Nearly-linear increasing paths in edge-ordered graphs

Matija Bucić

ETH Zürich

Joint work with: Matthew Kwan, Alexey Pokrovskiy, Benny Sudakov, Tuan Tran and
Adam Zsolt Wagner

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of the complete graph K_{n} ?

A question of Chvátal and Komlós

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of the complete graph K_{n} ?

A question of Chvátal and Komlós

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of the complete graph K_{n} ?

A question of Chvátal and Komlós

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of the complete graph K_{n} ?

A question of Chvátal and Komlós

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of the complete graph K_{n} ?

A question of Chvátal and Komlós

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of the complete graph K_{n} ?

A question of Chvátal and Komlós

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of the complete graph K_{n} ?

A question of Chvátal and Komlós

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of the complete graph K_{n} ?

A question of Chvátal and Komlós

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of the complete graph K_{n} ?

A question of Chvátal and Komlós

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of the complete graph K_{n} ?

A question of Chvátal and Komlós

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of the complete graph K_{n} ?

A question of Chvátal and Komlós

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of the complete graph K_{n} ?

- Replace "increasing path" with "increasing trail" (Chvatal, Komlós)

A question of Chvátal and Komlós

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of the complete graph K_{n} ?

- Replace "increasing path" with "increasing trail" (Chvatal, Komlós)
- Solved by Graham and Kleitman

A question of Chvátal and Komlós

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of the complete graph K_{n} ?

- Replace "increasing path" with "increasing trail" (Chvatal, Komlós)
- Solved by Graham and Kleitman
- What happens for the random ordering (Lavrov, Loh)

A question of Chvátal and Komlós

Question (Chvátal and Komlós, 1971)

How long an increasing path can one always find in any edge-ordering of the complete graph K_{n} ?

- Replace "increasing path" with "increasing trail" (Chvatal, Komlós)
- Solved by Graham and Kleitman
- What happens for the random ordering (Lavrov, Loh)
- Solved by Martinsson for paths and Angel, Ferber, Sudakov, Tassion for trails

Increasing paths

Definition

Let $f\left(K_{n}\right)$ denote the largest k such that every edge-ordering of K_{n} has an increasing path of length k.

Increasing paths

Definition

Let $f\left(K_{n}\right)$ denote the largest k such that every edge-ordering of K_{n} has an increasing path of length k.

- Upper bound:

Increasing paths

Definition

Let $f\left(K_{n}\right)$ denote the largest k such that every edge-ordering of K_{n} has an increasing path of length k.

- Upper bound:

Calderbank, Chung and Sturtevant: $f\left(K_{n}\right) \leq(1 / 2+o(1)) n$.

Increasing paths

Definition

Let $f\left(K_{n}\right)$ denote the largest k such that every edge-ordering of K_{n} has an increasing path of length k.

- Upper bound:

Calderbank, Chung and Sturtevant: $f\left(K_{n}\right) \leq(1 / 2+o(1)) n$. Improving on previous results by: Graham and Kleitman; Rödl; Alspach, Heinrich and Graham; Roditty.

Increasing paths

Definition

Let $f\left(K_{n}\right)$ denote the largest k such that every edge-ordering of K_{n} has an increasing path of length k.

- Upper bound:

Calderbank, Chung and Sturtevant: $f\left(K_{n}\right) \leq(1 / 2+o(1)) n$. Improving on previous results by: Graham and Kleitman; Rödl; Alspach, Heinrich and Graham; Roditty.

- Lower bound:

Increasing paths

Definition

Let $f\left(K_{n}\right)$ denote the largest k such that every edge-ordering of K_{n} has an increasing path of length k.

- Upper bound:

Calderbank, Chung and Sturtevant: $f\left(K_{n}\right) \leq(1 / 2+o(1)) n$. Improving on previous results by: Graham and Kleitman; Rödl; Alspach, Heinrich and Graham; Roditty.

- Lower bound:

Milans (2017): $f\left(K_{n}\right) \geq n^{2 / 3-o(1)}$

Increasing paths

Definition

Let $f\left(K_{n}\right)$ denote the largest k such that every edge-ordering of K_{n} has an increasing path of length k.

- Upper bound:

Calderbank, Chung and Sturtevant: $f\left(K_{n}\right) \leq(1 / 2+o(1)) n$.
Improving on previous results by: Graham and Kleitman; Rödl; Alspach, Heinrich and Graham; Roditty.

