \\
B^{l_{1},l_{n-1},\ldots,l_{1}} = \left(\prod_{k=1}^{n-1} \delta^{l_{n-k}}_{l_{n-k}}\right) \prod_{k=0}^{n-1} I_{k}(J_{n},J_{n-k}).
\end{array}$$

Problem: nth Tensor size $\sim d^4$

• System + harmonic bath

$$H = H_{S} + O \sum_{k} \xi_{k} (b_{k}^{\dagger} + b_{k}) + H_{B}$$

- Write $\rho_j(t)$ as path sum/integral
 - Discrete sum for system
 - $\mathbb{1} = \sum_{j} \ket{j} ra{j}$
 - Coordinate path integral for bath

$$\mathbb{1} = \int dx_n |x_n\rangle \langle x_n|$$

- Discretize times, $t_N = N\Delta$
- Integrate out bath.

- Path sum (doubled indices) $j = (j_f, j_b)$: $p_{j_N}(t_N) = \sum_{j_1 \dots j_{N-1}} \left(\prod_{n=1}^N \prod_{k=0}^{n-1} l_k(j_n, j_{n-k}) \right) \rho_{j_1}(t_1)$
 - ADT; products → Growth

Problem: n^{th} Tensor size $\sim d$
QUAPI [Makri and Makarov, J. Chem Phys '95]

• System + harmonic bath

$$H = H_{S} + O \sum_{k} \xi_{k} (b_{k}^{\dagger} + b_{k}) + H_{B}$$

- Write $\rho_j(t)$ as path sum/integral
 - Discrete sum for system

$$\mathbb{1} = \sum_{j} |j\rangle\langle j|$$

 Coordinate path integral for bath

$$\mathbb{1} = \int dx_n |x_n\rangle \langle x_n|$$

- Discretize times, $t_N = N\Delta$
- Integrate out bath.

$$\rho_{j_N}(t_N) = \sum_{j_1 \dots j_{N-1}} \mathcal{A}^{j_N, j_{N-1}, \dots, j_1}$$

 $\bullet \ \ \text{ADT; products} \rightarrow \text{Growth.}$

$$\begin{split} \boldsymbol{A}^{j_{4},j_{3},j_{2},j_{1}} &= \boldsymbol{B}^{j_{4},j_{3},j_{2},j_{1}}_{i_{3},i_{2},i_{1}} \boldsymbol{A}^{j_{3},j_{2},i_{1}} \\ \boldsymbol{B}^{j_{n},j_{n-1},\ldots,j_{1}}_{i_{n-1},\ldots,i_{1}} &= \left(\prod_{k=1}^{n-1} \delta^{j_{n-k}}_{i_{n-k}}\right) \prod_{k=0}^{n-1} I_{k}(j_{n},j_{n-k}). \end{split}$$

Problem: nth Tensor size $\sim a$

QUAPI [Makri and Makarov, J. Chem Phys '95]

• System + harmonic bath

- Write $\rho_j(t)$ as path sum/integral
 - Discrete sum for system
 - $\mathbb{1} = \sum_{j} \ket{j} ra{j}$
 - Coordinate path integral for bath

$$\mathbb{1} = \int dx_n |x_n\rangle \langle x_n|$$

- Discretize times, $t_N = N\Delta$
- Integrate out bath.

$$\rho_{j_N}(t_N) = \sum_{j_1\dots j_{N-1}} \mathcal{A}^{j_N, j_{N-1},\dots, j_1}$$

 $\bullet \ \ \text{ADT; products} \to \text{Growth.}$

• Problem: nth Tensor size $\sim d^{2n}$

So far ...:
$$\rho_{j_N}(t_N) = \sum_{j_1...j_{N-1}} \mathcal{A}^{j_N,j_{N-1},...,j_1} \rho_{j_1}(t_1), \quad \mathbb{A} \to \mathbb{B} \cdot \mathbb{A}$$

