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Background and motivation

Question(Brown-Erdős-Sós ’73)

For fixed r ≥ 3, v and e, what is fr (n, v , e) – the largest size of an
n-vertex r -uniform hypergraph without a ‘(v , e)-configuration’, i.e.
a set of e edges spanning at most v vertices?

E.g. f3(n, 4, 4): Turán problem for K
(3)
4 , f2(n, v , v2/4): KST.

Theorem(BES)

For r , e ≥ 3 and v ≥ r + 1,

Ω(n
er−v
e−1 ) = fr (n, v , e) = O(nd

er−v
e−1

e).

So, fr (n, e(r − k) + k, e) = Θ(nk), for any integer 2 ≤ k < r .

Upper bound: double-counting. Lower bound: alteration method.
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Background and motivation

Given fr (n, e(r − k) + k , e) = Θ(nk), it is natural to ask the
following

Conjecture (Brown-Erdős-Sós ’73)

For any integers r , e ≥ 3 and 2 ≤ k < r ,

fr (n, e(r − k) + k + 1, e) = o(nk).

The case k = 2, i.e. v = (r − 2)e + 3 is of special interest, as the
problem reduces to linear r -graphs.

Conjecture (BES: quadratic regime)

For any ε > 0 and integers r , e ≥ 3 there exists n0 = n0(r , e, ε)
such that every linear r -graph with n ≥ n0 vertices and at least εn2

edges contains an ((r − 2)e + 3, e)-configuration.

Holds easily in Steiner systems
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For any integers r , e ≥ 3 and 2 ≤ k < r ,

fr (n, e(r − k) + k + 1, e) = o(nk).

The case k = 2, i.e. v = (r − 2)e + 3 is of special interest, as the
problem reduces to linear r -graphs.

Conjecture (BES: quadratic regime)

For any ε > 0 and integers r , e ≥ 3 there exists n0 = n0(r , e, ε)
such that every linear r -graph with n ≥ n0 vertices and at least εn2

edges contains an ((r − 2)e + 3, e)-configuration.

Holds easily in Steiner systems

Mykhaylo Tyomkyn



Background and motivation

Given fr (n, e(r − k) + k , e) = Θ(nk), it is natural to ask the
following

Conjecture (Brown-Erdős-Sós ’73)
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State of affairs

What is known

f3(n, 6, 3) = o(n2): Ruzsa–Szemerédi ’78

fr (n, 3(r − 2) + 3, 3) = o(n2): Erdős–Frankl–Rödl ’86

fr (n, 3(r − k) + k + 1, 3) = o(nk): Alon–Shapira ’06

fr (n, 4(r − k) + k + 1, 4) = o(nk) for r > k ≥ 3, and

fr (n, 3(r − k) + k + blog2 ec, e) = o(nk): Sárközy–Selkow ’05

The remaining values are unknown, even f3(n, 7, 4). Possible
approaches:

BES in groups (Solymosi, Solymosi–Wong,
Nenadov–Sudakov–T., Long, Wong)

Improving on the Sárközy–Selkow bound (Conlon,
Gishboliner–Levanzov–Shapira)
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Enter Ramsey

Conjecture (BES, quadratic)

For any ε > 0 and integers r , e ≥ 3 there exists n0 = n0(r , e, ε)
such that every linear r -graph with n ≥ n0 vertices and at least εn2

edges contains an ((r − 2)e + 3, e)-configuration.

A new take (Gyárfás, Nenadov, Conlon): study the corresponding
Ramsey problem in complete linear r -graphs, a.k.a. Steiner systems

Conjecture (BES, Ramsey version)

For any integers c ≥ 2 and r , e ≥ 3 there exists n0 = n0(c , r , e)
such that for all n ≥ n0 every c-colouring of a complete linear
r -graph of order n contains a monochromatic
((r − 2)e + 3, e)-configuration.

Ramsey’s theorem gives this immediately for e = 3 and any c , r
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Our results

Theorem (Shapira–T. ’19+)

For every c ≥ 2 there exists r0 = r0(c) such that for every r ≥ r0,
e ≥ 3 and n ≥ n0(c , r , e) in every edge-colouring of a complete
linear r -graph on n vertices with c colours there is a
monochromatic ((r − 2)e + 3, e)-configuration.

For c = 2 we show that one can take r0(2) = 4

Theorem (Shapira–T. ’19+)

For any r ≥ 4, e ≥ 3 and n ≥ n0(r , e) in every edge-colouring of a
complete linear r -graph on n vertices with 2 colours there is a
monochromatic ((r − 2)e + 3, e)-configuration.
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Proof idea

We focus here on the case (c , r) = (2, 4):

Theorem (ST)

For any e ≥ 3 and n ≥ n0(e) in every edge-colouring of a complete
linear 4-graph on n vertices with 2 colours there is a colour class
containing a set of e edges spanning at most 2e + 3 vertices.

Idea: for a 4-graph G define an auxiliary graph B(G), suited for
finding (2e + 3, e)-configurations.

In a 2-colouring of an SQS one colour G, will have a rich B(G)

‘Explore’ G along B(G) to exhibit a (2e + 3, e)-configuration in it.
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Tools: Auxiliary graph

Definition (Bowtie graph)

For a linear 4-graph G, define B(G) := (V ,E ), where

I V = {{S ,T} : S ,T ∈ E (G), |S ∩ T | = 1},
I E = {{b1, b2} : b1 = S1T , b2 = S2T , |S1 ∪ S2 ∪ T | = 9}.