- Lower bound:

Milans (2017): $f\left(K_{n}\right) \geq n^{2 / 3-o(1)}$
First improvement of the \sqrt{n} bound by Graham and Kleitman (1973);

Increasing paths

Definition

Let $f\left(K_{n}\right)$ denote the largest k such that every edge-ordering of K_{n} has an increasing path of length k.

- Upper bound:

Calderbank, Chung and Sturtevant: $f\left(K_{n}\right) \leq(1 / 2+o(1)) n$. Improving on previous results by: Graham and Kleitman; Rödl; Alspach, Heinrich and Graham; Roditty.

- Lower bound:

Milans (2017): $f\left(K_{n}\right) \geq n^{2 / 3-o(1)}$
First improvement of the \sqrt{n} bound by Graham and Kleitman (1973);
Theorem 1 (B., Kwan, Pokrovskiy, Sudakov, Tran, Wagner)

$$
f\left(K_{n}\right) \geq n^{1-o(1)} .
$$

Altitude of a graph

Definition

The altitude $f(G)$ of a graph G is defined as the largest k such that every edge-ordering of G has an increasing path of length k.

Altitude of a graph

Definition

The altitude $f(G)$ of a graph G is defined as the largest k such that every edge-ordering of G has an increasing path of length k.

- Rödl: $f(G)=\Omega(\sqrt{d(G)})$.

Altitude of a graph

Definition

The altitude $f(G)$ of a graph G is defined as the largest k such that every edge-ordering of G has an increasing path of length k.

- Rödl: $f(G)=\Omega(\sqrt{d(G)})$.
- Milans: $f(G)=\Omega\left(d(G) /\left(n^{1 / 3+o(1)}\right)\right)$

Altitude of a graph

Definition

The altitude $f(G)$ of a graph G is defined as the largest k such that every edge-ordering of G has an increasing path of length k.

- Rödl: $f(G)=\Omega(\sqrt{d(G)})$.
- Milans: $f(G)=\Omega\left(d(G) /\left(n^{1 / 3+o(1)}\right)\right)$

Theorem 2 (B., Kwan, Pokrovskiy, Sudakov, Tran, Wagner)

Let G be a graph with n vertices and average degree $d \geq 2$. Then

$$
f(G) \geq \frac{d}{2^{O(\sqrt{\log d \log \log n})}}
$$

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1					
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1					
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1					
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1					
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$				
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$				
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$				
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$				
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$			
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$			
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$			
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$			
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$		
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$		
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$		
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$		
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	
i V	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	
i V	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i V	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2					
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
$i v$	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2	$v_{1} v_{3}$				
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2	$v_{1} v_{3}$				
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2	$v_{1} v_{3}$				
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2	$v_{1} v_{3}$				
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2	$v_{1} v_{3}$	$v_{2} v_{3}$			
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2	$v_{1} v_{3}$	$v_{2} v_{3}$			
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2	$v_{1} v_{3}$	$v_{2} v_{3}$			
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2	$v_{1} v_{3}$	$v_{2} v_{3}$			
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		
1	v_{1}	v_{4}	v_{2}	v_{4}	v_{3}
v_{4}	$v_{4} v_{5}$	$v_{5} v_{1}$			
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

\vdots					
3					
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

Height tables

Definition

A height table of an edge ordered graph G with vertex set $[n]$ is a partially filled array indexed by $\mathbb{N} \times V(G)$, constructed as follows:

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}

- There are $|E(G)|$ non-empty positions.

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $h_{G}(e)$, is the row index of its position

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $h_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j}

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $\mathrm{h}_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j} - column vertex.

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $\mathrm{h}_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j} - column vertex.

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $\mathrm{h}_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j} - column vertex.