• *B* is tensor network: $B^{h, j_{n-1}, \dots, j_1}_{h_{n-1}, \dots, h_1} = [b_0]^{h}_{\alpha_1} \left(\prod_{k=1}^{m} [b_k]^{\alpha_k, \dots, h_{k-k}}_{\alpha_{k+1}, j_{n-k}} \right) [b_{n-1}]^{\alpha_{n-1}, j_1},$ • Finite memory approx — neglect correlations *K* steps ago

BIRS, August 2019

So far ...:
$$\rho_{j_N}(t_N) = \sum_{j_1...j_{N-1}} A^{j_N,j_{N-1},...,j_1} \rho_{j_1}(t_1), \quad \mathbb{A} \to \mathbb{B} \cdot \mathbb{A}$$

• *B* is tensor network:
$$B_{i_{n-1},...,i_1}^{j_n,j_{n-1},...,j_1} = [b_0]_{\alpha_1}^{j_n} \left(\prod_{k=1}^{n-2} [b_k]_{\alpha_{k+1},i_{n-k}}^{\alpha_k,j_{n-k}}\right) [b_{n-1}]_{i_1}^{\alpha_{n-1},j_1},$$

Finite memory approx — neglect correlations K steps ago

So far ...:
$$\rho_{j_N}(t_N) = \sum_{j_1...j_{N-1}} A^{j_N,j_{N-1},...,j_1} \rho_{j_1}(t_1), \quad \mathbb{A} \to \mathbb{B} \cdot \mathbb{A}$$

• *B* is tensor network:
$$B_{i_{n-1},...,i_1}^{j_n,j_{n-1},...,j_1} = [b_0]_{\alpha_1}^{j_n} \left(\prod_{k=1}^{n-2} [b_k]_{\alpha_{k+1},i_{n-k}}^{\alpha_k, j_{n-k}}\right) [b_{n-1}]_{i_1}^{\alpha_{n-1},j_1},$$

• Finite memory approx — neglect correlations K steps ago

So far ...:
$$\rho_{j_N}(t_N) = \sum_{j_1...j_{N-1}} A^{j_N,j_{N-1},...,j_1} \rho_{j_1}(t_1), \quad \mathbb{A} \to \mathbb{B} \cdot \mathbb{A}$$

• *B* is tensor network:
$$B_{i_{n-1},...,i_1}^{j_n,j_{n-1},...,j_1} = [b_0]_{\alpha_1}^{j_n} \left(\prod_{k=1}^{n-2} [b_k]_{\alpha_{k+1},i_{n-k}}^{\alpha_k, j_{n-k}}\right) [b_{n-1}]_{i_1}^{\alpha_{n-1},j_1},$$

• Finite memory approx — neglect correlations K steps ago

BIRS, August 2019

So far ...:
$$\rho_{j_N}(t_N) = \sum_{j_1...j_{N-1}} A^{j_N,j_{N-1},...,j_1} \rho_{j_1}(t_1), \quad \mathbb{A} \to \mathbb{B} \cdot \mathbb{A}$$

• *B* is tensor network:
$$B_{i_{n-1},...,i_1}^{j_n,j_{n-1},...,j_1} = [b_0]_{\alpha_1}^{j_n} \left(\prod_{k=1}^{n-2} [b_k]_{\alpha_{k+1},i_{n-k}}^{\alpha_k, j_{n-k}}\right) [b_{n-1}]_{i_1}^{\alpha_{n-1},j_1},$$

• Finite memory approx — neglect correlations K steps ago

BIRS, August 2019

Why Non-Markovian problems

2 Introduction to MPS

3 QUAPI and TEMPO algorithm

Applications

- Spin-Boson problem
- Information backflow: Revivals

Why Non-Markovian problems

Introduction to MPS

3 QUAPI and TEMPO algorithm

4 Applications

Spin-Boson problem

Information backflow: Revivals

• Archetypal non-Markovian model:

$$H = \Omega S_x + \sum_i S_z(g_i a_i + g_i^* a_i^\dagger) + \omega_i a_i^\dagger a_i,$$

