Polynomial to Exponential transition in Ramsey theory

Dhruv Mubayi

Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago
(joint work with Alexander Razborov)

Banff, 2019

Ramsey theory for hypergraphs

Definition (Ramsey's theorem)

Given $k \geq 2$ and k-uniform hypergraphs H_{1}, H_{2}, the ramsey number

$$
r\left(H_{1}, H_{2}\right)
$$

is the minimum N such that every red/blue coloring of the k-sets of $[N]$ results in a red copy of H_{1} or a blue copy of H_{2}. Write

$$
r_{k}(s, n):=r\left(K_{s}^{k}, K_{n}^{k}\right)
$$

Ramsey theory for hypergraphs

Definition (Ramsey's theorem)

Given $k \geq 2$ and k-uniform hypergraphs H_{1}, H_{2}, the ramsey number

$$
r\left(H_{1}, H_{2}\right)
$$

is the minimum N such that every red/blue coloring of the k-sets of $[N]$ results in a red copy of H_{1} or a blue copy of H_{2}. Write

$$
r_{k}(s, n):=r\left(K_{s}^{k}, K_{n}^{k}\right)
$$

Observation

Note that $r_{k}(s, n) \leq N$ is equivalent to saying that every N-vertex K_{s}^{k}-free k-uniform hypergraph H has $\alpha(H) \geq n$.

Graphs

Theorem (Spencer 1977, Conlon 2008)

$$
(1+o(1)) \frac{\sqrt{2}}{e} n 2^{n / 2}<r_{2}(n, n)<\frac{4^{n}}{n^{c \log n / \log \log n}}
$$

Theorem (Ajtai-Komlós-Szemerédi 1980, Kim 1995, sharper results by Shearer, Bohman-Keevash, Fiz Pontiveros-Griffiths-Morris)

$$
r_{2}(3, n)=\Theta\left(\frac{n^{2}}{\log n}\right)
$$

Graphs

Theorem (Spencer 1977, Conlon 2008)

$$
(1+o(1)) \frac{\sqrt{2}}{e} n 2^{n / 2}<r_{2}(n, n)<\frac{4^{n}}{n^{c \log n / \log \log n}}
$$

Theorem (Ajtai-Komlós-Szemerédi 1980, Kim 1995, sharper results by Shearer, Bohman-Keevash, Fiz Pontiveros-Griffiths-Morris)

$$
r_{2}(3, n)=\Theta\left(\frac{n^{2}}{\log n}\right)
$$

Theorem

For fixed $s \geq 3$

$$
n^{(s+1) / 2+o(1)}<r_{2}(s, n)<n^{s-1+o(1)}
$$

Pseudorandom Ramsey Graphs

Definition (Alon?)

An (n, d, λ) graph is an n-vertex d-regular graph such that the absolute value of every eigenvalue of its adjacency matrix, besides the largest one, is at most λ.

Conjecture (Sudakov-Szabo-Vu 2005)

For each fixed $s \geq 3$, there exist "optimal" K_{s}-free (n, d, λ) graphs. I.e., graphs containing no K_{s} with

$$
d=\Omega\left(n^{1-\frac{1}{2 s-3}}\right) \quad \text { and } \quad \lambda=O(\sqrt{d})
$$

Pseudorandom Ramsey Graphs

Theorem (M-Verstraëte 2019)

Let d, n, N be positive integers and $n=\left\lceil 2 N(\log N)^{2} / d\right\rceil$. If there exists an F-free (N, d, λ)-graph and N is large enough, then

$$
r(F, n)=\Omega\left(\frac{N}{\lambda}(\log N)^{2}\right) .
$$

Corollary (M-Verstraëte 2019)

If K_{s}-free (N, d, λ)-graphs exist with $d=\Omega\left(N^{1-\frac{1}{2 s-3}}\right)$ and $\lambda=O(\sqrt{d})$, then as $n \rightarrow \infty$,

$$
r(s, n)=\Omega\left(\frac{n^{s-1}}{(\log n)^{2 s-4}}\right)
$$

Hypergraphs - diagonal case

Definition (tower function)

$$
\operatorname{twr}_{1}(x)=x \quad \text { and } \quad \operatorname{twr}_{i+1}(x)=2^{\operatorname{twr}_{i}(x)}
$$