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $h_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j} - column vertex.
- If edge $e=v_{i} v_{j}$ is entered at position $\left(h, v_{i}\right)$ all positions $\left(a, v_{i}\right),\left(a, v_{j}\right)$ for $a<h$ are non-empty

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $\mathrm{h}_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j} - column vertex.
- If edge $e=v_{i} v_{j}$ is entered at position $\left(h, v_{i}\right)$ all positions $\left(a, v_{i}\right),\left(a, v_{j}\right)$ for $a<h$ are non-empty

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $h_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j} - column vertex.
- If edge $e=v_{i} v_{j}$ is entered at position $\left(h, v_{i}\right)$ all positions $\left(a, v_{i}\right),\left(a, v_{j}\right)$ for $a<h$ are non-empty

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $h_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j} - column vertex.
- If edge $e=v_{i} v_{j}$ is entered at position $\left(h, v_{i}\right)$ all positions $\left(a, v_{i}\right),\left(a, v_{j}\right)$ for $a<h$ are non-empty

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $h_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j} - column vertex.
- If edge $e=v_{i} v_{j}$ is entered at position $\left(h, v_{i}\right)$ all positions $\left(a, v_{i}\right),\left(a, v_{j}\right)$ for $a<h$ are non-empty and contain edges larger than e.

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $h_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j} - column vertex.
- If edge $e=v_{i} v_{j}$ is entered at position $\left(h, v_{i}\right)$ all positions $\left(a, v_{i}\right),\left(a, v_{j}\right)$ for $a<h$ are non-empty and contain edges larger than e.

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $h_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j} - column vertex.
- If edge $e=v_{i} v_{j}$ is entered at position $\left(h, v_{i}\right)$ all positions $\left(a, v_{i}\right),\left(a, v_{j}\right)$ for $a<h$ are non-empty and contain edges larger than e.

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $\mathrm{h}_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j}-column vertex.
- If edge $e=v_{i} v_{j}$ is entered at position $\left(h, v_{i}\right)$ all positions $\left(a, v_{i}\right),\left(a, v_{j}\right)$ for $a<h$ are non-empty and contain edges larger than e.

Any such position was considered before (h, v_{i}).
At that point edge $v_{i} v_{j}$ was unused.
Since $v_{i} v_{j}$ was not entered, there had to be a larger edge available.

Basic properties of height tables

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $\mathrm{h}_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j}-column vertex.
- If edge $e=v_{i} v_{j}$ is entered at position $\left(h, v_{i}\right)$ all positions $\left(a, v_{i}\right),\left(a, v_{j}\right)$ for $a<h$ are non-empty and contain edges larger than e.

Definition

A vertex w is called an extender of an edge vu, entered at position (h, v), if $u w$ is an edge entered at position (a, u) for some $a<h$.

Basic properties of height tables

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $\mathrm{h}_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j}-column vertex.
- If edge $e=v_{i} v_{j}$ is entered at position $\left(h, v_{i}\right)$ all positions $\left(a, v_{i}\right),\left(a, v_{j}\right)$ for $a<h$ are non-empty and contain edges larger than e.

Definition

A vertex w is called an extender of an edge vu, entered at position (h, v), if $u w$ is an edge entered at position (a, u) for some $a<h$.

Basic properties of height tables

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $\mathrm{h}_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j}-column vertex.
- If edge $e=v_{i} v_{j}$ is entered at position $\left(h, v_{i}\right)$ all positions $\left(a, v_{i}\right),\left(a, v_{j}\right)$ for $a<h$ are non-empty and contain edges larger than e.

Definition

A vertex w is called an extender of an edge vu, entered at position (h, v), if $u w$ is an edge entered at position (a, u) for some $a<h$.

Basic properties of height tables

3	$v_{1} v_{2}$				
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{5}$		$v_{5} v_{2}$
1	$v_{1} v_{4}$	$v_{2} v_{4}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{1}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}

- There are $|E(G)|$ non-empty positions.
- The height of e, denoted by $\mathrm{h}_{G}(e)$, is the row index of its position
- Any edge $v_{i} v_{j}$ is entered into column v_{i} or column v_{j}-column vertex.
- If edge $e=v_{i} v_{j}$ is entered at position $\left(h, v_{i}\right)$ all positions $\left(a, v_{i}\right),\left(a, v_{j}\right)$ for $a<h$ are non-empty and contain edges larger than e.

Definition

A vertex w is called an extender of an edge vu, entered at position (h, v), if $u w$ is an edge entered at position (a, u) for some $a<h$.

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.
- Repeat, let u_{i+1} be the highest extender of $u_{i-1} u_{i}$

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.
- Repeat, let u_{i+1} be the highest extender of $u_{i-1} u_{i}$

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.
- Repeat, let u_{i+1} be the highest extender of $u_{i-1} u_{i}$

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.
- Repeat, let u_{i+1} be the highest extender of $u_{i-1} u_{i}$
- After $d / 2$ iterations we obtain an increasing path $u_{1} \ldots u_{d / 2}$.

