Super-pancyclic hypergraphs and bipartite graphs

Alexandr Kostochka
University of Illinois at Urbana-Champaign, USA
and Sobolev Institute of Mathematics, Novosibirsk, Russia joint work with Misha Lavrov, Ruth Luo and Dara Zirlin

Hypergraphs

Paths and cycles in hypergraphs can be defined in many ways.

Hypergraphs

Paths and cycles in hypergraphs can be defined in many ways.
A Berge-path of length k in a multi-hypergraph \mathcal{H} is a set of k hyperedges $\left\{e_{1}, \ldots, e_{k}\right\}$ and a set of $k+1$ representative vertices $\left\{v_{1}, \ldots, v_{k+1}\right\}$ such that for each $1 \leq i \leq k$, $v_{i}, v_{i+1} \in e_{i}$.

A Berge-cycle of length k in a multi-hypergraph \mathcal{H} is a set of k hyperedges $\left\{e_{1}, \ldots, e_{k}\right\}$ and a set of k representative vertices $\left\{v_{1}, \ldots, v_{k}\right\}$ such that for each $i, v_{i}, v_{i+1} \in e_{i}$ (with indices modulo k).

Hypergraphs

Paths and cycles in hypergraphs can be defined in many ways.
A Berge-path of length k in a multi-hypergraph \mathcal{H} is a set of k hyperedges $\left\{e_{1}, \ldots, e_{k}\right\}$ and a set of $k+1$ representative vertices $\left\{v_{1}, \ldots, v_{k+1}\right\}$ such that for each $1 \leq i \leq k$, $v_{i}, v_{i+1} \in e_{i}$.

A Berge-cycle of length k in a multi-hypergraph \mathcal{H} is a set of k hyperedges $\left\{e_{1}, \ldots, e_{k}\right\}$ and a set of k representative vertices $\left\{v_{1}, \ldots, v_{k}\right\}$ such that for each $i, v_{i}, v_{i+1} \in e_{i}$ (with indices modulo k).

The incidence graph $I=I(\mathcal{H})$ is the bipartite graph with parts $V(\mathcal{H})$ and $E(\mathcal{H})$ where ve $\in E(I)$ iff $v \in e$ in \mathcal{H}.

Then \mathcal{H} has a cycle of length k iff I has a cycle of length $2 k$.

Jackson's results and conjecture

For integers n, m, and δ with $\delta \leq m$, let $\mathcal{G}(n, m, \delta)$ be the set of all bipartite graphs with partition $(X, Y) \mathrm{s}$. t.
$|X|=n \geq 2,|Y|=m$ and for every $x \in X, d(x) \geq \delta$.
Theorem 1 [Jackson, 1981]: If a graph $G \in \mathcal{G}(n, m, \delta)$ satisfies $n \leq \delta$ and $m \leq 2 \delta-2$, then it contains a cycle of length $2 n$, i.e., a cycle that covers X.

The bound $m \leq 2 \delta-2$ is exact.

Examples

Example 1: For $\delta=n$, let $G_{1}(n) \in \mathcal{G}(\delta, 2 \delta-1, \delta)$ be obtained from a copy of $K_{\delta, \delta-1}$ where every vertex in X has an additional neighbor of degree 1.

Example 2 : Fix $a \geq b>0$ such that $a+b=n$. Let $G_{2}(a, b) \in \mathcal{G}(n, 2 \delta-1, \delta)$ be the bipartite graph obtained from a copy H_{1} of $K_{a, \delta}$ and a copy H_{2} of $K_{b, \delta}$ by gluing together a vertex of H_{1} in a part of size δ with a vertex of H_{2} in a part of size δ.

Figure: Examples 1 and 2.

A conjecture

Conjecture 1 [Jackson, 1981]: If some $G \in \mathcal{G}(n, m, \delta)$ is 2-connected and \quad (i) $m \leq 3 \delta-5$ if $n \leq \delta$, or (ii) $m \leq\left\lfloor\frac{2(n-\alpha)}{\delta-1-\alpha}\right\rfloor(\delta-2)+1$ if $n \geq \delta$, where $\alpha=1$ if δ is even and $\alpha=0$ if δ is odd, then G has a cycle of length $2 \min (n, \delta)$.

Example 3 : For (i), fix positive integers $n_{1} \geq n_{2} \geq n_{3}$ such that $n_{1}+n_{2}+n_{3}=n$. Let $G_{3}\left(n_{1}, n_{2}, n_{3}\right) \in \mathcal{G}(n, 3 \delta-4, \delta)$ be the bipartite graph obtained from $K_{\delta-2, n_{1}} \cup K_{\delta-2, n_{2}} \cup K_{\delta-2, n_{3}}$ by adding two vertices a and b that are both adjacent to every vertex in the parts of size n_{1}, n_{2}, and n_{3}.

Figure: Example 3.

Our results

Theorem 2 [A. K., R. Luo and D. Zirlin]: Suppose $n \leq \delta \leq m \leq 3 \delta-5$. If $G \in \mathcal{G}(n, m, \delta)$ is 2-connected, then G contains a cycle of length $2 n$, i.e., a cycle that covers X.