Theorem (Erdős-Hajnal-Rado 1952/1965)

$$
2^{c n^{2}}<r_{3}(n, n)<2^{2^{n}}
$$

For fixed $k \geq 3$,

$$
\operatorname{twr}_{k-1}\left(c n^{2}\right)<r_{k}(n, n)<\operatorname{twr}_{k}\left(c^{\prime} n\right)
$$

Conjecture (Erdős \$500)

$$
r_{3}(n, n)>2^{2^{c n}} .
$$

Hypergraphs - The off-diagonal conjecture

Conjecture (Erdős-Hajnal 1972)

For fixed $s>k \geq 3$ we have $r_{k}(s, n)>\operatorname{twr}_{k-1}(c n)$. In particular,

$$
r_{k}(k+1, n)>\operatorname{twr}_{k-1}(c n)
$$

$$
\begin{aligned}
& r_{3}(s, n) \geq r_{3}(4, n)>2^{c n} \\
& r_{4}(s, n) \geq r_{4}(5, n)>2^{2^{c n}} \\
& r_{5}(s, n) \geq r_{5}(6, n)>2^{2^{2^{c n}}}
\end{aligned}
$$

Hypergraphs - The off-diagonal conjecture

Theorem (Erdős-Hajnal 1972)

$r_{3}(4, n)>2^{c n}$. Consequently, the conjecture holds for $k=3$.

Hypergraphs - The off-diagonal conjecture

Theorem (Erdős-Hajnal 1972)

$r_{3}(4, n)>2^{c n}$. Consequently, the conjecture holds for $k=3$.

Proof. Let T be a random graph tournament on N vertices and form a 3-uniform hypergraph H by making each cyclically oriented triangle a hyperedge. Then

- there is no $K_{4}^{(3)}$ in H (even no K_{4}^{3-}), and yet
- the independence number of H is $n=O(\log N)$.

The off-diagonal conjecture - almost solved

Theorem (M-Suk 2017, Conlon-Fox-Sudakov unpublished)
The off-diagonal conjecture holds for all $s \geq k+3$:

$$
r_{k}(k+3, n)>\operatorname{twr}_{k-1}(c n)
$$

The open cases are $r_{4}(5, n)$ and $r_{4}(6, n)$ and their k-uniform counterparts.

$r_{4}(5, n)$ and $r_{4}(6, n)$

Lower bounds for $r_{4}(5, n)$:

- $2^{c n} \quad$ (implicit in Erdős-Hajnal 1972)
- $2^{c n^{2}} \quad$ (M-Suk 2017)
- $2^{n^{c \log \log n}}$ (M-Suk 2018)
- $2^{n^{c \log n}} \quad($ M-Suk 2018)

Lower bounds for $r_{4}(6, n)$:

- $2^{c n} \quad$ (implicit in Erdős-Hajnal 1972)
- $2^{n^{c \log n}} \quad$ (M-Suk 2017)
- $2^{2^{c n^{1 / 5}}}$ (M-Suk 2018)

The off-diagonal conjecture - almost solved

Theorem (M-Suk 2018)

$$
r_{4}(5, n)>2^{n^{c \log n}} \quad r_{4}(6, n)>2^{2^{c n^{1 / 5}}}
$$

and for fixed $k \geq 4$

$$
\begin{aligned}
& r_{k}(k+1, n)>\operatorname{twr}_{k-2}\left(n^{c \log n}\right) \\
& r_{k}(k+2, n)>\operatorname{twr}_{k-1}\left(c n^{1 / 5}\right)
\end{aligned}
$$

The Erdős-Hajnal Hypergraph Ramsey Problem

Definition (Erdős-Hajnal 1972)

For $1 \leq t \leq\binom{ s}{k}$, let $r_{k}(s, t ; n)$ be the minimum N such that every red/blue coloring of the k-sets of $[N]$ results in an s-set that contains at least t red k-subsets or an n-set all of whose k-subsets are blue (i.e., a blue K_{n}^{k}).