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.
- Repeat, let u_{i+1} be the highest extender of $u_{i-1} u_{i}$
- After $d / 2$ iterations we obtain an increasing path $u_{1} \ldots u_{d / 2}$. Not quite.

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.
- Repeat, let u_{i+1} be the highest extender of $u_{i-1} u_{i}$
- After $d / 2$ iterations we obtain an increasing path $u_{1} \ldots u_{d / 2}$. Not quite.

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.
- Repeat, let u_{i+1} be the highest extender of $u_{i-1} u_{i}$
- After $d / 2$ iterations we obtain an increasing path $u_{1} \ldots u_{d / 2}$. Not quite.

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.
- Repeat, let u_{i+1} be the highest extender of $u_{i-1} u_{i}$
- After $d / 2$ iterations we obtain an increasing trail $u_{1} \ldots u_{d / 2}$.

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.
- Repeat, let u_{i+1} be the highest extender of $u_{i-1} u_{i}$ distinct to all u_{j}

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.
- Repeat, let u_{i+1} be the highest extender of $u_{i-1} u_{i}$ distinct to all u_{j}

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.
- Repeat, let u_{i+1} be the highest extender of $u_{i-1} u_{i}$ distinct to all u_{j}

Application of height tables

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.
- Repeat, let u_{i+1} be the highest extender of $u_{i-1} u_{i}$ distinct to all u_{j}
- $\mathrm{h}_{G}\left(u_{i} u_{i+1}\right) \geq \mathrm{h}_{G}\left(u_{i-1} u_{i}\right)-i$

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
1	v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Theorem (Rödl)

In any edge ordered graph there is an increasing path of length $\sqrt{d(G)}$.

Proof.

- There is an edge $u_{1} u_{2}$ of height at least $|E(G)| / n=d(G) / 2$.
- Let u_{3} be its highest extender.
- Repeat, let u_{i+1} be the highest extender of $u_{i-1} u_{i}$ distinct to all u_{j}
- $\mathrm{h}_{G}\left(u_{i} u_{i+1}\right) \geq \mathrm{h}_{G}\left(u_{i-1} u_{i}\right)-i$
- Repeat as long as $d / 2-1-\ldots-i=d / 2-\binom{i}{2}>0 \Leftrightarrow \sqrt{d}>i$.

Our new ingredients

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v_{1}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Our new ingredients

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v_{1}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

5							
4	$v_{1} v_{4}$	$v_{2} v_{4}$					
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$			
2	$v_{1} v_{3}$	$v_{2} v_{3}$		$v_{4} v_{5}$			$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$		$v_{4} v_{6}$		$v_{6} v_{7}$	$v_{7} v_{3}$
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}

Our new ingredients

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v_{1}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

5							
4	$v_{1} v_{4}$	$v_{2} v_{4}$					
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$			
2							$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$		$v_{4} v_{6}$		$v_{6} v_{7}$	
i / v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}

Our new ingredients

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v_{1}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

5							
4							
3	$v_{1} v_{4}$	$v_{2} v_{4}$					
2	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$			
1	$v_{1} v_{6}$	$v_{2} v_{6}$		$v_{4} v_{6}$		$v_{6} v_{7}$	$v_{7} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}

Our new ingredients

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v_{1}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

5							
4							
3	$v_{1} v_{4}$	$v_{2} v_{4}$					
2	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$			
1	$v_{1} v_{6}$	$v_{2} v_{6}$		$v_{4} v_{6}$		$v_{6} v_{7}$	$v_{7} v_{1}$
i/v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}

Lemma (Dropping lemma)

Let G be an ordered graph, $U \subseteq V(G), x y \in E(G): h_{G}(x y)>m=\sqrt{\Delta(G)|U|}$.

