On hypergraph Ramsey numbers

Jacob Fox
Stanford University

Workshop on Probabilistic and Extremal Combinatorics
Banff International Research Station
September 2, 2019

Joint work with

Xiaoyu He

Ramsey number

We call a k-uniform hypergraph a k-graph for short.

Ramsey number

We call a k-uniform hypergraph a k-graph for short.

Definition

For k-graphs H and F, the Ramsey number $r(H, F)$ is the minimum N such that every k-graph on N vertices contains a copy of H or its complement contains a copy of F.

Ramsey number

We call a k-uniform hypergraph a k-graph for short.

Definition

For k-graphs H and F, the Ramsey number $r(H, F)$ is the minimum N such that every k-graph on N vertices contains a copy of H or its complement contains a copy of F.

$$
\text { Let } r_{k}(s, n)=r\left(K_{s}^{(k)}, K_{n}^{(k)}\right)
$$

Theorem: (Erdős-Szekeres 1935, Erdős 1947)

$$
2^{n / 2} \leq r_{2}(n, n) \leq 2^{2 n}
$$

Hypergraphs ($k \geq 3$)

Definition:

The tower function $t_{i}(x)$ is given by $t_{1}(x)=x$ and $t_{i+1}(x)=2^{t_{i}(x)}$.

Theorem: (Erdős-Rado 1952, Erdős-Hajnal 1960s)

$$
\begin{gathered}
2^{c n^{2}} \leq r_{3}(n, n) \leq 2^{2^{c^{\prime} n}} \\
t_{k-1}\left(c n^{2}\right) \leq r_{k}(n, n) \leq t_{k}\left(c^{\prime} n\right) .
\end{gathered}
$$

Remarks:

- $k=3$ case is central because of the stepping up lemma.
- For 4 colors, $r_{3}(n, n, n, n) \geq 2^{2^{c n}}$.

Hypergraphs ($k \geq 3$)

Definition:

The tower function $t_{i}(x)$ is given by $t_{1}(x)=x$ and $t_{i+1}(x)=2^{t_{i}(x)}$.

Theorem: (Erdős-Rado 1952, Erdős-Hajnal 1960s)

$$
\begin{gathered}
2^{c n^{2}} \leq r_{3}(n, n) \leq 2^{2^{c^{\prime} n}} \\
t_{k-1}\left(c n^{2}\right) \leq r_{k}(n, n) \leq t_{k}\left(c^{\prime} n\right)
\end{gathered}
$$

Remarks:

- $k=3$ case is central because of the stepping up lemma.
- For 4 colors, $r_{3}(n, n, n, n) \geq 2^{2^{c n}}$.

Theorem: (Conlon-F.-Rödl 2017, F.-Li 2019)

There is a 3-graph H on n vertices with $r(H, H)=O(n \log n)$ but $r(H, H, H, H)=2^{\Theta(\sqrt{n})}$.

Off-diagonal graph Ramsey numbers

Theorem: (Ajtai-Komlós-Szemerédi 1980, Kim 1995)

$$
r(3, n)=\Theta\left(\frac{n^{2}}{\log n}\right)
$$

Off-diagonal graph Ramsey numbers

Theorem: (Ajtai-Komlós-Szemerédi 1980, Kim 1995)

$$
r(3, n)=\Theta\left(\frac{n^{2}}{\log n}\right)
$$

Central problem in the development of the probabilistic method:

- Alterations (Erdős 1961)
- Lovász local lemma (Spencer 1975)
- Large deviation inequalities (Krivelevich 1995)
- Rödl nibble (Kim 1995)
- H-free random graph process (Erdős-Suen-Winkler 1995, Bohman-Keevash 2010).

Off-diagonal graph Ramsey numbers

Theorem: (Ajtai-Komlós-Szemerédi 1980, Kim 1995)

$$
r(3, n)=\Theta\left(\frac{n^{2}}{\log n}\right)
$$

Central problem in the development of the probabilistic method:

- Alterations (Erdős 1961)
- Lovász local lemma (Spencer 1975)
- Large deviation inequalities (Krivelevich 1995)
- Rödl nibble (Kim 1995)
- H-free random graph process (Erdős-Suen-Winkler 1995, Bohman-Keevash 2010).

However, for almost all $H, r\left(H, K_{n}\right)$ is not well understood.