Ohmic Bath density of states:

$$J(\omega) = \sum_l |g_l|^2 \delta(\omega-\omega_l) \equiv 2lpha \omega \exp(-\omega/\omega_c)$$

Known behaviour, initially excited [Leggett et al. RMP '87] for $\omega_c \gg \Omega$:

0 < α < 1/2 Decaying oscillations, $(S_z) \sim e^{i\omega t - \gamma t}$ 1/2 < α < 1 Overdamped decay, $(S_z) \sim e^{-\gamma t}$ 1 < α Localization, (S_z) finite at $t \to \infty$.

Challenge for QUAPI — finite $K = \tau_c / \Delta
ightarrow$ non-zero γ for $\forall \alpha$

BIRS, August 2019

• Archetypal non-Markovian model:

$$\mathcal{H} = \Omega \mathcal{S}_{x} + \sum_{i} \mathcal{S}_{z}(g_{i}a_{i} + g_{i}^{*}a_{i}^{\dagger}) + \omega_{i}a_{i}^{\dagger}a_{i},$$

• Ohmic Bath density of states:

$$J(\omega) = \sum_{i} |g_i|^2 \delta(\omega - \omega_i) \equiv 2 \alpha \omega \exp(-\omega/\omega_c)$$

» Known behaviour, initially excited [Leggett et al. RMP '87] for $\omega_c\gg \Omega$:

 $0 < \alpha < 1/2$ Decaying oscillations, $(S_z) \sim e^{i\omega t \to t}$ $1/2 < \alpha < 1$ Overdamped decay, $(S_z) \sim e^{-\gamma t}$ $1 < \alpha$ Localization, (S_z) finite at $t \to \infty$.

Challenge for QUAPI — finite $K = au_c / \Delta o$ non-zero γ for $\forall lpha$

Archetypal non-Markovian model:

$$\mathcal{H} = \Omega \mathcal{S}_{x} + \sum_{i} \mathcal{S}_{z}(g_{i}a_{i} + g_{i}^{*}a_{i}^{\dagger}) + \omega_{i}a_{i}^{\dagger}a_{i},$$

• Ohmic Bath density of states:

$$J(\omega) = \sum_{i} |g_{i}|^{2} \delta(\omega - \omega_{i}) \equiv 2 \alpha \omega \exp(-\omega/\omega_{c})$$

• Known behaviour, initially excited [Leggett *et al.* RMP '87] for $\omega_c \gg \Omega$:

-

• Archetypal non-Markovian model:

$$\mathcal{H} = \Omega \mathcal{S}_{x} + \sum_{i} \mathcal{S}_{z}(g_{i}a_{i} + g_{i}^{*}a_{i}^{\dagger}) + \omega_{i}a_{i}^{\dagger}a_{i},$$

• Ohmic Bath density of states:

$$J(\omega) = \sum_{i} |g_{i}|^{2} \delta(\omega - \omega_{i}) \equiv 2 \alpha \omega \exp(-\omega/\omega_{c})$$

• Known behaviour, initially excited [Leggett *et al.* RMP '87] for $\omega_c \gg \Omega$:

• Challenge for QUAPI — finite $K = \tau_c / \Delta \rightarrow$ non-zero γ for $\forall \alpha$

-

TEMPO spin Boson results

TEMPO spin Boson results

TEMPO spin Boson results

Jonathan Keeling

Why Non-Markovian problems

Introduction to MPS

3 QUAPI and TEMPO algorithm

Applications

- Spin-Boson problem
- Information backflow: Revivals

BIRS, August 2019

• Two spins in common environment $H = \Omega \mathbf{S}_{a} \cdot \mathbf{S}_{b} + \sum_{i} \omega_{i} a_{i}^{\dagger} a_{i} + \sum_{\nu=a,b} \sum_{i} S_{z,\nu}(g_{i,\nu}a_{i} + g_{i,\nu}^{*}a_{i}^{\dagger})$

• Phase factors, $g_{l,\nu} = g_l e^{-i\mathbf{k}_l r_{\nu}}$, $\omega_l = |\mathbf{k}_l|$

• Propagation: revivals at t = R, 2R, ...