Our results

Theorem 2 [A. K., R. Luo and D. Zirlin]: Suppose $n \leq \delta \leq m \leq 3 \delta-5$. If $G \in \mathcal{G}(n, m, \delta)$ is 2-connected, then G contains a cycle of length $2 n$, i.e., a cycle that covers X.

Theorem 3 [A. K., R. L. and D. Z.]: Let $\delta \geq n$ and $m \leq 2 \delta-1$. If $G \in \mathcal{G}(n, m, \delta)$ does not contain a cycle of length $2 n$, then either $G=G_{1}(n)$ in Example 1 or $G=G_{2}(a, b)$ for some a and b with $a+b=n$ in Example 2.

More examples

Example 4 : Let $V(\mathcal{H})=V_{1} \cup V_{2}$ where $\left|V_{1}\right|=\lfloor(n+1) / 2\rfloor$, $\left|V_{2}\right|=\lceil(n+1) / 2\rceil, V_{1} \cap V_{2}=\{v\}$, and let $E(\mathcal{H})$ consist of all sets of size $n / 4$ contained either in V_{1} or in V_{2}. Then this n /4-uniform hypergraph has an exponential in n minimum degree and no Hamiltonian cycle

Example 5 : Let $V(\mathcal{H})=V_{1} \cup V_{2}$ where $\left|V_{1}\right|=\lceil(n+2) / 2\rceil$, $\left|V_{2}\right|=\lfloor(n-2) / 2\rfloor, V_{1} \cap V_{2}=\emptyset$, and let $E(\mathcal{H})=E_{1} \cup E_{2}$, where E_{1} is the set of all subsets A of $V(\mathcal{H})$ of size $\lceil n / 4\rceil$ such that $\left|V_{1} \cap A\right|=1$ (and $\left|V_{2} \cap A\right|=\lceil n / 4\rceil-1$), and $E_{2}=\left\{V_{1}\right\}$. Then \mathcal{H} has an exponential in n minimum degree, high connectivity and positive codegree of each pair of the vertices. But again, \mathcal{H} has no Berge hamiltonian cycle.

Our results

Translating Theorems 2 and 3 into the language of hypergraphs, we get

Theorem 2* [A. K., R. Luo and D. Zirlin]: Suppose $n \leq \delta \leq m \leq 3 \delta-5$. If \mathcal{H} is a 2-connected n-vertex hypergraph with m edges and minimum degree at least δ, then \mathcal{H} has a hamiltonian Berge cycle.

Theorem 3* [A. K., R. L. and D. Z.]: Let $\delta \geq n$ and $m \leq 2 \delta-1$. If an n-vertex hypergraph \mathcal{H} with m edges and minimum degree at least δ has no hamiltonian Berge cycle, then the incidence graph $I(\mathcal{H})$ is either $G_{1}(n)$ in Example 1 or $G_{2}(a, b)$ for some a and b with $a+b=n$ in Example 2.

Super-pancyclic hypergraphs

A hypergraph \mathcal{H} is super-pancyclic if for every $A \subseteq V(\mathcal{H})$ with $|A| \geq 3, \mathcal{H}$ has a Berge cycle whose set of base vertices is A.

A bipartite graph G with partition (X, Y) is X-super-pancyclic if for every $X^{\prime} \subseteq X$ with $\left|X^{\prime}\right| \geq 3, G$ has a cycle C with $V(C) \cap X=X^{\prime}$.

Theorem 4 [Hypergraph version of Jackson's Theorem]: Suppose $\delta \geq n$ and $\delta \geq(m+2) / 2$. Then every n-vertex hypergraph with m edges and minimum degree at least δ is super-pancyclic.

For a set $A \subset X$ in an X, Y-bigraph G, let $N_{2}(A)=\{y \in Y:|N(y) \cap A| \geq 2\}$.

For a set $A \subset X$ in an X, Y-bigraph G, let $N_{2}(A)=\{y \in Y:|N(y) \cap A| \geq 2\}$.

Every X-super-pancyclic bipartite graph satisfies:

$$
\begin{equation*}
\text { For each } A \subseteq X \text { with }|A| \geq 3,\left|N_{2}(A)\right| \geq|A| ; \tag{1}
\end{equation*}
$$ and

For each $A \subseteq X$ with $|A| \geq 3, G\left[A \cup N_{2}(A)\right]$ is 2-connected.

Theorem 5 [A. K., R. L. and D. Z.]: Let $\delta \geq n$ and $m \leq 3 \delta-5$. If $G \in \mathcal{G}(n, m, \delta)$ satisfies (1) and (2), then G is X-super-pancyclic.

Theorem 6 [A. K., R. L. and D. Z.]: Let $\delta \geq n$ and $m \leq 3 \delta-5$. If the incidence graph of an n-vertex hypergraph \mathcal{H} with m edges and minimum degree $\delta(\mathcal{H})$ satisfies (1) and (2), then \mathcal{H} is super-pancyclic.

Theorem 7 [M. Lavrov, A. K., R. L. and D. Z.]: Let $\delta \geq n$ and $n \leq 6$. If $G \in \mathcal{G}(n, m, \delta)$ satisfies (1) and (2), then G is X-super-pancyclic.