Our new ingredients

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v_{1}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

5							
4							
3	$v_{1} v_{4}$	$v_{2} v_{4}$					
2	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$			
1	$v_{1} v_{6}$	$v_{2} v_{6}$		$v_{4} v_{6}$		$v_{6} v_{7}$	$v_{7} v_{1}$
i	v_{1}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Lemma (Dropping lemma)

Let G be an ordered graph, $U \subseteq V(G), x y \in E(G): h_{G}(x y)>m=\sqrt{\Delta(G)|U|}$. Then $\exists z, w \in V(G) \backslash U: x y z w$ is an increasing path

Our new ingredients

5	$v_{1} v_{5}$						
4	$v_{1} v_{4}$	$v_{2} v_{4}$			$v_{5} v_{2}$		
3	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$	$v_{5} v_{7}$		
2	$v_{1} v_{3}$	$v_{2} v_{3}$	$v_{3} v_{4}$	$v_{4} v_{5}$	$v_{5} v_{3}$		$v_{7} v_{1}$
1	$v_{1} v_{6}$	$v_{2} v_{6}$	$v_{3} v_{6}$	$v_{4} v_{6}$	$v_{5} v_{6}$	$v_{6} v_{7}$	$v_{7} v_{3}$
i	v_{1}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

5							
4							
3	$v_{1} v_{4}$	$v_{2} v_{4}$					
2	$v_{1} v_{2}$	$v_{2} v_{7}$		$v_{4} v_{7}$			
1	$v_{1} v_{6}$	$v_{2} v_{6}$		$v_{4} v_{6}$		$v_{6} v_{7}$	$v_{7} v_{1}$
i	v_{1}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}

Lemma (Dropping lemma)

Let G be an ordered graph, $U \subseteq V(G), x y \in E(G): h_{G}(x y)>m=\sqrt{\Delta(G)|U|}$. Then $\exists z, w \in V(G) \backslash U: x y z w$ is an increasing path and

$$
\mathrm{h}_{G-u}(z w) \geq \mathrm{h}_{G}(x y)-m .
$$

Regularisation lemma

Question

Given a graph G with average degree d can we find an almost regular subgraph whose degree is only slightly smaller than d?

Regularisation lemma

Question

Given a graph G with average degree d can we find an almost regular subgraph whose degree is only slightly smaller than d?

Lemma

Every graph G has a (possibly non-induced) subgraph whose all degrees lie in the range $\left[d^{\prime}, 2 d^{\prime}\right]$, where $d^{\prime} \approx d(G) / \log n$.

Regularisation lemma

Question

Given a graph G with average degree d can we find an almost regular subgraph whose degree is only slightly smaller than d?

Lemma

Every graph G has a (possibly non-induced) subgraph whose all degrees lie in the range $\left[d^{\prime}, 2 d^{\prime}\right]$, where $d^{\prime} \approx d(G) / \log n$.

Remark: Let $\varepsilon>0$, then there exists an n vertex graph G with average degree $d(G)=n^{\varepsilon}$ for which this result is tight up to a constant factor.

Theorem

Let G be an ordered graph, $e \in E(G)$ an edge with $\mathrm{h}_{G}(e)>a$. Then there is an increasing path P starting with e, having length at least

$$
a^{1-1 / t} /(\log n)^{2 t}
$$

such that $\mathrm{h}_{G}(f) \geq \mathrm{h}_{G}(e)$ - a for every $f \in E(P)$.

Theorem

Let G be an ordered graph, $e \in E(G)$ an edge with $\mathrm{h}_{G}(e)>a$. Then there is an increasing path P starting with e, having length at least

$$
a^{3 / 4} /(\log n)^{2}
$$

such that $\mathrm{h}_{G}(f) \geq \mathrm{h}_{G}(e)$ - a for every $f \in E(P)$.

Proof strategy

Theorem

Let G be an ordered graph, $e \in E(G)$ an edge with $\mathrm{h}_{G}(e)>a$. Then there is an increasing path P starting with e, having length at least

$$
a^{3 / 4} /(\log n)^{2}
$$

such that $\mathrm{h}_{G}(f) \geq \mathrm{h}_{G}(e)$ - a for every $f \in E(P)$.

- We assume the theorem is true with paths of length $a^{2 / 3}$.

Proof strategy

Theorem

Let G be an ordered graph, $e \in E(G)$ an edge with $\mathrm{h}_{G}(e)>a$. Then there is an increasing path P starting with e, having length at least

$$
a^{3 / 4} /(\log n)^{2}
$$

such that $\mathrm{h}_{G}(f) \geq \mathrm{h}_{G}(e)$ - a for every $f \in E(P)$.

- We assume the theorem is true with paths of length $a^{2 / 3}$.
- We find a dense almost regular subgraph H of G among extenders of e.

