When Ramsey met Brown, Erdős and Sós

Mykhaylo Tyomkyn

Caltech

Joint work with Asaf Shapira

Background and motivation

Background and motivation

Question(Brown-Erdős-Sós '73)

For fixed $r \geq 3, v$ and e, what is $f_{r}(n, v, e)$ - the largest size of an n-vertex r-uniform hypergraph without a ' (v, e)-configuration', i.e. a set of e edges spanning at most v vertices?

Background and motivation

Question(Brown-Erdős-Sós '73)

For fixed $r \geq 3, v$ and e, what is $f_{r}(n, v, e)$ - the largest size of an n-vertex r-uniform hypergraph without a ' (v, e)-configuration', i.e. a set of e edges spanning at most v vertices?
E.g. $f_{3}(n, 4,4)$: Turán problem for $K_{4}^{(3)}$,

Background and motivation

Question(Brown-Erdős-Sós '73)

For fixed $r \geq 3, v$ and e, what is $f_{r}(n, v, e)$ - the largest size of an n-vertex r-uniform hypergraph without a ' (v, e)-configuration', i.e. a set of e edges spanning at most v vertices?
E.g. $f_{3}(n, 4,4)$: Turán problem for $K_{4}^{(3)}, f_{2}\left(n, v, v^{2} / 4\right)$: KST.

Background and motivation

Question(Brown-Erdős-Sós '73)

For fixed $r \geq 3, v$ and e, what is $f_{r}(n, v, e)$ - the largest size of an n-vertex r-uniform hypergraph without a ' (v, e)-configuration', i.e. a set of e edges spanning at most v vertices?
E.g. $f_{3}(n, 4,4)$: Turán problem for $K_{4}^{(3)}, f_{2}\left(n, v, v^{2} / 4\right)$: KST.

Theorem(BES)

For $r, e \geq 3$ and $v \geq r+1$,

$$
\Omega\left(n^{\frac{e r-v}{e-1}}\right)=f_{r}(n, v, e)=O\left(n^{\left.\frac{e r-v}{e-1}\right\rceil}\right) .
$$

Background and motivation

Question(Brown-Erdős-Sós '73)

For fixed $r \geq 3, v$ and e, what is $f_{r}(n, v, e)$ - the largest size of an n-vertex r-uniform hypergraph without a ' (v, e)-configuration', i.e. a set of e edges spanning at most v vertices?
E.g. $f_{3}(n, 4,4)$: Turán problem for $K_{4}^{(3)}, f_{2}\left(n, v, v^{2} / 4\right)$: KST.

Theorem(BES)

For $r, e \geq 3$ and $v \geq r+1$,

$$
\Omega\left(n^{\frac{e r-v}{e-1}}\right)=f_{r}(n, v, e)=O\left(n^{\left.\frac{e r-v}{e-1}\right\rceil}\right) .
$$

So, $f_{r}(n, e(r-k)+k, e)=\Theta\left(n^{k}\right)$, for any integer $2 \leq k<r$.

Background and motivation

Question(Brown-Erdős-Sós '73)

For fixed $r \geq 3, v$ and e, what is $f_{r}(n, v, e)$ - the largest size of an n-vertex r-uniform hypergraph without a ' (v, e)-configuration', i.e. a set of e edges spanning at most v vertices?
E.g. $f_{3}(n, 4,4)$: Turán problem for $K_{4}^{(3)}, f_{2}\left(n, v, v^{2} / 4\right)$: KST.

Theorem(BES)

For $r, e \geq 3$ and $v \geq r+1$,

$$
\Omega\left(n^{\frac{e r-v}{e-1}}\right)=f_{r}(n, v, e)=O\left(n^{\left.\frac{e r-v}{e-1}\right\rceil}\right) .
$$

So, $f_{r}(n, e(r-k)+k, e)=\Theta\left(n^{k}\right)$, for any integer $2 \leq k<r$.
Upper bound: double-counting.

Background and motivation

Question(Brown-Erdős-Sós '73)

For fixed $r \geq 3, v$ and e, what is $f_{r}(n, v, e)$ - the largest size of an n-vertex r-uniform hypergraph without a ' (v, e)-configuration', i.e. a set of e edges spanning at most v vertices?
E.g. $f_{3}(n, 4,4)$: Turán problem for $K_{4}^{(3)}, f_{2}\left(n, v, v^{2} / 4\right)$: KST.