Observation

Edges of B correspond to ‘non-trivial triangles’ in the underlying
graph of G. In particular, ∆(B) ≤ 18.

Large components in B are good for us:

Lemma

If B has a connected component of order at least 2100e
3
, then G

contains a (2e + 3, e)-configuration.

Mykhaylo Tyomkyn



Tools: Auxiliary graph

Definition (Bowtie graph)

For a linear 4-graph G, define B(G) := (V ,E ), where

I V = {{S ,T} : S ,T ∈ E (G), |S ∩ T | = 1},
I E = {{b1, b2} : b1 = S1T , b2 = S2T , |S1 ∪ S2 ∪ T | = 9}.

Observation

Edges of B correspond to ‘non-trivial triangles’ in the underlying
graph of G. In particular, ∆(B) ≤ 18.

Large components in B are good for us:

Lemma

If B has a connected component of order at least 2100e
3
, then G

contains a (2e + 3, e)-configuration.

Mykhaylo Tyomkyn



Tools: Auxiliary graph

Definition (Bowtie graph)

For a linear 4-graph G, define B(G) := (V ,E ), where

I V = {{S ,T} : S ,T ∈ E (G), |S ∩ T | = 1},
I E = {{b1, b2} : b1 = S1T , b2 = S2T , |S1 ∪ S2 ∪ T | = 9}.

Observation

Edges of B correspond to ‘non-trivial triangles’ in the underlying
graph of G. In particular, ∆(B) ≤ 18.

Large components in B are good for us:

Lemma

If B has a connected component of order at least 2100e
3
, then G

contains a (2e + 3, e)-configuration.
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Tools: Ramsey multiplicity

Proposition(Goodman inspired)

For large n, in every 2-edge-colouring of Kn there is a colour class
G satisfying

T (G ) ≥ (
1

6
− o(1))

∑
u∈Kn

(
dG (u)

2

)
= Θ(n3)

That is, about half of the ‘cherries’ in G are contained in a triangle.

Corollary

For large n, in every 2-colouring of a complete linear 4-graph of
order n there is a colour class G satisfying davg (B(G)) > 9− o(1).

For c ≥ 3, use Ramsey multiplicity instead.
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Dense components

Definition

Call a component C ⊆ B dense if davg (C ) ≥ 9.

Since davg (B) > 9− o(1), ∆(B) ≤ 18, and assuming all

components are smaller than 2100e
3
, averaging gives

Lemma

B has Θ(n3) dense components.

More averaging:

Lemma

There exist a vertex, a hyperedge u0 ∈ T0 ∈ G, and Θ(n) further
hyperedges T 0

1 ,T
0
2 . . . ,∈ E (G) such that, for each i we have that

u0 ∈ T 0
i and all bowties {T0,T

0
i } belong to distinct dense

components.
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Inductive configurations

Definition

Call a (2i + 3, i)-configuration F inductive if either i = 2, or i > 2
and there exists a hyperedge T ∈ F such that:

I T is contained in a (9, 3)-configuration,

I T has 2 vertices of degree 1, and

I F \ {T} is inductive.

Main idea

Dense components in B give rise to inductive configurations.
‘Explore’ a dense component in a bootstrap percolation manner,
until one of the following happens.

We create a (2i + 2, i)-configuration → continue in a new
component.

We reach i = e, i.e. a (2e + 3, e)-configuration.
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Main lemma

Recall: we have u0 ∈ T0 ∈ G, and a set C of Θ(n) dense
B-components, such that each C ∈ C contains a bowtie {T0,T},
for some T 3 u0.

Lemma

For each 2 ≤ i ≤ e there exists a (2i + 3, i)-configuration Fi ⊂ G
of one of the following two types:

(a) Fi is an (2i + 2, i)-configuration with T0 ∈ E (Fi ).

(b) There exist a subhypergraph Ei ⊆ Fi and a component Ci ∈ C
such that:

1 Ei is an inductive (2j + 3, j)-configuration for some j ≥ 2 with
T0 ∈ E (Ei ),

2 V (Ei ) ∩ V (Fi \ Ei ) ⊆ T0,
3 The set Ai = {b ∈ V (Ci ) : b = {T ,S};T ,S ∈ Ei} satisfies

davg (B[Ai ]) < 9.

In particular, Ai ( Ci , and we can continue the process
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Component exploration

How to make sure that davg (B[Ai ]) < 9 at each step?

Reversing the roles, it suffices to show the following

Claim

Suppose that i ≥ 2, F is an inductive (2i + 3, i)-configuration, and
B = B(F). Then for any A ⊂ V (B) we have davg (B[A]) < 9. In
particular, B has no dense components.

Proof: True for i = 2, as |B| = 1.
i → i + 1 : the added vertices of B[A] are indexed by two
3-uniform matchings: R and G , resulting in |R|+ |G | new vertices
and at most

3|V (R) ∩ V (G )| ≤ 9

2
(|R|+ |G |)

new edges.
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Open questions

Conjecture (BES-R)

For any integers c ≥ 2 and r , e ≥ 3 there exists n0 = n0(c , r , e)
such that for all n ≥ n0 every c-colouring of a complete linear
r -graph of order n contains a monochromatic
((r − 2)e + 3, e)-configuration.

More generally:

Meta-question

Study Ramsey and Turán type problems in Steiner systems

Gyárfás et. al., Füredi–Gyárfás, DeBiasio–Tait
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