Off-diagonal hypergraph Ramsey numbers

Improving earlier results of Erdős-Hajnal and Erdős-Rado:
Theorem: (Conlon-F.-Sudakov 2010)
For $4 \leq s \leq n$,

$$
2^{\Omega(s n \log (2 n / s))} \leq r_{3}(s, n) \leq 2^{O\left(n^{s-2} \log n\right)}
$$

Off-diagonal hypergraph Ramsey numbers

$K_{4}^{(3)}-e$ is the 3-graph with 4 vertices and 3 edges.

Theorem: (Erdős-Hajnal 1972)

$$
2^{\Omega(n)} \leq r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \leq 2^{O(n \log n)}
$$

Lower bound construction: Let T be a tournament on N vertices with no transitive subtournament of order $2 \log N+1$.

Off-diagonal hypergraph Ramsey numbers

$K_{4}^{(3)}-e$ is the 3-graph with 4 vertices and 3 edges.

Theorem: (Erdős-Hajnal 1972)

$$
2^{\Omega(n)} \leq r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \leq 2^{O(n \log n)}
$$

Lower bound construction: Let T be a tournament on N vertices with no transitive subtournament of order $2 \log N+1$.

Consider the 3-graph 「 on $V(T)$ where a triple is an edge if it makes a cyclic triangle.

Off-diagonal hypergraph Ramsey numbers

$K_{4}^{(3)}-e$ is the 3-graph with 4 vertices and 3 edges.

Theorem: (Erdős-Hajnal 1972)

$$
2^{\Omega(n)} \leq r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \leq 2^{O(n \log n)}
$$

Lower bound construction: Let T be a tournament on N vertices with no transitive subtournament of order $2 \log N+1$.

Consider the 3-graph 「 on $V(T)$ where a triple is an edge if it makes a cyclic triangle.

Question: (Erdős-Hajnal 1972)

Does $r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)$ grow only exponentially in n ?

Off-diagonal hypergraph Ramsey numbers

$K_{4}^{(3)}-e$ is the 3-graph with 4 vertices and 3 edges.
Theorem: (Erdős-Hajnal 1972)

$$
2^{\Omega(n)} \leq r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \leq 2^{O(n \log n)} .
$$

Question: (Erdős-Hajnal 1972)

Does $r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)$ grow exponentially in n ?

Off-diagonal hypergraph Ramsey numbers

$K_{4}^{(3)}-e$ is the 3-graph with 4 vertices and 3 edges.
Theorem: (Erdős-Hajnal 1972)

$$
2^{\Omega(n)} \leq r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \leq 2^{O(n \log n)} .
$$

Question: (Erdős-Hajnal 1972)

Does $r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)$ grow exponentially in n ?

Theorem: (F.-He 2019)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)=2^{\Theta(n \log n)}
$$

Off-diagonal hypergraph Ramsey numbers

$K_{4}^{(3)}-e$ is the 3-graph with 4 vertices and 3 edges.

Theorem: (Erdős-Hajnal 1972)

$$
2^{\Omega(n)} \leq r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right) \leq 2^{O(n \log n)} .
$$

Question: (Erdős-Hajnal 1972)

Does $r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)$ grow exponentially in n ?

Theorem: (F.-He 2019)

$$
r\left(K_{4}^{(3)}-e, K_{n}^{(3)}\right)=2^{\Theta(n \log n)}
$$

That is, every 3 -graph on N vertices in which any four vertices contains at most two edges has independence number $\Omega\left(\frac{\log N}{\log \log N}\right)$, and this is tight.

Link hypergraphs versus cliques

Definition:

For graph G, the link hypergraph L_{G} is the 3-graph on $V(G) \cup\{w\}$ whose edges are the triples $\{u, v, w\}$ with $\{u, v\} \in E(G)$.
Note $K_{4}^{(3)}-e=L_{K_{3}}$.

Link hypergraphs versus cliques

Definition:

For graph G, the link hypergraph L_{G} is the 3-graph on $V(G) \cup\{w\}$ whose edges are the triples $\{u, v, w\}$ with $\{u, v\} \in E(G)$.

Note $K_{4}^{(3)}-e=L_{K_{3}}$.