Theorem(BES)

For $r, e \geq 3$ and $v \geq r+1$,

$$
\Omega\left(n^{\frac{e r-v}{e-1}}\right)=f_{r}(n, v, e)=O\left(n^{\left.\frac{e r-v}{e-1}\right\rceil}\right) .
$$

So, $f_{r}(n, e(r-k)+k, e)=\Theta\left(n^{k}\right)$, for any integer $2 \leq k<r$.
Upper bound: double-counting. Lower bound: alteration method.

Background and motivation

Given $f_{r}(n, e(r-k)+k, e)=\Theta\left(n^{k}\right)$, it is natural to ask the following

Background and motivation

Given $f_{r}(n, e(r-k)+k, e)=\Theta\left(n^{k}\right)$, it is natural to ask the following

Conjecture (Brown-Erdős-Sós '73)

For any integers $r, e \geq 3$ and $2 \leq k<r$,

$$
f_{r}(n, e(r-k)+k+1, e)=o\left(n^{k}\right)
$$

Background and motivation

Given $f_{r}(n, e(r-k)+k, e)=\Theta\left(n^{k}\right)$, it is natural to ask the following

Conjecture (Brown-Erdős-Sós '73)

For any integers $r, e \geq 3$ and $2 \leq k<r$,

$$
f_{r}(n, e(r-k)+k+1, e)=o\left(n^{k}\right)
$$

The case $k=2$, i.e. $v=(r-2) e+3$ is of special interest, as the problem reduces to linear r-graphs.

Background and motivation

Given $f_{r}(n, e(r-k)+k, e)=\Theta\left(n^{k}\right)$, it is natural to ask the following

Conjecture (Brown-Erdős-Sós '73)

For any integers $r, e \geq 3$ and $2 \leq k<r$,

$$
f_{r}(n, e(r-k)+k+1, e)=o\left(n^{k}\right)
$$

The case $k=2$, i.e. $v=(r-2) e+3$ is of special interest, as the problem reduces to linear r-graphs.

Conjecture (BES: quadratic regime)

For any $\varepsilon>0$ and integers $r, e \geq 3$ there exists $n_{0}=n_{0}(r, e, \varepsilon)$ such that every linear r-graph with $n \geq n_{0}$ vertices and at least εn^{2} edges contains an $((r-2) e+3, e)$-configuration.

Background and motivation

Given $f_{r}(n, e(r-k)+k, e)=\Theta\left(n^{k}\right)$, it is natural to ask the following

Conjecture (Brown-Erdős-Sós '73)

For any integers $r, e \geq 3$ and $2 \leq k<r$,

$$
f_{r}(n, e(r-k)+k+1, e)=o\left(n^{k}\right)
$$

The case $k=2$, i.e. $v=(r-2) e+3$ is of special interest, as the problem reduces to linear r-graphs.

Conjecture (BES: quadratic regime)

For any $\varepsilon>0$ and integers $r, e \geq 3$ there exists $n_{0}=n_{0}(r, e, \varepsilon)$ such that every linear r-graph with $n \geq n_{0}$ vertices and at least εn^{2} edges contains an $((r-2) e+3, e)$-configuration.

Holds easily in Steiner systems

State of affairs

What is known

State of affairs

What is known

- $f_{3}(n, 6,3)=o\left(n^{2}\right)$: Ruzsa-Szemerédi '78
- $f_{r}(n, 3(r-2)+3,3)=o\left(n^{2}\right)$: Erdős-Frankl-Rödl '86
- $f_{r}(n, 3(r-k)+k+1,3)=o\left(n^{k}\right)$: Alon-Shapira '06
- $f_{r}(n, 4(r-k)+k+1,4)=o\left(n^{k}\right)$ for $r>k \geq 3$, and
- $f_{r}\left(n, 3(r-k)+k+\left\lfloor\log _{2} e\right\rfloor, e\right)=o\left(n^{k}\right)$: Sárközy-Selkow '05

State of affairs

What is known

- $f_{3}(n, 6,3)=o\left(n^{2}\right)$: Ruzsa-Szemerédi '78
- $f_{r}(n, 3(r-2)+3,3)=o\left(n^{2}\right)$: Erdős-Frankl-Rödl '86
- $f_{r}(n, 3(r-k)+k+1,3)=o\left(n^{k}\right)$: Alon-Shapira '06
- $f_{r}(n, 4(r-k)+k+1,4)=o\left(n^{k}\right)$ for $r>k \geq 3$, and
- $f_{r}\left(n, 3(r-k)+k+\left\lfloor\log _{2} e\right\rfloor, e\right)=o\left(n^{k}\right)$: Sárközy-Selkow '05

The remaining values are unknown, even $f_{3}(n, 7,4)$.

