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Hypergraphs
Paths and cycles in hypergraphs can be defined in many ways.

A Berge-path of length k in a multi-hypergraph H is a set of k
hyperedges {e1, . . . ,ek} and a set of k + 1 representative
vertices {v1, . . . , vk+1} such that for each 1 ≤ i ≤ k ,
vi , vi+1 ∈ ei .

A Berge-cycle of length k in a multi-hypergraph H is a set of k
hyperedges {e1, . . . ,ek} and a set of k representative vertices
{v1, . . . , vk} such that for each i , vi , vi+1 ∈ ei (with indices
modulo k ).

The incidence graph I = I(H) is the bipartite graph with parts
V (H) and E(H) where ve ∈ E(I) iff v ∈ e in H.

Then H has a cycle of length k iff I has a cycle of length 2k .
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Jackson’s results and conjecture
For integers n,m, and δ with δ ≤ m, let G(n,m, δ) be the set of
all bipartite graphs with partition (X ,Y ) s. t.
|X | = n ≥ 2, |Y | = m and for every x ∈ X , d(x) ≥ δ.

Theorem 1 [ Jackson, 1981]: If a graph G ∈ G(n,m, δ) satisfies
n ≤ δ and m ≤ 2δ − 2, then it contains a cycle of length 2n, i.e.,
a cycle that covers X .

The bound m ≤ 2δ − 2 is exact.



Examples

Example 1 : For δ = n, let G1(n) ∈ G(δ, 2δ − 1, δ) be obtained
from a copy of Kδ,δ−1 where every vertex in X has an additional
neighbor of degree 1.

Example 2 : Fix a ≥ b > 0 such that a + b = n. Let
G2(a,b) ∈ G(n,2δ − 1, δ) be the bipartite graph obtained from a
copy H1 of Ka,δ and a copy H2 of Kb,δ by gluing together a vertex
of H1 in a part of size δ with a vertex of H2 in a part of size δ.

Figure: Examples 1 and 2.



A conjecture
Conjecture 1 [Jackson, 1981]: If some G ∈ G(n,m, δ) is
2-connected and (i) m ≤ 3δ − 5 if n ≤ δ, or
(ii) m ≤ b2(n−α)

δ−1−αc(δ − 2) + 1 if n ≥ δ, where α = 1 if δ is even
and α = 0 if δ is odd, then G has a cycle of length 2 min(n, δ).

Example 3 : For (i), fix positive integers n1 ≥ n2 ≥ n3 such that
n1 + n2 + n3 = n. Let G3(n1,n2,n3) ∈ G(n,3δ − 4, δ) be the
bipartite graph obtained from Kδ−2,n1 ∪ Kδ−2,n2 ∪ Kδ−2,n3 by
adding two vertices a and b that are both adjacent to every
vertex in the parts of size n1,n2, and n3.

Figure: Example 3.



Our results
Theorem 2 [A. K., R. Luo and D. Zirlin]: Suppose
n ≤ δ ≤ m ≤ 3δ − 5. If G ∈ G(n,m, δ) is 2-connected, then G
contains a cycle of length 2n, i.e., a cycle that covers X .

Theorem 3 [ A. K., R. L. and D. Z.]: Let δ ≥ n and m ≤ 2δ − 1. If
G ∈ G(n,m, δ) does not contain a cycle of length 2n, then either
G = G1(n) in Example 1 or G = G2(a,b) for some a and b with
a + b = n in Example 2.
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More examples

Example 4 : Let V (H) = V1 ∪ V2 where |V1| = b(n + 1)/2c,
|V2| = d(n + 1)/2e, V1 ∩ V2 = {v}, and let E(H) consist of all
sets of size n/4 contained either in V1 or in V2. Then this
n/4-uniform hypergraph has an exponential in n minimum
degree and no Hamiltonian cycle

Example 5 : Let V (H) = V1 ∪ V2 where |V1| = d(n + 2)/2e,
|V2| = b(n − 2)/2c, V1 ∩ V2 = ∅, and let E(H) = E1 ∪ E2, where
E1 is the set of all subsets A of V (H) of size dn/4e such that
|V1 ∩ A| = 1 (and |V2 ∩ A| = dn/4e − 1), and E2 = {V1}. Then
H has an exponential in n minimum degree, high connectivity
and positive codegree of each pair of the vertices. But again, H
has no Berge hamiltonian cycle.



Our results
Translating Theorems 2 and 3 into the language of
hypergraphs, we get

Theorem 2∗ [A. K., R. Luo and D. Zirlin]: Suppose
n ≤ δ ≤ m ≤ 3δ − 5. If H is a 2-connected n-vertex hypergraph
with m edges and minimum degree at least δ, then H has a
hamiltonian Berge cycle.

Theorem 3∗ [ A. K., R. L. and D. Z.]: Let δ ≥ n and m ≤ 2δ − 1.
If an n-vertex hypergraph H with m edges and minimum degree
at least δ has no hamiltonian Berge cycle, then the incidence
graph I(H) is either G1(n) in Example 1 or G2(a,b) for some a
and b with a + b = n in Example 2.



Super-pancyclic hypergraphs
A hypergraph H is super-pancyclic if for every A ⊆ V (H) with
|A| ≥ 3, H has a Berge cycle whose set of base vertices is A.

A bipartite graph G with partition (X ,Y ) is X -super-pancyclic if
for every X ′ ⊆ X with |X ′| ≥ 3, G has a cycle C with
V (C) ∩ X = X ′.

Theorem 4 [Hypergraph version of Jackson’s Theorem]:
Suppose δ ≥ n and δ ≥ (m + 2)/2. Then every n-vertex
hypergraph with m edges and minimum degree at least δ is
super-pancyclic.



For a set A ⊂ X in an X ,Y -bigraph G, let
N2(A) = {y ∈ Y : |N(y) ∩ A| ≥ 2}.

Every X -super-pancyclic bipartite graph satisfies:

For each A ⊆ X with |A| ≥ 3, |N2(A)| ≥ |A|; (1)

and

For each A ⊆ X with |A| ≥ 3, G[A ∪ N2(A)] is 2-connected.
(2)
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Theorem 5 [A. K., R. L. and D. Z.]: Let δ ≥ n and m ≤ 3δ − 5. If
G ∈ G(n,m, δ) satisfies (1) and (2), then G is
X -super-pancyclic.

Theorem 6 [ A. K., R. L. and D. Z.]: Let δ ≥ n and m ≤ 3δ − 5. If
the incidence graph of an n-vertex hypergraph H with m edges
and minimum degree δ(H) satisfies (1) and (2), then H is
super-pancyclic.

Theorem 7 [ M. Lavrov, A. K., R. L. and D. Z.]: Let δ ≥ n and
n ≤ 6. If G ∈ G(n,m, δ) satisfies (1) and (2), then G is
X -super-pancyclic.