• Spin Boson, $J(\omega) = J_p(\omega)(1 - \cos(\omega R))$

- Two spins in common environment $H = \Omega \mathbf{S}_{a} \cdot \mathbf{S}_{b} + \sum_{i} \omega_{i} a_{i}^{\dagger} a_{i} + \sum_{\nu=a,b} \sum_{i} S_{z,\nu}(g_{i,\nu}a_{i} + g_{i,\nu}^{*}a_{i}^{\dagger})$
 - Phase factors, $g_{i,\nu} = g_i e^{-i\mathbf{k}_i \cdot \mathbf{r}_{\nu}}$, $\omega_i = |\mathbf{k}_i|$
 - Propagation: revivals at t = R, 2R, ...

BIRS, August 2019

• Two spins in common environment

$$H = \Omega \mathbf{S}_{a} \cdot \mathbf{S}_{b} + \sum_{i} \omega_{i} a_{i}^{\dagger} a_{i} + \sum_{\nu=a,b} \sum_{i} S_{z,\nu}(g_{i,\nu}a_{i} + g_{i,\nu}^{*}a_{i}^{\dagger})$$

- Phase factors, $g_{i,\nu} = g_i e^{-i\mathbf{k}_i \cdot \mathbf{r}_{\nu}}$, $\omega_i = |\mathbf{k}_i|$
- Propagation: revivals at $t = R, 2R, \ldots$
- Spin Boson, $J(\omega) = J_p(\omega)(1 \cos(\omega R))$

• Two spins in common environment

$$H = \Omega \mathbf{S}_{a} \cdot \mathbf{S}_{b} + \sum_{i} \omega_{i} \mathbf{a}_{i}^{\dagger} \mathbf{a}_{i} + \sum_{\nu = \mathbf{a}, \mathbf{b}} \sum_{i} S_{z, \nu} (\mathbf{g}_{i, \nu} \mathbf{a}_{i} + \mathbf{g}_{i, \nu}^{*} \mathbf{a}_{i}^{\dagger})$$

- Phase factors, $g_{i,\nu} = g_i e^{-i\mathbf{k}_i \cdot \mathbf{r}_{\nu}}$, $\omega_i = |\mathbf{k}_i|$
- Propagation: revivals at $t = R, 2R, \ldots$
- Spin Boson, $J(\omega) = J_p(\omega)(1 \cos(\omega R))$

• Two spins in common environment

$$H = \Omega \mathbf{S}_{a} \cdot \mathbf{S}_{b} + \sum_{i} \omega_{i} \mathbf{a}_{i}^{\dagger} \mathbf{a}_{i} + \sum_{\nu = a, b} \sum_{i} S_{z,\nu}(\mathbf{g}_{i,\nu} \mathbf{a}_{i} + \mathbf{g}_{i,\nu}^{*} \mathbf{a}_{i}^{\dagger})$$

- Phase factors, $g_{i,\nu} = g_i e^{-i\mathbf{k}_i \cdot \mathbf{r}_{\nu}}$, $\omega_i = |\mathbf{k}_i|$
- Propagation: revivals at $t = R, 2R, \ldots$

Acknowledgements

FUNDING:

Engineering and Physical Sciences Research Council

Summary

• TEMPO Algorithm for general non-Markovian problems

• Captures localisation transition of spin Boson model

• Capable to handling oscillating DoS.