State of affairs

What is known

- $f_{3}(n, 6,3)=o\left(n^{2}\right)$: Ruzsa-Szemerédi '78
- $f_{r}(n, 3(r-2)+3,3)=o\left(n^{2}\right)$: Erdős-Frankl-Rödl '86
- $f_{r}(n, 3(r-k)+k+1,3)=o\left(n^{k}\right)$: Alon-Shapira '06
- $f_{r}(n, 4(r-k)+k+1,4)=o\left(n^{k}\right)$ for $r>k \geq 3$, and
- $f_{r}\left(n, 3(r-k)+k+\left\lfloor\log _{2} e\right\rfloor, e\right)=o\left(n^{k}\right)$: Sárközy-Selkow '05

The remaining values are unknown, even $f_{3}(n, 7,4)$. Possible approaches:

State of affairs

What is known

- $f_{3}(n, 6,3)=o\left(n^{2}\right)$: Ruzsa-Szemerédi '78
- $f_{r}(n, 3(r-2)+3,3)=o\left(n^{2}\right)$: Erdős-Frankl-Rödl '86
- $f_{r}(n, 3(r-k)+k+1,3)=o\left(n^{k}\right)$: Alon-Shapira '06
- $f_{r}(n, 4(r-k)+k+1,4)=o\left(n^{k}\right)$ for $r>k \geq 3$, and
- $f_{r}\left(n, 3(r-k)+k+\left\lfloor\log _{2} e\right\rfloor, e\right)=o\left(n^{k}\right)$: Sárközy-Selkow '05

The remaining values are unknown, even $f_{3}(n, 7,4)$. Possible approaches:

- BES in groups (Solymosi, Solymosi-Wong, Nenadov-Sudakov-T., Long, Wong)

State of affairs

What is known

- $f_{3}(n, 6,3)=o\left(n^{2}\right)$: Ruzsa-Szemerédi '78
- $f_{r}(n, 3(r-2)+3,3)=o\left(n^{2}\right)$: Erdős-Frankl-Rödl '86
- $f_{r}(n, 3(r-k)+k+1,3)=o\left(n^{k}\right)$: Alon-Shapira '06
- $f_{r}(n, 4(r-k)+k+1,4)=o\left(n^{k}\right)$ for $r>k \geq 3$, and
- $f_{r}\left(n, 3(r-k)+k+\left\lfloor\log _{2} e\right\rfloor, e\right)=o\left(n^{k}\right)$: Sárközy-Selkow '05

The remaining values are unknown, even $f_{3}(n, 7,4)$. Possible approaches:

- BES in groups (Solymosi, Solymosi-Wong, Nenadov-Sudakov-T., Long, Wong)
- Improving on the Sárközy-Selkow bound (Conlon, Gishboliner-Levanzov-Shapira)

Enter Ramsey

Conjecture (BES, quadratic)

For any $\varepsilon>0$ and integers $r, e \geq 3$ there exists $n_{0}=n_{0}(r, e, \varepsilon)$ such that every linear r-graph with $n \geq n_{0}$ vertices and at least εn^{2} edges contains an $((r-2) e+3, e)$-configuration.

Enter Ramsey

Conjecture (BES, quadratic)

For any $\varepsilon>0$ and integers $r, e \geq 3$ there exists $n_{0}=n_{0}(r, e, \varepsilon)$ such that every linear r-graph with $n \geq n_{0}$ vertices and at least εn^{2} edges contains an $((r-2) e+3, e)$-configuration.

A new take (Gyárfás, Nenadov, Conlon): study the corresponding Ramsey problem in complete linear r-graphs, a.k.a. Steiner systems

Enter Ramsey

Conjecture (BES, quadratic)

For any $\varepsilon>0$ and integers $r, e \geq 3$ there exists $n_{0}=n_{0}(r, e, \varepsilon)$ such that every linear r-graph with $n \geq n_{0}$ vertices and at least εn^{2} edges contains an $((r-2) e+3, e)$-configuration.

