Super-pancyclic hypergraphs and bipartite graphs

Alexandr Kostochka

University of Illinois at Urbana-Champaign, USA and Sobolev Institute of Mathematics, Novosibirsk, Russia joint work with Misha Lavrov, Ruth Luo and Dara Zirlin

Banff, September 2, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Hypergraphs

Paths and cycles in hypergraphs can be defined in many ways.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Hypergraphs

Paths and cycles in hypergraphs can be defined in many ways.

A Berge-path of length *k* in a multi-hypergraph \mathcal{H} is a set of *k* hyperedges $\{e_1, \ldots, e_k\}$ and a set of k + 1 representative vertices $\{v_1, \ldots, v_{k+1}\}$ such that for each $1 \le i \le k$, $v_i, v_{i+1} \in e_i$.

A Berge-cycle of length *k* in a multi-hypergraph \mathcal{H} is a set of *k* hyperedges $\{e_1, \ldots, e_k\}$ and a set of *k* representative vertices $\{v_1, \ldots, v_k\}$ such that for each *i*, $v_i, v_{i+1} \in e_i$ (with indices modulo *k*).

Hypergraphs

Paths and cycles in hypergraphs can be defined in many ways.

A Berge-path of length *k* in a multi-hypergraph \mathcal{H} is a set of *k* hyperedges $\{e_1, \ldots, e_k\}$ and a set of k + 1 representative vertices $\{v_1, \ldots, v_{k+1}\}$ such that for each $1 \le i \le k$, $v_i, v_{i+1} \in e_i$.

A Berge-cycle of length *k* in a multi-hypergraph \mathcal{H} is a set of *k* hyperedges $\{e_1, \ldots, e_k\}$ and a set of *k* representative vertices $\{v_1, \ldots, v_k\}$ such that for each *i*, $v_i, v_{i+1} \in e_i$ (with indices modulo *k*).

The incidence graph $I = I(\mathcal{H})$ is the bipartite graph with parts $V(\mathcal{H})$ and $E(\mathcal{H})$ where $ve \in E(I)$ iff $v \in e$ in \mathcal{H} .

Then \mathcal{H} has a cycle of length k iff I has a cycle of length 2k.

Jackson's results and conjecture

For integers n, m, and δ with $\delta \le m$, let $\mathcal{G}(n, m, \delta)$ be the set of all bipartite graphs with partition (X, Y) s. t. $|X| = n \ge 2, |Y| = m$ and for every $x \in X, d(x) \ge \delta$.

Theorem 1 [Jackson, 1981]: If a graph $G \in \mathcal{G}(n, m, \delta)$ satisfies $n \leq \delta$ and $m \leq 2\delta - 2$, then it contains a cycle of length 2n, i.e., a cycle that covers *X*.

(日) (日) (日) (日) (日) (日) (日)

The bound $m \leq 2\delta - 2$ is exact.

Examples

Example 1 : For $\delta = n$, let $G_1(n) \in \mathcal{G}(\delta, 2\delta - 1, \delta)$ be obtained from a copy of $\mathcal{K}_{\delta,\delta-1}$ where every vertex in X has an additional neighbor of degree 1.

Example 2 : Fix $a \ge b > 0$ such that a + b = n. Let $G_2(a, b) \in \mathcal{G}(n, 2\delta - 1, \delta)$ be the bipartite graph obtained from a copy H_1 of $K_{a,\delta}$ and a copy H_2 of $K_{b,\delta}$ by gluing together a vertex of H_1 in a part of size δ with a vertex of H_2 in a part of size δ .



Figure: Examples 1 and 2.

(日) (日) (日) (日) (日) (日) (日)

A conjecture

Conjecture 1 [Jackson, 1981]: If some $G \in \mathcal{G}(n, m, \delta)$ is 2-connected and (i) $m \leq 3\delta - 5$ if $n \leq \delta$, or (ii) $m \leq \lfloor \frac{2(n-\alpha)}{\delta - 1 - \alpha} \rfloor (\delta - 2) + 1$ if $n \geq \delta$, where $\alpha = 1$ if δ is even and $\alpha = 0$ if δ is odd, then *G* has a cycle of length $2\min(n, \delta)$.

Example 3 : For (i), fix positive integers $n_1 \ge n_2 \ge n_3$ such that $n_1 + n_2 + n_3 = n$. Let $G_3(n_1, n_2, n_3) \in \mathcal{G}(n, 3\delta - 4, \delta)$ be the bipartite graph obtained from $K_{\delta-2,n_1} \cup K_{\delta-2,n_2} \cup K_{\delta-2,n_3}$ by adding two vertices *a* and *b* that are both adjacent to every vertex in the parts of size n_1, n_2 , and n_3 .

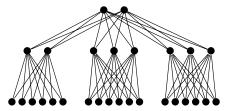


Figure: Example 3.

Our results

Theorem 2 [A. K., R. Luo and D. Zirlin]: Suppose $n \le \delta \le m \le 3\delta - 5$. If $G \in \mathcal{G}(n, m, \delta)$ is 2-connected, then *G* contains a cycle of length 2*n*, i.e., a cycle that covers *X*.