Example

$$
r_{k}\left(s,\binom{s}{k} ; n\right)=r_{k}(s, n)
$$

The Erdős-Hajnal Hypergraph Ramsey Problem

Problem (Erdős-Hajnal 1972)

As t grows from 1 to $\binom{s}{k}$, there is a well-defined value $t_{1}=h_{1}^{(k)}(s)$ at which $r_{k}\left(s, t_{1}-1 ; n\right)$ is polynomial in n while $r_{k}\left(s, t_{1} ; n\right)$ is exponential in a power of n, another well-defined value $t_{2}=h_{2}^{(k)}(s)$ at which it changes from exponential to double exponential in a power of n and so on, and finally a well-defined value $t_{k-2}=h_{k-2}^{(k)}(s)<\binom{s}{k}$ at which it changes from twr_{k-2} to twr_{k-1} in a power of n.

A Recursive Definition

Definition

Let $g_{k}(s)=0$ for $s<k, g_{k}(k)=1$, and for $s>k$, let $g_{k}(s)$ be the maximum of

$$
\sum_{i=1}^{k} g_{k}\left(s_{i}\right)+\prod_{i=1}^{k} s_{i}
$$

where we maximize over all partitions $s=s_{1}+\cdots+s_{k}$ with $s_{i}<s$ for all i.

$$
g_{k}(s)=(1+o(1)) \frac{k!}{k^{k}-k}\binom{s}{k} \quad(k \text { is fixed, } s \rightarrow \infty) .
$$

Recursion and Fractals ${ }^{1}$

$$
g_{4}(s) \sim \frac{2}{21}\binom{s}{4}
$$

$$
g_{5}(s) \sim \frac{1}{26}\binom{s}{5}
$$

${ }^{1}$ Thanks to Bernard Lidický for pictures!

Polynomial to Exponential Transition

Theorem (Erdős-Hajnal)

$$
h_{1}^{(k)}(s) \geq g_{k}(s)+1 \quad(s \geq k \geq 3)
$$

In other words: every N-vertex k-uniform hypergraph H in which every s vertices span at most $g_{k}(s)-1$ edges has

$$
\alpha(H)>N^{\epsilon} \quad(\epsilon=\epsilon(s, k)>0) .
$$

Polynomial to Exponential Transition

Conjecture (Erdős-Hajnal 1972 \$500)

$$
h_{1}^{(k)}(s)=g_{k}(s)+1 \quad(s \geq k \geq 3)
$$

In other words: there exists $C=C(k)>0$ and, for all $N>k$, an N-vertex k-uniform hypergraph H in which every s vertices span at most $g_{k}(s)$ edges and

$$
\alpha(H) \leq C \log N .
$$

The smallest nontrivial case

$$
k=3, s=4
$$

Theorem (Phelps-Rödl 1986)

$$
r_{3}(4,2 ; n)<c n^{2} / \log n
$$

Theorem (Erdős-Hajnal 1972)

$$
r_{3}(4,3 ; n)>2^{c^{\prime} n}
$$

$$
h_{1}^{(3)}(4)=3=g_{3}(4)+1
$$

Polynomial to Exponential Transition

Theorem (Conlon-Fox-Sudakov 2010)

$h_{1}^{(3)}(s)=g_{3}(s)+1$ for many s values including powers of 3; also

$$
h_{1}^{(3)}(s)=\frac{1}{4}\binom{s}{3}+O(s \log s) .
$$

Proof Idea: $T(s)$ is the maximum number of directed triangles in all s-vertex tournaments. Then, if s is a power of 3 ,

$$
h_{1}^{(3)}(s)-1 \leq T(s)=\frac{1}{4}\binom{s+1}{3}=g_{3}(s) .
$$

Lucky: the maximizers for $T(s)$ are out regular tournaments, and the "recursive" tournament is just one example.