A new take (Gyárfás, Nenadov, Conlon): study the corresponding Ramsey problem in complete linear r-graphs, a.k.a. Steiner systems

Conjecture (BES, Ramsey version)

For any integers $c \geq 2$ and $r, e \geq 3$ there exists $n_{0}=n_{0}(c, r, e)$ such that for all $n \geq n_{0}$ every c-colouring of a complete linear r-graph of order n contains a monochromatic $((r-2) e+3, e)$-configuration.

Enter Ramsey

Conjecture (BES, quadratic)

For any $\varepsilon>0$ and integers $r, e \geq 3$ there exists $n_{0}=n_{0}(r, e, \varepsilon)$ such that every linear r-graph with $n \geq n_{0}$ vertices and at least εn^{2} edges contains an $((r-2) e+3, e)$-configuration.

A new take (Gyárfás, Nenadov, Conlon): study the corresponding Ramsey problem in complete linear r-graphs, a.k.a. Steiner systems

Conjecture (BES, Ramsey version)

For any integers $c \geq 2$ and $r, e \geq 3$ there exists $n_{0}=n_{0}(c, r, e)$ such that for all $n \geq n_{0}$ every c-colouring of a complete linear r-graph of order n contains a monochromatic $((r-2) e+3, e)$-configuration.

Ramsey's theorem gives this immediately for $e=3$ and any c, r

Our results

Our results

Theorem (Shapira-T. '19+)

For every $c \geq 2$ there exists $r_{0}=r_{0}(c)$ such that for every $r \geq r_{0}$, $e \geq 3$ and $n \geq n_{0}(c, r, e)$ in every edge-colouring of a complete linear r-graph on n vertices with c colours there is a monochromatic $((r-2) e+3, e)$-configuration.

Our results

Theorem (Shapira-T. '19+)

For every $c \geq 2$ there exists $r_{0}=r_{0}(c)$ such that for every $r \geq r_{0}$, $e \geq 3$ and $n \geq n_{0}(c, r, e)$ in every edge-colouring of a complete linear r-graph on n vertices with c colours there is a monochromatic $((r-2) e+3, e)$-configuration.

For $c=2$ we show that one can take $r_{0}(2)=4$

Our results

Theorem (Shapira-T. '19+)

For every $c \geq 2$ there exists $r_{0}=r_{0}(c)$ such that for every $r \geq r_{0}$, $e \geq 3$ and $n \geq n_{0}(c, r, e)$ in every edge-colouring of a complete linear r-graph on n vertices with c colours there is a monochromatic $((r-2) e+3, e)$-configuration.

For $c=2$ we show that one can take $r_{0}(2)=4$

Theorem (Shapira-T. '19+)

For any $r \geq 4, e \geq 3$ and $n \geq n_{0}(r, e)$ in every edge-colouring of a complete linear r-graph on n vertices with 2 colours there is a monochromatic $((r-2) e+3, e)$-configuration.

Proof idea

We focus here on the case $(c, r)=(2,4)$:

Proof idea

We focus here on the case $(c, r)=(2,4)$:

Theorem (ST)

For any $e \geq 3$ and $n \geq n_{0}(e)$ in every edge-colouring of a complete linear 4-graph on n vertices with 2 colours there is a colour class containing a set of e edges spanning at most $2 e+3$ vertices.

Proof idea

We focus here on the case $(c, r)=(2,4)$:

Theorem (ST)

For any $e \geq 3$ and $n \geq n_{0}(e)$ in every edge-colouring of a complete linear 4-graph on n vertices with 2 colours there is a colour class containing a set of e edges spanning at most $2 e+3$ vertices.

Idea: for a 4-graph \mathcal{G} define an auxiliary graph $B(\mathcal{G})$, suited for finding $(2 e+3, e)$-configurations.

Proof idea

We focus here on the case $(c, r)=(2,4)$:

Theorem (ST)

For any $e \geq 3$ and $n \geq n_{0}(e)$ in every edge-colouring of a complete linear 4-graph on n vertices with 2 colours there is a colour class containing a set of e edges spanning at most $2 e+3$ vertices.

