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Classical Perron-Frobenius Theorem

Theorem (Perron 1908, Frobenius 1912)

Let P ∈ Md(R≥0) be such that there exists n ≥ 1 with (Pn)ij > 0
for all i , j (P is primitive). Then:

1. the spectral radius ρ(P) of P is a simple eigenvalue of P,
no other eigenvalues of modulus ρ(P);

2. the eigenvector v corresponding to ρ(P) is positive (that is,
has all positive entries);

3. if w is the left-eigenvector for P corresponding to ρ(P) (with
w · v = 1), then ρ(P)−nPnx −→

n→∞
(w · x)v for all x ∈ Rd .



Markov Chain Example
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Definitions

(Ω, µ, σ) an invertible, ergodic probability-preserving
transformation: “base dynamics”.

Cocycle: Aω ∈ Md(R) or B(X ), A
(n)
ω = Aσn−1(ω) · · ·Aσ(ω)Aω.

Lyapunov exponents: exponential growth rates for the cocycle.

lim sup
n→∞

1

n
log
∥∥∥A(n)

ω x
∥∥∥ = λ(x , ω)

(Multiplicative Ergodic Theorem: actually discrete! Like
eigenvalues.)
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Definitions

Cone: C ⊂ Rd or X , closed, convex, C ∩ −C = {0}.
Generating: C − C = X .
Partial order: x � y if and only if y − x ∈ C.
D-adapted: −y � x � y implies ‖x‖ ≤ D ‖y‖ (a.k.a. “normal”).

Hilbert projective metric: For a cone C and v ,w ∈ C, define:

α(v ,w) = sup {λ > 0 : λv � w} ,
β(v ,w) = inf {µ > 0 : w ≤ µv} ,

θ(v ,w) = log

(
β(v ,w)

α(v ,w)

)
.
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History

I M. Krein, M. Rutman, 1948: Compact linear operators
preserving a cone

I Ga. Birkhoff, 1957: Operator on vector lattice preserving a
cone

I I. Evstigneev, 1974: Cocycles of positive matrices

I P. Ferrero and B. Schmitt, 1988: Cocycles of Ruelle-P-F
operators

I L. Arnold et al, 1994: Cocycles of positive matrices

I C. Liverani, 1995: Cone technique for a dynamical P-F
operator

I J. Buzzi, 1999: Cone technique for cocycle of dynamical P-F
operators

I I. Evstigneev and S. Pirogov, 2009: Cocycles of non-linear
positive operators on Rd

I J. Mierczynski and W. Shen, 2013: Cocycles of positive linear
operators



History

I M. Krein, M. Rutman, 1948: Compact linear operators
preserving a cone

I Ga. Birkhoff, 1957: Operator on vector lattice preserving a
cone

I I. Evstigneev, 1974: Cocycles of positive matrices

I P. Ferrero and B. Schmitt, 1988: Cocycles of Ruelle-P-F
operators

I L. Arnold et al, 1994: Cocycles of positive matrices

I C. Liverani, 1995: Cone technique for a dynamical P-F
operator

I J. Buzzi, 1999: Cone technique for cocycle of dynamical P-F
operators

I I. Evstigneev and S. Pirogov, 2009: Cocycles of non-linear
positive operators on Rd

I J. Mierczynski and W. Shen, 2013: Cocycles of positive linear
operators



History

I M. Krein, M. Rutman, 1948: Compact linear operators
preserving a cone

I Ga. Birkhoff, 1957: Operator on vector lattice preserving a
cone

I I. Evstigneev, 1974: Cocycles of positive matrices

I P. Ferrero and B. Schmitt, 1988: Cocycles of Ruelle-P-F
operators

I L. Arnold et al, 1994: Cocycles of positive matrices

I C. Liverani, 1995: Cone technique for a dynamical P-F
operator

I J. Buzzi, 1999: Cone technique for cocycle of dynamical P-F
operators

I I. Evstigneev and S. Pirogov, 2009: Cocycles of non-linear
positive operators on Rd

I J. Mierczynski and W. Shen, 2013: Cocycles of positive linear
operators



Main Theorem
Matrix Cocycle Version

Cocycle A
(n)
ω ∈ Md(Rd) over base dynamics (Ω, µ, σ).∫

Ω log+ ‖Aω‖op dµ(ω) <∞. Cone C = Rd
≥0.

Suppose that there is kP ∈ Z≥1, GP ⊂ Ω with µ(GP) > 0, and
DP ∈ R>0 such that for all ω ∈ GP , diamθ

(
AkP
ω (C)

)
≤ DP . Then:

1. there is v(ω) ∈ C with ‖v(ω)‖ = 1 and φ(ω) > 0 such that
Aωv(ω) = φ(ω)v(σ(ω));

2.
∫

Ω log(φ) dµ = λ1 (the largest Lyapunov exponent for A
(n)
ω )

and the top Oseledets space is one-dimensional;

3. λ2 ≤ λ1 −
µ(GP)

kP
log

(
tanh

(
DP

4

)−1
)
< λ1.

Moreover, kP , GP , and DP exist if and only if

nP(ω) := inf
{
k ≥ 1 : diamθ

(
A

(k)
ω (C)

)
<∞

}
is finite on a set

of positive measure.
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Main Theorem
Cocycle of Linear Operators Version

Cocycle A
(n)
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Definition and Background
A paired tent map is a map Tε1,ε2 : [−1, 1]→ [−1, 1], with
ε1, ε2 ∈ [0, 1], that looks like:
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Figure: Tε1,ε2 , with parameters ε1 = 0.3 and ε2 = 0.7.



Definition and Background

C. Gonzalez Tokman, B. Hunt, and P. Wright (2011) studied
invariant densities for C 2 perturbations of maps like T0,0 that
“leak” between [−1, 0] and [0, 1].

What are the more in-depth spectral properties; what about
cocycles?
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Application of Generalized P-F Theorem to Paired Tent
Maps

Theorem
Base dynamics (Ω, µ, σ), ε1, ε2 : Ω→ [0, 1] both not 0, countable

range. Consider the cocycle of P-F operators P
(n)
ω associated to

Tω := Tε1(ω),ε2(ω).

Then there is an explicitly computable C = C (ε1, ε2) > 0 with
λ2 ≤ −C < 0 = λ1, where λ1 and λ2 are the largest and second

largest Lyapunov exponents for P
(n)
ω .

Proposition (New Lasota-Yorke Inequality)

Inequality of the form Var(Pω(f )) ≤ a1 Var(f ) + a2 ‖f ‖1 that can
hold uniformly in ω.
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Asymptotic Properties of λ2(κ)

Theorem
Consider Tω,κ = Tκε1(ω),κε2(ω). For ε1, ε2 both not 0, countable
range, there is c > 0 such that λ2(κ) . −cκ for sufficiently small
κ.

Proposition

There is a decreasing sequence {κj} ⊂ (0, 1] with κj −→
j→∞

0 such

that the maps Tκj ,κj are Markov. Set Pj = PTκj ,κj
; the cocycles of

P-F operators P
(n)
ω = Pn

j have λ2(j) ∼ −2κj .
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The End

Thank you!
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