Proof strategy

Theorem

Let G be an ordered graph, $e \in E(G)$ an edge with $\mathrm{h}_{G}(e)>a$. Then there is an increasing path P starting with e, having length at least

$$
a^{3 / 4} /(\log n)^{2}
$$

such that $\mathrm{h}_{G}(f) \geq \mathrm{h}_{G}(e)-$ a for every $f \in E(P)$.

- We assume the theorem is true with paths of length $a^{2 / 3}$.
- We find a dense almost regular subgraph H of G among extenders of e.
- We find a long increasing path within H.

Finding a dense almost regular subgraph of extenders

- Let S_{1} be the set of $a / \log n$ highest extenders of e.

- Let S_{1} be the set of $a / \log n$ highest extenders of e.

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}
- Let k be the smallest index such that $\left|S_{i}\right| \leq 2\left|S_{i-1}\right|$.

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}
- Let k be the smallest index such that $\left|S_{i}\right| \leq 2\left|S_{i-1}\right|$.

$$
\left|S_{k}\right| \leq 2\left|S_{k-1}\right|
$$

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}
- Let k be the smallest index such that $\left|S_{i}\right| \leq 2\left|S_{i-1}\right|$.

$$
\left|S_{k}\right| \leq 2\left|S_{k-1}\right|
$$

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}
- Let k be the smallest index such that $\left|S_{i}\right| \leq 2\left|S_{i-1}\right|$. Notice that $k \leq \log n$.

$$
\left|S_{k}\right| \leq 2\left|S_{k-1}\right|
$$

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}
- Let k be the smallest index such that $\left|S_{i}\right| \leq 2\left|S_{i-1}\right|$. Notice that $k \leq \log n$.
- Consider the subgraph G^{\prime} of G induced by $S_{k-1} \cup S_{k}$.

$$
\left|S_{k}\right| \leq 2\left|S_{k-1}\right|
$$

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}
- Let k be the smallest index such that $\left|S_{i}\right| \leq 2\left|S_{i-1}\right|$. Notice that $k \leq \log n$.
- Consider the subgraph G^{\prime} of G induced by $S_{k-1} \cup S_{k}$. By construction every vertex in S_{k-1} has degree at least $a / \log n$ in G^{\prime}.

$$
\left|S_{k}\right| \leq 2\left|S_{k-1}\right|
$$

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}
- Let k be the smallest index such that $\left|S_{i}\right| \leq 2\left|S_{i-1}\right|$. Notice that $k \leq \log n$.
- Consider the subgraph G^{\prime} of G induced by $S_{k-1} \cup S_{k}$. By construction every vertex in S_{k-1} has degree at least $a / \log n$ in G^{\prime}. Therefore,

$$
d\left(G^{\prime}\right) \geq a /(6 \log n)
$$

$$
\left|S_{k}\right| \leq 2\left|S_{k-1}\right|
$$

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}
- Let k be the smallest index such that $\left|S_{i}\right| \leq 2\left|S_{i-1}\right|$. Notice that $k \leq \log n$.
- Consider the subgraph G^{\prime} of G induced by $S_{k-1} \cup S_{k}$. By construction every vertex in S_{k-1} has degree at least $a / \log n$ in G^{\prime}. Therefore,

$$
d\left(G^{\prime}\right) \geq a /(6 \log n)
$$

- Apply regularisation lemma to get an almost regular subgraph H of G^{\prime} :

$$
a /(6 \log n)^{2} \leq d(H) \leq \Delta(H) \leq 2 d(H)
$$

$$
\left|S_{k}\right| \leq 2\left|S_{k-1}\right|
$$

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}
- Let k be the smallest index such that $\left|S_{i}\right| \leq 2\left|S_{i-1}\right|$. Notice that $k \leq \log n$.
- Consider the subgraph G^{\prime} of G induced by $S_{k-1} \cup S_{k}$. By construction every vertex in S_{k-1} has degree at least $a / \log n$ in G^{\prime}. Therefore,

$$
d\left(G^{\prime}\right) \geq a /(6 \log n)
$$

- Apply regularisation lemma to get an almost regular subgraph H of G^{\prime} :