Idea: for a 4-graph \mathcal{G} define an auxiliary graph $B(\mathcal{G})$, suited for finding $(2 e+3, e)$-configurations.
In a 2-colouring of an SQS one colour \mathcal{G}, will have a rich $B(\mathcal{G})$

Proof idea

We focus here on the case $(c, r)=(2,4)$:

Theorem (ST)

For any $e \geq 3$ and $n \geq n_{0}(e)$ in every edge-colouring of a complete linear 4-graph on n vertices with 2 colours there is a colour class containing a set of e edges spanning at most $2 e+3$ vertices.

Idea: for a 4-graph \mathcal{G} define an auxiliary graph $B(\mathcal{G})$, suited for finding $(2 e+3, e)$-configurations.
In a 2-colouring of an SQS one colour \mathcal{G}, will have a rich $B(\mathcal{G})$ 'Explore' \mathcal{G} along $B(\mathcal{G})$ to exhibit a $(2 e+3, e)$-configuration in it.

Tools: Auxiliary graph

Tools: Auxiliary graph

Definition (Bowtie graph)

For a linear 4-graph \mathcal{G}, define $B(\mathcal{G}):=(V, E)$, where

- $V=\{\{S, T\}: S, T \in E(\mathcal{G}),|S \cap T|=1\}$,
- $E=\left\{\left\{b_{1}, b_{2}\right\}: b_{1}=S_{1} T, b_{2}=S_{2} T,\left|S_{1} \cup S_{2} \cup T\right|=9\right\}$.

Tools: Auxiliary graph

Definition (Bowtie graph)

For a linear 4-graph \mathcal{G}, define $B(\mathcal{G}):=(V, E)$, where

- $V=\{\{S, T\}: S, T \in E(\mathcal{G}),|S \cap T|=1\}$,
- $E=\left\{\left\{b_{1}, b_{2}\right\}: b_{1}=S_{1} T, b_{2}=S_{2} T,\left|S_{1} \cup S_{2} \cup T\right|=9\right\}$.

Observation

Edges of B correspond to 'non-trivial triangles' in the underlying graph of \mathcal{G}. In particular, $\Delta(B) \leq 18$.

Tools: Auxiliary graph

Definition (Bowtie graph)

For a linear 4-graph \mathcal{G}, define $B(\mathcal{G}):=(V, E)$, where

- $V=\{\{S, T\}: S, T \in E(\mathcal{G}),|S \cap T|=1\}$,
- $E=\left\{\left\{b_{1}, b_{2}\right\}: b_{1}=S_{1} T, b_{2}=S_{2} T,\left|S_{1} \cup S_{2} \cup T\right|=9\right\}$.

Observation

Edges of B correspond to 'non-trivial triangles' in the underlying graph of \mathcal{G}. In particular, $\Delta(B) \leq 18$.

Large components in B are good for us:

Tools: Auxiliary graph

Definition (Bowtie graph)

For a linear 4-graph \mathcal{G}, define $B(\mathcal{G}):=(V, E)$, where

- $V=\{\{S, T\}: S, T \in E(\mathcal{G}),|S \cap T|=1\}$,
- $E=\left\{\left\{b_{1}, b_{2}\right\}: b_{1}=S_{1} T, b_{2}=S_{2} T,\left|S_{1} \cup S_{2} \cup T\right|=9\right\}$.

Observation

Edges of B correspond to 'non-trivial triangles' in the underlying graph of \mathcal{G}. In particular, $\Delta(B) \leq 18$.

Large components in B are good for us:

Lemma

If B has a connected component of order at least $2^{100 e^{3}}$, then \mathcal{G} contains a $(2 e+3, e)$-configuration.

Tools: Ramsey multiplicity

Proposition(Goodman inspired)

For large n, in every 2-edge-colouring of K_{n} there is a colour class G satisfying

$$
T(G) \geq\left(\frac{1}{6}-o(1)\right) \sum_{u \in K_{n}}\binom{d_{G}(u)}{2}=\Theta\left(n^{3}\right)
$$

Tools: Ramsey multiplicity

Proposition(Goodman inspired)

For large n, in every 2-edge-colouring of K_{n} there is a colour class G satisfying

$$
T(G) \geq\left(\frac{1}{6}-o(1)\right) \sum_{u \in K_{n}}\binom{d_{G}(u)}{2}=\Theta\left(n^{3}\right)
$$

That is, about half of the 'cherries' in G are contained in a triangle.