Polynomial to Exponential Transition

Theorem (M-Razborov 2019)

$$
h_{1}^{(k)}(s)=g_{k}(s)+1 \quad(s \geq k \geq 4)
$$

i.e., there exists $C=C(k)>0$ and, for all $N>k$, an N-vertex k-uniform hypergraph H in which every s vertices span at most $g_{k}(s)$ edges and

$$
\alpha(H) \leq C \log N
$$

Main Hurdle: The recursive definition of $g_{k}(s)$ - seems impossible to avoid it!!

Inducibility

Definition

Given a k-vertex graph R, the inducibility $i(R)$ is

$$
i(R) \stackrel{\text { def }}{=} \lim _{s \rightarrow \infty} \max _{|V(H)|=s} \frac{i(R ; H)}{\binom{s}{k}}
$$

where $i(R ; H)$ is the number of induced copies of R in an s-vertex graph H.

Golumbic-Pippenger

Conjecture (Golumbic-Pippenger 1975)

$$
i\left(C_{k}\right)=\frac{k!}{k^{k}-k} \quad(k \geq 5)
$$

Golumbic-Pippenger

Conjecture (Golumbic-Pippenger 1975)

$$
i\left(C_{k}\right)=\frac{k!}{k^{k}-k} \quad(k \geq 5)
$$

Theorem (Kral-Norin-Volec 2018)

$$
i\left(C_{k}\right) \leq \frac{2 k!}{k^{k}} \quad(k \geq 5)
$$

Golumbic-Pippenger

Theorem (Balogh-Hu-Lidický-Pfender 2016)

$$
i\left(C_{5}\right)=\frac{1}{26} \quad\left(=\frac{5!}{5^{5}-5}\right)
$$

Rich Structures

Theorem (M-Razborov 2019)

Let $s \geq k \geq 4, R$ be a k-vertex rainbow tournament. For any s-vertex tournament H with edges colored by the same $\binom{k}{2}$ colors,

$$
i(R ; H) \leq g_{k}(s) \quad\left(\Longrightarrow i(R)=\frac{k!}{k^{k}-k}\right) .
$$

Proof of Erdős-Hajnal conjecture

Conjecture (Erdős-Hajnal 1972)

$$
h_{1}^{(k)}(s)=g_{k}(s)+1 \quad(s \geq k \geq 4)
$$

I.e. there exists $C=C(k)>0$ and, for all $N>k$, an N-vertex k-uniform hypergraph H in which every s vertices span at most $g_{k}(s)$ edges and $\alpha(H) \leq C \log N$.

Proof of Erdős-Hajnal conjecture

Conjecture (Erdős-Hajnal 1972)

$$
h_{1}^{(k)}(s)=g_{k}(s)+1 \quad(s \geq k \geq 4)
$$

I.e. there exists $C=C(k)>0$ and, for all $N>k$, an N-vertex k-uniform hypergraph H in which every s vertices span at most $g_{k}(s)$ edges and $\alpha(H) \leq C \log N$.

Proof.

Fix a k-vertex rainbow tournament R. Randomly $\binom{k}{2}$-color and orient K_{N} (with the same colors from R). Form a k-uniform hypergraph H comprising copies of R. Then

- Every s vertices have at most $g_{k}(s)$ (hyper)edges
- With positive probability $\alpha(H)=O(\log N)$.

Intuition

Question

Why might it be easier to prove inducibility results for rainbow/directed structures R than for usual graphs?

- Because of the lack of symmetries
- Research on inducibility is/was hampered by the fact that a vertex can play different roles in a copy of R. E.g. if $R=C_{k}$
- Previous results of inducibility of random graphs (Yuster, Fox-Huang-Lee) required trivial automorphism group and in fact even stronger "asymmetry" properties
- The rainbow tournament has the (strongest possible) asymmetry properties "for free". E.g. specifying a colored oriented edge identifies its endpoints

Thank You!!!