$$
a /(6 \log n)^{2} \leq d(H) \leq \Delta(H) \leq 2 d(H)
$$

$$
\left|S_{k}\right| \leq 2\left|S_{k-1}\right|
$$

- Let S_{1} be the set of $a / \log n$ highest extenders of e. Let S_{i} be the collection of a/ $\log n$ highest extenders of any edge in S_{i-1}
- Let k be the smallest index such that $\left|S_{i}\right| \leq 2\left|S_{i-1}\right|$. Notice that $k \leq \log n$.
- Consider the subgraph G^{\prime} of G induced by $S_{k-1} \cup S_{k}$. By construction every vertex in S_{k-1} has degree at least $a / \log n$ in G^{\prime}. Therefore,

$$
d\left(G^{\prime}\right) \geq a /(6 \log n)
$$

- Apply regularisation lemma to get an almost regular subgraph H of G^{\prime} :

$$
a /(6 \log n)^{2} \leq d(H) \leq \Delta(H) \leq 2 d(H)
$$

Finding long increasing paths in almost regular dense graphs

Finding long increasing paths in almost regular dense graphs

- Apply induction within H using only top $a^{3 / 4}$ rows.

$$
h>a
$$

Finding long increasing paths in almost regular dense graphs

- Apply induction within H using only top $a^{3 / 4}$ rows.

Finding long increasing paths in almost regular dense graphs

- Apply induction within H using only top $a^{3 / 4}$ rows. We get an increasing path of length $\left(a^{3 / 4}\right)^{2 / 3}=a^{1 / 2}$.

Finding long increasing paths in almost regular dense graphs

- Apply induction within H using only top $a^{3 / 4}$ rows. We get an increasing path of length $\left(a^{3 / 4}\right)^{2 / 3}=a^{1 / 2}$.

- Apply induction within H using only top $a^{3 / 4}$ rows. We get an increasing path of length $\left(a^{3 / 4}\right)^{2 / 3}=a^{1 / 2}$.
- Remove all but its last two vertices.

Finding long increasing paths in almost regular dense graphs

- Apply induction within H using only top $a^{3 / 4}$ rows. We get an increasing path of length $\left(a^{3 / 4}\right)^{2 / 3}=a^{1 / 2}$.
- Remove all but its last two vertices.

- Apply induction within H using only top $a^{3 / 4}$ rows. We get an increasing path of length $\left(a^{3 / 4}\right)^{2 / 3}=a^{1 / 2}$.
- Remove all but its last two vertices.

- Apply induction within H using only top $a^{3 / 4}$ rows. We get an increasing path of length $\left(a^{3 / 4}\right)^{2 / 3}=a^{1 / 2}$.
- Remove all but its last two vertices. Dropping lemma shows the last edge falls at most $a^{3 / 4}$,

- Apply induction within H using only top $a^{3 / 4}$ rows. We get an increasing path of length $\left(a^{3 / 4}\right)^{2 / 3}=a^{1 / 2}$.
- Remove all but its last two vertices. Dropping lemma shows the last edge falls at most $a^{3 / 4}$, it applies as

$$
\begin{aligned}
\left(a^{3 / 4}\right)^{2} & >|P| \Delta(H) \\
& =a^{1 / 2} \cdot a=a^{3 / 2}
\end{aligned}
$$

- Apply induction within H using only top $a^{3 / 4}$ rows. We get an increasing path of length $\left(a^{3 / 4}\right)^{2 / 3}=a^{1 / 2}$.
- Remove all but its last two vertices. Dropping lemma shows the last edge falls at most $a^{3 / 4}$, it applies as

$$
\begin{aligned}
\left(a^{3 / 4}\right)^{2} & >|P| \Delta(H) \\
& =a^{1 / 2} \cdot a=a^{3 / 2}
\end{aligned}
$$

- Repeat $a / a^{3 / 4}=a^{1 / 4}$ times

- Apply induction within H using only top $a^{3 / 4}$ rows. We get an increasing path of length $\left(a^{3 / 4}\right)^{2 / 3}=a^{1 / 2}$.
- Remove all but its last two vertices. Dropping lemma shows the last edge falls at most $a^{3 / 4}$, it applies as

$$
\begin{aligned}
\left(a^{3 / 4}\right)^{2} & >|P| \Delta(H) \\
& =a^{1 / 2} \cdot a=a^{3 / 2}
\end{aligned}
$$