Tools: Ramsey multiplicity

Proposition(Goodman inspired)

For large n, in every 2-edge-colouring of K_{n} there is a colour class G satisfying

$$
T(G) \geq\left(\frac{1}{6}-o(1)\right) \sum_{u \in K_{n}}\binom{d_{G}(u)}{2}=\Theta\left(n^{3}\right)
$$

That is, about half of the 'cherries' in G are contained in a triangle.

Corollary

For large n, in every 2-colouring of a complete linear 4-graph of order n there is a colour class \mathcal{G} satisfying $d_{\text {avg }}(B(\mathcal{G}))>9-o(1)$.

Tools: Ramsey multiplicity

Proposition(Goodman inspired)

For large n, in every 2-edge-colouring of K_{n} there is a colour class G satisfying

$$
T(G) \geq\left(\frac{1}{6}-o(1)\right) \sum_{u \in K_{n}}\binom{d_{G}(u)}{2}=\Theta\left(n^{3}\right)
$$

That is, about half of the 'cherries' in G are contained in a triangle.

Corollary

For large n, in every 2-colouring of a complete linear 4-graph of order n there is a colour class \mathcal{G} satisfying $d_{\text {avg }}(B(\mathcal{G}))>9-o(1)$.

For $c \geq 3$, use Ramsey multiplicity instead.

Dense components

Definition
 Call a component $C \subseteq B$ dense if $d_{\text {avg }}(C) \geq 9$.

Dense components

Definition

Call a component $C \subseteq B$ dense if $d_{\text {avg }}(C) \geq 9$.
Since $d_{\text {avg }}(B)>9-o(1), \Delta(B) \leq 18$, and assuming all components are smaller than $2^{100 e^{3}}$, averaging gives

Lemma

B has $\Theta\left(n^{3}\right)$ dense components.

Dense components

Definition

Call a component $C \subseteq B$ dense if $d_{\text {avg }}(C) \geq 9$.
Since $d_{\text {avg }}(B)>9-o(1), \Delta(B) \leq 18$, and assuming all components are smaller than $2^{100 e^{3}}$, averaging gives

Lemma

B has $\Theta\left(n^{3}\right)$ dense components.
More averaging:

Dense components

Definition

Call a component $C \subseteq B$ dense if $d_{\text {avg }}(C) \geq 9$.
Since $d_{\text {avg }}(B)>9-o(1), \Delta(B) \leq 18$, and assuming all components are smaller than $2^{100 e^{3}}$, averaging gives

Lemma

B has $\Theta\left(n^{3}\right)$ dense components.
More averaging:

Lemma

There exist a vertex, a hyperedge $u_{0} \in T_{0} \in \mathcal{G}$, and $\Theta(n)$ further hyperedges $T_{1}^{0}, T_{2}^{0} \ldots, \in E(\mathcal{G})$ such that, for each i we have that $u_{0} \in T_{i}^{0}$ and all bowties $\left\{T_{0}, T_{i}^{0}\right\}$ belong to distinct dense components.

Inductive configurations

Definition

Call a $(2 i+3, i)$-configuration \mathcal{F} inductive if either $i=2$, or $i>2$ and there exists a hyperedge $T \in \mathcal{F}$ such that:

- T is contained in a $(9,3)$-configuration,
- T has 2 vertices of degree 1 , and
- $\mathcal{F} \backslash\{T\}$ is inductive.

Inductive configurations

Definition

Call a $(2 i+3, i)$-configuration \mathcal{F} inductive if either $i=2$, or $i>2$ and there exists a hyperedge $T \in \mathcal{F}$ such that:

- T is contained in a $(9,3)$-configuration,
- T has 2 vertices of degree 1 , and
- $\mathcal{F} \backslash\{T\}$ is inductive.

Main idea

Dense components in B give rise to inductive configurations.