• Code publicly available at DOI:10.5281/zenodo.1322407

[Strathearn, Kirton, Kilda, Keeling & Lovett, Nat. Comm. (2018)]

Coupled electron + nucleus

T = 0 — single emission, final coherence:

Electron spin flip – effect on nuclear coherence

[Cammack et al. PRA '18]

・ロト・(間・・(目・・(目・))(日・)

Coupled electron + nucleus

T = 0 — single emission, final coherence:

• Electron spin flip - effect on nuclear coherence

$$E = \begin{bmatrix} \uparrow \uparrow \uparrow \\ \uparrow \downarrow \downarrow \\ & & &$$

Coupled electron + nucleus

T = 0 — single emission, final coherence:

• Electron spin flip - effect on nuclear coherence

Coupled electron + nucleus

T = 0 — single emission, final coherence:

• Electron spin flip - effect on nuclear coherence

- T > 0, Born-Markov approx
- Separation of timescales, Decay rates κ_±.
 For 1/κ_− ≫ t ≫ 1/κ₊, quasi-steady state ρ = r.

High T: Large ratio of timescales

High T protects coherence for longer.

But: Born-Markov invalid at high T

[Cammack et al. PRA '18]

BIRS, August 2019

- T > 0, Born-Markov approx
- Separation of timescales, Decay rates κ_{\pm} .
- For $1/\kappa_{-} \gg t \gg 1/\kappa_{+}$, quasi-steady state $\rho = r$.

High T: Large ratio of timescales

High T protects coherence for longer!

But: Born-Markov invalid at high T

[Cammack et al. PRA '18]

- T > 0, Born-Markov approx
- Separation of timescales, Decay rates κ_{\pm} .
- For $1/\kappa_{-} \gg t \gg 1/\kappa_{+}$, quasi-steady state

High T: Large ratio of timescales High T protects coherence for longer! But: Born-Markov invalid at high T

[Cammack et al. PRA '18]

BIRS, August 2019

- T > 0, Born-Markov approx
- Separation of timescales, Decay rates κ_{\pm} .
- For $1/\kappa_{-} \gg t \gg 1/\kappa_{+}$, quasi-steady state

High T: Large ratio of timescales

High T protects coherence for longer! But: Born-Markov invalid at high T

- T > 0, Born-Markov approx
- Separation of timescales, Decay rates κ_{\pm} .
- For $1/\kappa_{-} \gg t \gg 1/\kappa_{+}$, quasi-steady state

[Cammack et al. PRA '18]

- High T: Large ratio of timescales
- High T protects coherence for longer!

But: Born-Markov invalid at high T

- T > 0, Born-Markov approx
- Separation of timescales, Decay rates κ_{\pm} .
- For $1/\kappa_{-} \gg t \gg 1/\kappa_{+}$, quasi-steady state

[Cammack et al. PRA '18]

- High T: Large ratio of timescales
- High T protects coherence for longer!
- But: Born-Markov invalid at high T

-
Protected coherence: High temperature TEMPO

• Modify coupling for TEMPO form: $H = \frac{\omega_0}{2}\sigma_e^z + g\sigma_e^z\sigma_n^z + \sum_k \xi_k \sigma_e^x (b_k + b_k^{\dagger}) + H_B$

Populations — see Markov breakdown
Longer coherence at high T

[Work by A. Dunnett]

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Protected coherence: High temperature TEMPO

• Modify coupling for TEMPO form: $H = \frac{\omega_0}{2}\sigma_e^z + g\sigma_e^z\sigma_n^z + \sum_k \xi_k \sigma_e^x (b_k + b_k^{\dagger}) + H_B$

[Work by A. Dunnett]

Protected coherence: High temperature TEMPO

• Modify coupling for TEMPO form: $H = \frac{\omega_0}{2}\sigma_e^z + g\sigma_e^z\sigma_n^z + \sum_k \xi_k \sigma_e^x (b_k + b_k^{\dagger}) + H_B$

[Work by A. Dunnett]