Our results

Theorem 2 [A. K., R. Luo and D. Zirlin]: Suppose $n \le \delta \le m \le 3\delta - 5$. If $G \in \mathcal{G}(n, m, \delta)$ is 2-connected, then *G* contains a cycle of length 2*n*, i.e., a cycle that covers *X*.

Theorem 3 [A. K., R. L. and D. Z.]: Let $\delta \ge n$ and $m \le 2\delta - 1$. If $G \in \mathcal{G}(n, m, \delta)$ does not contain a cycle of length 2n, then either $G = G_1(n)$ in Example 1 or $G = G_2(a, b)$ for some *a* and *b* with a + b = n in Example 2.

More examples

Example 4: Let $V(\mathcal{H}) = V_1 \cup V_2$ where $|V_1| = \lfloor (n+1)/2 \rfloor$, $|V_2| = \lceil (n+1)/2 \rceil$, $V_1 \cap V_2 = \{v\}$, and let $E(\mathcal{H})$ consist of all sets of size n/4 contained either in V_1 or in V_2 . Then this n/4-uniform hypergraph has an exponential in n minimum degree and no Hamiltonian cycle

Example 5 : Let $V(\mathcal{H}) = V_1 \cup V_2$ where $|V_1| = \lceil (n+2)/2 \rceil$, $|V_2| = \lfloor (n-2)/2 \rfloor$, $V_1 \cap V_2 = \emptyset$, and let $E(\mathcal{H}) = E_1 \cup E_2$, where E_1 is the set of all subsets *A* of $V(\mathcal{H})$ of size $\lceil n/4 \rceil$ such that $|V_1 \cap A| = 1$ (and $|V_2 \cap A| = \lceil n/4 \rceil - 1$), and $E_2 = \{V_1\}$. Then \mathcal{H} has an exponential in *n* minimum degree, high connectivity and positive codegree of each pair of the vertices. But again, \mathcal{H} has no Berge hamiltonian cycle.

Our results

Translating Theorems 2 and 3 into the language of hypergraphs, we get

Theorem 2* [A. K., R. Luo and D. Zirlin]: Suppose $n \le \delta \le m \le 3\delta - 5$. If \mathcal{H} is a 2-connected *n*-vertex hypergraph with *m* edges and minimum degree at least δ , then \mathcal{H} has a hamiltonian Berge cycle.

Theorem 3* [A. K., R. L. and D. Z.]: Let $\delta \ge n$ and $m \le 2\delta - 1$. If an *n*-vertex hypergraph \mathcal{H} with *m* edges and minimum degree at least δ has no hamiltonian Berge cycle, then the incidence graph $I(\mathcal{H})$ is either $G_1(n)$ in Example 1 or $G_2(a, b)$ for some *a* and *b* with a + b = n in Example 2.

Super-pancyclic hypergraphs

A hypergraph \mathcal{H} is super-pancyclic if for every $A \subseteq V(\mathcal{H})$ with $|A| \ge 3$, \mathcal{H} has a Berge cycle whose set of base vertices is A.

A bipartite graph *G* with partition (X, Y) is *X*-super-pancyclic if for every $X' \subseteq X$ with $|X'| \ge 3$, *G* has a cycle *C* with $V(C) \cap X = X'$.

Theorem 4 [Hypergraph version of Jackson's Theorem]: Suppose $\delta \ge n$ and $\delta \ge (m + 2)/2$. Then every *n*-vertex hypergraph with *m* edges and minimum degree at least δ is super-pancyclic.

For a set $A \subset X$ in an X, Y-bigraph G, let $N_2(A) = \{y \in Y : |N(y) \cap A| \ge 2\}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

For a set $A \subset X$ in an X, Y-bigraph G, let $N_2(A) = \{y \in Y : |N(y) \cap A| \ge 2\}.$

Every X-super-pancyclic bipartite graph satisfies:

For each
$$A \subseteq X$$
 with $|A| \ge 3$, $|N_2(A)| \ge |A|$; (1)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

and

For each $A \subseteq X$ with $|A| \ge 3$, $G[A \cup N_2(A)]$ is 2-connected. (2) Theorem 5 [A. K., R. L. and D. Z.]: Let $\delta \ge n$ and $m \le 3\delta - 5$. If $G \in \mathcal{G}(n, m, \delta)$ satisfies (1) and (2), then G is *X*-super-pancyclic.

Theorem 6 [A. K., R. L. and D. Z.]: Let $\delta \ge n$ and $m \le 3\delta - 5$. If the incidence graph of an *n*-vertex hypergraph \mathcal{H} with *m* edges and minimum degree $\delta(\mathcal{H})$ satisfies (1) and (2), then \mathcal{H} is super-pancyclic.

Theorem 7 [M. Lavrov, A. K., R. L. and D. Z.]: Let $\delta \ge n$ and $n \le 6$. If $G \in \mathcal{G}(n, m, \delta)$ satisfies (1) and (2), then G is *X*-super-pancyclic.