Inductive configurations

Definition

Call a $(2 i+3, i)$－configuration \mathcal{F} inductive if either $i=2$ ，or $i>2$ and there exists a hyperedge $T \in \mathcal{F}$ such that：
－T is contained in a $(9,3)$－configuration，
－T has 2 vertices of degree 1 ，and
－ $\mathcal{F} \backslash\{T\}$ is inductive．

Main idea

Dense components in B give rise to inductive configurations． ＇Explore＇a dense component in a bootstrap percolation manner， until one of the following happens．

Inductive configurations

Definition

Call a $(2 i+3, i)$－configuration \mathcal{F} inductive if either $i=2$ ，or $i>2$ and there exists a hyperedge $T \in \mathcal{F}$ such that：
－T is contained in a $(9,3)$－configuration，
－T has 2 vertices of degree 1 ，and
－ $\mathcal{F} \backslash\{T\}$ is inductive．

Main idea

Dense components in B give rise to inductive configurations． ＇Explore＇a dense component in a bootstrap percolation manner， until one of the following happens．
－We create a $(2 i+2, i)$－configuration \rightarrow continue in a new component．

Inductive configurations

Definition

Call a $(2 i+3, i)$-configuration \mathcal{F} inductive if either $i=2$, or $i>2$ and there exists a hyperedge $T \in \mathcal{F}$ such that:

- T is contained in a $(9,3)$-configuration,
- T has 2 vertices of degree 1 , and
- $\mathcal{F} \backslash\{T\}$ is inductive.

Main idea

Dense components in B give rise to inductive configurations. 'Explore' a dense component in a bootstrap percolation manner, until one of the following happens.

- We create a $(2 i+2, i)$-configuration \rightarrow continue in a new component.
- We reach $i=e$, i.e. a $(2 e+3, e)$-configuration.

Main lemma

Recall: we have $u_{0} \in T_{0} \in \mathcal{G}$, and a set \mathcal{C} of $\Theta(n)$ dense B-components, such that each $C \in \mathcal{C}$ contains a bowtie $\left\{T_{0}, T\right\}$, for some $T \ni u_{0}$.

Main lemma

Recall: we have $u_{0} \in T_{0} \in \mathcal{G}$, and a set \mathcal{C} of $\Theta(n)$ dense B-components, such that each $C \in \mathcal{C}$ contains a bowtie $\left\{T_{0}, T\right\}$, for some $T \ni u_{0}$.

Lemma

For each $2 \leq i \leq e$ there exists a $(2 i+3, i)$-configuration $\mathcal{F}_{i} \subset \mathcal{G}$ of one of the following two types:
(a) \mathcal{F}_{i} is an $(2 i+2, i)$-configuration with $T_{0} \in E\left(\mathcal{F}_{i}\right)$.
(b) There exist a subhypergraph $\mathcal{E}_{i} \subseteq \mathcal{F}_{i}$ and a component $C_{i} \in \mathcal{C}$ such that:
(1) \mathcal{E}_{i} is an inductive $(2 j+3, j)$-configuration for some $j \geq 2$ with $T_{0} \in E\left(\mathcal{E}_{i}\right)$,
(2) $V\left(\mathcal{E}_{i}\right) \cap V\left(\mathcal{F}_{i} \backslash \mathcal{E}_{i}\right) \subseteq T_{0}$,
(3) The set $A_{i}=\left\{b \in V\left(C_{i}\right): b=\{T, S\} ; T, S \in \mathcal{E}_{i}\right\}$ satisfies $d_{\text {avg }}\left(B\left[A_{i}\right]\right)<9$.

Main lemma

Recall: we have $u_{0} \in T_{0} \in \mathcal{G}$, and a set \mathcal{C} of $\Theta(n)$ dense B-components, such that each $C \in \mathcal{C}$ contains a bowtie $\left\{T_{0}, T\right\}$, for some $T \ni u_{0}$.

Lemma

For each $2 \leq i \leq e$ there exists a $(2 i+3, i)$-configuration $\mathcal{F}_{i} \subset \mathcal{G}$ of one of the following two types:
(a) \mathcal{F}_{i} is an $(2 i+2, i)$-configuration with $T_{0} \in E\left(\mathcal{F}_{i}\right)$.
(b) There exist a subhypergraph $\mathcal{E}_{i} \subseteq \mathcal{F}_{i}$ and a component $C_{i} \in \mathcal{C}$ such that:
(1) \mathcal{E}_{i} is an inductive $(2 j+3, j)$-configuration for some $j \geq 2$ with $T_{0} \in E\left(\mathcal{E}_{i}\right)$,
(2) $V\left(\mathcal{E}_{i}\right) \cap V\left(\mathcal{F}_{i} \backslash \mathcal{E}_{i}\right) \subseteq T_{0}$,
(3) The set $A_{i}=\left\{b \in V\left(C_{i}\right): b=\{T, S\} ; T, S \in \mathcal{E}_{i}\right\}$ satisfies $d_{\text {avg }}\left(B\left[A_{i}\right]\right)<9$.