Proposition: (Conlon-F.-Sudakov 2010)

If G is bipartite, then $r\left(L_{G}, K_{n}^{(3)}\right)=n^{\Theta(1)}$.
If G is nonbipartite, then $r\left(L_{G}, K_{n}^{(3)}\right)=2^{\Omega(n)}$.

Link hypergraphs versus cliques

Definition:

For graph G, the link hypergraph L_{G} is the 3-graph on $V(G) \cup\{w\}$ whose edges are the triples $\{u, v, w\}$ with $\{u, v\} \in E(G)$.
Note $K_{4}^{(3)}-e=L_{K_{3}}$.

Proposition: (Conlon-F.-Sudakov 2010)

If G is bipartite, then $r\left(L_{G}, K_{n}^{(3)}\right)=n^{\Theta(1)}$.
If G is nonbipartite, then $r\left(L_{G}, K_{n}^{(3)}\right)=2^{\Omega(n)}$.

Theorem: (F.-He 2019)

If G is nonbipartite, then $r\left(L_{G}, K_{n}^{(3)}\right)=2^{\Theta(n \log n)}$.

Link hypergraphs versus cliques

Theorem: (F.-He 2019)

If G is nonbipartite, then $r\left(L_{G}, K_{n}^{(3)}\right)=2^{\Theta(n \log n)}$.

Definition:

The link F_{v} of a vertex v in a k-graph F is the $(k-1)$-graph on $V(F) \backslash\{v\}$ where $e \in E\left(F_{v}\right)$ if $e \cup\{v\} \in E(F)$.

Theorem: (F.-He 2019)

$\forall g$, there is a 3-graph on $N=n^{c_{g} n}$ vertices with independence number $<n$ and the link of each vertex has odd girth at least g.

Theorem: (F.-He 2019)

For $s, n \geq 3$,

$$
r\left(L_{K_{s}}, K_{n}^{(3)}\right) \leq(2 n)^{s n}
$$

A hypergraph Ramsey problem of Erdős and Hajnal

Definition
$f_{k}(N, s, t):=$ max. n such that every k-graph on N vertices has
s vertices with $\geq t$ edges or has independence number at least n.

A hypergraph Ramsey problem of Erdős and Hajnal

Definition

$f_{k}(N, s, t):=$ max. n such that every k-graph on N vertices has s vertices with $\geq t$ edges or has independence number at least n.

Let $t(0)=t(1)=0$ and $t(s)=s_{1} s_{2} s_{3}+t\left(s_{1}\right)+t\left(s_{2}\right)+t\left(s_{3}\right)$, where $s=s_{1}+s_{2}+s_{3}$ with s_{1}, s_{2}, s_{3} as equal as possible.
Erdős-Hajnal 1972: If $t \leq t(s)$, then $f_{3}(N, s, t)=N^{\Theta(1)}$.

A hypergraph Ramsey problem of Erdős and Hajnal

Definition

$f_{k}(N, s, t):=$ max. n such that every k-graph on N vertices has s vertices with $\geq t$ edges or has independence number at least n.

Let $t(0)=t(1)=0$ and $t(s)=s_{1} s_{2} s_{3}+t\left(s_{1}\right)+t\left(s_{2}\right)+t\left(s_{3}\right)$, where $s=s_{1}+s_{2}+s_{3}$ with s_{1}, s_{2}, s_{3} as equal as possible. Erdős-Hajnal 1972: If $t \leq t(s)$, then $f_{3}(N, s, t)=N^{\Theta(1)}$.

Conjecture (Erdős-Hajnal 1972)

If $t>t(s)$, then $f_{3}(N, s, t)=(\log N)^{O(1)}$.

A hypergraph Ramsey problem of Erdős and Hajnal

Definition

$f_{k}(N, s, t):=$ max. n such that every k-graph on N vertices has s vertices with $\geq t$ edges or has independence number at least n.

Let $t(0)=t(1)=0$ and $t(s)=s_{1} s_{2} s_{3}+t\left(s_{1}\right)+t\left(s_{2}\right)+t\left(s_{3}\right)$, where $s=s_{1}+s_{2}+s_{3}$ with s_{1}, s_{2}, s_{3} as equal as possible. Erdős-Hajnal 1972: If $t \leq t(s)$, then $f_{3}(N, s, t)=N^{\Theta(1)}$.