- Repeat $a / a^{3 / 4}=a^{1 / 4}$ times

- Apply induction within H using only top $a^{3 / 4}$ rows. We get an increasing path of length $\left(a^{3 / 4}\right)^{2 / 3}=a^{1 / 2}$.
- Remove all but its last two vertices. Dropping lemma shows the last edge falls at most $a^{3 / 4}$, it applies as

$$
\begin{aligned}
\left(a^{3 / 4}\right)^{2} & >|P| \Delta(H) \\
& =a^{1 / 2} \cdot a=a^{3 / 2}
\end{aligned}
$$

- Repeat $a / a^{3 / 4}=a^{1 / 4}$ times

- Apply induction within H using only top $a^{3 / 4}$ rows. We get an increasing path of length $\left(a^{3 / 4}\right)^{2 / 3}=a^{1 / 2}$.
- Remove all but its last two vertices. Dropping lemma shows the last edge falls at most $a^{3 / 4}$, it applies as

$$
\begin{aligned}
\left(a^{3 / 4}\right)^{2} & >|P| \Delta(H) \\
& =a^{1 / 2} \cdot a=a^{3 / 2}
\end{aligned}
$$

- Repeat $a / a^{3 / 4}=a^{1 / 4}$ times
- Apply induction within H using only top $a^{3 / 4}$ rows. We get an increasing path of length $\left(a^{3 / 4}\right)^{2 / 3}=a^{1 / 2}$.
- Remove all but its last two vertices. Dropping lemma shows the last edge falls at most $a^{3 / 4}$, it applies as

$$
\begin{aligned}
\left(a^{3 / 4}\right)^{2} & >|P| \Delta(H) \\
& =a^{1 / 2} \cdot a=a^{3 / 2}
\end{aligned}
$$

- Repeat $a / a^{3 / 4}=a^{1 / 4}$ times

- Apply induction within H using only top $a^{3 / 4}$ rows. We get an increasing path of length $\left(a^{3 / 4}\right)^{2 / 3}=a^{1 / 2}$.
- Remove all but its last two vertices. Dropping lemma shows the last edge falls at most $a^{3 / 4}$, it applies as

$$
\begin{aligned}
\left(a^{3 / 4}\right)^{2} & >|P| \Delta(H) \\
& =a^{1 / 2} \cdot a=a^{3 / 2}
\end{aligned}
$$

- Repeat $a / a^{3 / 4}=a^{1 / 4}$ times

- Apply induction within H using only top $a^{3 / 4}$ rows. We get an increasing path of length $\left(a^{3 / 4}\right)^{2 / 3}=a^{1 / 2}$.
- Remove all but its last two vertices. Dropping lemma shows the last edge falls at most $a^{3 / 4}$, it applies as

$$
\begin{aligned}
\left(a^{3 / 4}\right)^{2} & >|P| \Delta(H) \\
& =a^{1 / 2} \cdot a=a^{3 / 2}
\end{aligned}
$$

- Repeat $a / a^{3 / 4}=a^{1 / 4}$ times

- Apply induction within H using only top $a^{3 / 4}$ rows. We get an increasing path of length $\left(a^{3 / 4}\right)^{2 / 3}=a^{1 / 2}$.
- Remove all but its last two vertices. Dropping lemma shows the last edge falls at most $a^{3 / 4}$, it applies as

$$
\begin{aligned}
\left(a^{3 / 4}\right)^{2} & >|P| \Delta(H) \\
& =a^{1 / 2} \cdot a=a^{3 / 2}
\end{aligned}
$$

- Repeat $a / a^{3 / 4}=a^{1 / 4}$ times to obtain a path of length $a^{1 / 4} \cdot a^{1 / 2}=a^{3 / 4}$.

Concluding remarks

Concluding remarks

- Does any edge ordering of K_{n} permits a linear increasing path, or even paths of length $(1 / 2-o(1)) n$?

Concluding remarks

- Does any edge ordering of K_{n} permits a linear increasing path, or even paths of length $(1 / 2-o(1)) n$?
- Can one improve the bound of $\Omega(\sqrt{d})$ for increasing paths in n vertex graphs with average degree d when d is very small compared to n ?

Concluding remarks

- Does any edge ordering of K_{n} permits a linear increasing path, or even paths of length $(1 / 2-o(1)) n$?
- Can one improve the bound of $\Omega(\sqrt{d})$ for increasing paths in n vertex graphs with average degree d when d is very small compared to n ?

Proposition

Let G be an edge-ordered graph with average degree d, such that every set of at most εd vertices induces at most $(1 / 2-\varepsilon) d$ edges. Then G has an increasing path of length εd.