In particular, $A_{i} \subsetneq C_{i}$, and we can continue the process

Component exploration

How to make sure that $d_{\text {avg }}\left(B\left[A_{i}\right]\right)<9$ at each step?

Component exploration

How to make sure that $d_{\text {avg }}\left(B\left[A_{i}\right]\right)<9$ at each step?
Reversing the roles, it suffices to show the following

Component exploration

How to make sure that $d_{\text {avg }}\left(B\left[A_{i}\right]\right)<9$ at each step?
Reversing the roles, it suffices to show the following

Claim

Suppose that $i \geq 2, \mathcal{F}$ is an inductive $(2 i+3, i)$-configuration, and $B=B(\mathcal{F})$. Then for any $A \subset V(B)$ we have $d_{\text {avg }}(B[A])<9$. In particular, B has no dense components.

Component exploration

How to make sure that $d_{\text {avg }}\left(B\left[A_{i}\right]\right)<9$ at each step?
Reversing the roles, it suffices to show the following

Claim

Suppose that $i \geq 2, \mathcal{F}$ is an inductive $(2 i+3, i)$-configuration, and $B=B(\mathcal{F})$. Then for any $A \subset V(B)$ we have $d_{\text {avg }}(B[A])<9$. In particular, B has no dense components.

Proof: True for $i=2$, as $|B|=1$.

Component exploration

How to make sure that $d_{\text {avg }}\left(B\left[A_{i}\right]\right)<9$ at each step?
Reversing the roles, it suffices to show the following

Claim

Suppose that $i \geq 2, \mathcal{F}$ is an inductive $(2 i+3, i)$-configuration, and $B=B(\mathcal{F})$. Then for any $A \subset V(B)$ we have $d_{\text {avg }}(B[A])<9$. In particular, B has no dense components.

Proof: True for $i=2$, as $|B|=1$.
$i \rightarrow i+1$: the added vertices of $B[A]$ are indexed by two
3-uniform matchings: R and G,

Component exploration

How to make sure that $d_{\text {avg }}\left(B\left[A_{i}\right]\right)<9$ at each step?
Reversing the roles, it suffices to show the following

Claim

Suppose that $i \geq 2, \mathcal{F}$ is an inductive $(2 i+3, i)$-configuration, and $B=B(\mathcal{F})$. Then for any $A \subset V(B)$ we have $d_{\text {avg }}(B[A])<9$. In particular, B has no dense components.

Proof: True for $i=2$, as $|B|=1$.
$i \rightarrow i+1$: the added vertices of $B[A]$ are indexed by two
3-uniform matchings: R and G, resulting in $|R|+|G|$ new vertices and at most

$$
3|V(R) \cap V(G)| \leq \frac{9}{2}(|R|+|G|)
$$

new edges.

Open questions

Conjecture (BES-R)

For any integers $c \geq 2$ and $r, e \geq 3$ there exists $n_{0}=n_{0}(c, r, e)$ such that for all $n \geq n_{0}$ every c-colouring of a complete linear r-graph of order n contains a monochromatic $((r-2) e+3, e)$-configuration.

Open questions

Conjecture (BES-R)

For any integers $c \geq 2$ and $r, e \geq 3$ there exists $n_{0}=n_{0}(c, r, e)$ such that for all $n \geq n_{0}$ every c-colouring of a complete linear r-graph of order n contains a monochromatic $((r-2) e+3, e)$-configuration.

More generally:

Meta-question

Study Ramsey and Turán type problems in Steiner systems

Open questions

Conjecture (BES-R)

For any integers $c \geq 2$ and $r, e \geq 3$ there exists $n_{0}=n_{0}(c, r, e)$ such that for all $n \geq n_{0}$ every c-colouring of a complete linear r-graph of order n contains a monochromatic $((r-2) e+3, e)$-configuration.

More generally:

Meta-question

Study Ramsey and Turán type problems in Steiner systems
Gyárfás et. al., Füredi-Gyárfás, DeBiasio-Tait