Conjecture (Erdős-Hajnal 1972)

If $t>t(s)$, then $f_{3}(N, s, t)=(\log N)^{O(1)}$.
Conlon-F.-Sudakov 2010: True for infinitely many s.

A hypergraph Ramsey problem of Erdős and Hajnal

Definition

$f_{k}(N, s, t):=$ max. n such that every k-graph on N vertices has s vertices with $\geq t$ edges or has independence number at least n.

Let $t(0)=t(1)=0$ and $t(s)=s_{1} s_{2} s_{3}+t\left(s_{1}\right)+t\left(s_{2}\right)+t\left(s_{3}\right)$, where $s=s_{1}+s_{2}+s_{3}$ with s_{1}, s_{2}, s_{3} as equal as possible.
Erdős-Hajnal 1972: If $t \leq t(s)$, then $f_{3}(N, s, t)=N^{\Theta(1)}$.

Conjecture (Erdős-Hajnal 1972)

If $t>t(s)$, then $f_{3}(N, s, t)=(\log N)^{O(1)}$.
Conlon-F.-Sudakov 2010: True for infinitely many s.

Theorem: (F.-He 2019)

If $s>s_{0}$ and $.26\binom{s}{3}<t<.46\binom{s}{3}$, then $f_{3}(N, s, t)=\Theta\left(\frac{\log N}{\log \log N}\right)$.

Link hypergraphs

Theorem: (F.-He)
For $s, n \geq 3$,

$$
r\left(L_{K_{s}}, K_{n, n, n}^{(3)}\right)=\binom{n+s}{s}^{\Theta(n)}
$$

Lower bound proof for $s \geq 14$: Let $N=\binom{n+s}{s}^{n / 1000}$.
\exists 3-graph Γ on N vertices which is $L_{K_{s}}$ free and $\bar{\Gamma}$ is $K_{n, n, n}^{(3)}$-free.
Random Construction

Link hypergraphs

Theorem: (F.-He)
For $s, n \geq 3$,

$$
r\left(L_{K_{s}}, K_{n, n, n}^{(3)}\right)=\binom{n+s}{s}^{\Theta(n)}
$$

Lower bound proof for $s \geq 14$: Let $N=\binom{n+s}{s}^{n / 1000}$.
\exists 3-graph Γ on N vertices which is $L_{K_{s}}$ free and $\bar{\Gamma}$ is $K_{n, n, n}^{(3)}$-free.
Random Construction
Let $A=G(m, p)$ with $m=\binom{n+s}{s}^{2 / 13}$ and $p=m^{-2 /(s-1)}$.

Link hypergraphs

Theorem: (F.-He)
For $s, n \geq 3$,

$$
r\left(L_{K_{s}}, K_{n, n, n}^{(3)}\right)=\binom{n+s}{s}^{\Theta(n)}
$$

Lower bound proof for $s \geq 14$: Let $N=\binom{n+s}{s}^{n / 1000}$.
$\exists 3$-graph Γ on N vertices which is $L_{K_{s}}$ free and $\bar{\Gamma}$ is $K_{n, n, n}^{(3)}$-free.
Random Construction
Let $A=G(m, p)$ with $m=\binom{n+s}{s}^{2 / 13}$ and $p=m^{-2 /(s-1)}$.
Pick a uniform random map $\chi:[N]^{2} \rightarrow V(A)$.

Link hypergraphs

Theorem: (F.-He)
For $s, n \geq 3$,

$$
r\left(L_{K_{s}}, K_{n, n, n}^{(3)}\right)=\binom{n+s}{s}^{\Theta(n)}
$$

Lower bound proof for $s \geq 14$: Let $N=\binom{n+s}{s}^{n / 1000}$.
$\exists 3$-graph Γ on N vertices which is $L_{K_{s}}$ free and $\bar{\Gamma}$ is $K_{n, n, n}^{(3)}$-free.
Random Construction
Let $A=G(m, p)$ with $m=\binom{n+s}{s}^{2 / 13}$ and $p=m^{-2 /(s-1)}$.
Pick a uniform random map $\chi:[N]^{2} \rightarrow V(A)$.
A triple $\{i, j, k\} \in\binom{[N]}{3}$ of distinct vertices is an edge of Γ if $\chi(i, j) \sim \chi(i, k), \chi(j, i) \sim \chi(j, k)$, and $\chi(k, i) \sim \chi(k, j)$ in A.

Thank you!

