Distributions of modules over local finite \mathbb{Z}_p -algebras

Jack Klys

University of Calgary

May 11 2019

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Random groups

- Let S be the set of finite abelian *p*-groups.
- One can define a probability meausure µ on S with ∑_{A∈S} µ (A) = 1.
- In particular since

$$\eta^{-1} := \sum_{A \in \mathcal{S}} \frac{1}{|\operatorname{Aut} A|} = \prod_{i=1}^{\infty} \left(1 - p^{-i} \right)^{-1} < \infty$$

one can define the Cohen-Lenstra distribution on p-groups

$$\mu\left(\boldsymbol{A}\right)=\frac{\eta}{|\mathrm{Aut}\boldsymbol{A}|}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- An example:
- Let µ_n be Haar measure on Z_p extended to M_n(Z_p) the set of n × n matrices over Z_p
- Then

$$\lim_{n \to \infty} \mu_n \left(\{ M \in M_n \left(\mathbb{Z}_p \right) \mid \operatorname{coker} M \cong A \} \right) = \mu \left(A \right).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• μ is characterized by the moments of the functions $f_A(X) = |\operatorname{Sur}(X, A)|$ for all $A \in S$.

Proposition

If ν is any probability measure on S such that $\int_S f_A d\nu = 1$ for all $A \in S$ then $\nu = \mu$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- Let C be a curve defined over a finite field \mathbb{F}_q which is a finite cover of $\mathbb{P}^1_{\mathbb{F}_q}$
- Consider the Jacobian $\operatorname{Jac}(C)(\mathbb{F}_q) \cong \operatorname{Div}^0(C)/\operatorname{P}(C)$. This is a finite group.
- Let \mathcal{M}_g be the set of hyperelliptic curves over \mathbb{F}_q of genus g branched at ∞ .

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

 \blacksquare We can consider, for $A \in \mathcal{S}$ and fixed g

$$\mu_{g}(A) = \frac{\left|\left\{C \in \mathcal{M}_{g} \mid \operatorname{Jac}(C)_{p}(\mathbb{F}_{q}) \cong A\right\}\right|}{|\mathcal{M}_{g}|}.$$

• Does $\lim_{g \to \infty} \mu_g(A)$ exist?

Function field analog of Cohen-Lenstra conjectures:

$$\lim_{g \longrightarrow \infty} \mu_{g}(A) = \mu(A)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 As a consequence of proving bounds for dimensions of homology groups of Hurwitz spaces they were able to prove

Theorem 1 (Ellenberg-Venkatesh-Westerland (2016))

Fix $A \in S$. Let $\delta_q^+ = \limsup_{g \to \infty} \mu_g(A)$ and $\delta_q^- = \liminf_{g \to \infty} \mu_g(A)$. Then $\lim_{q \to \infty} \delta_q^\pm = \eta / |\operatorname{Aut} A| = \mu(A)$.

- Let R be a local ring containing Z_p which is finitely generated over Z_p. Let F_R be its residue field.
- Let S_R be the set of finite p^{∞} -torsion *R*-modules
- Lipnowski and Tsimerman defined a measure μ_R on S_R , extending the Cohen-Lenstra measure: For any integer Ndefine $\mu_{R,N}$ to be the measure on S_R coming from cokernels of Haar-random matrices over R. Then $\mu_R = \lim_{N \to \infty} \mu_{R,N}$.

 μ_R is supported on a subset of modules T_R ⊂ S_R and for M ∈ T_R, μ_R is defined by

$$\mu_R(M) = \frac{\eta_R}{|\operatorname{Aut} M|}$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

where $\eta_R = \prod_{i=1}^{\infty} \left(1 - \left| \mathbb{F}_R \right|^{-i} \right).$

• Similarly to μ , μ_R is also determined by the moments $\int_{\mathcal{S}_R} f_A d\nu = 1$ for all $A \in \mathcal{S}_R$.

- Let *F* be the Frobenius on a curve *C*
- We can ask about the distribution of $\operatorname{Jac}(C)/P(F)$ as an $R = \mathbb{Z}_p[F]/P(F)$ module for certain polynomials P.
- The category of Z_p [Gal (F_q/F_q)]-modules is equivalent to the category of etale p-group schemes defined over F_q.

■ For G a finite etale p-group scheme over F_q let Avg (G, g, q) be the average number of surjections from Jac (C) to G (as group-schemes) over all C ∈ M_g.

うして ふゆう ふほう ふほう うらつ

Theorem 2 (Lipnowski-Tsimerman(2019))

Let
$$\alpha_q^+ = \limsup_{g \to \infty} \operatorname{Avg}(G, g, q)$$
 and
 $\alpha_q^- = \liminf_{g \to \infty} \operatorname{Avg}(G, g, q)$. Then $\lim_{q \to \infty} \alpha_q^{\pm} = 1$

- Notice EVW's theorem is a statement about $\mu_g(A)$ whereas Lipnowski-Tsimerman is a statement about Avg(G, g, q).
- Analogous to the group setting, for $R = \mathbb{Z}_p[X] / P(X)$ and $A \in \mathcal{S}_R$ define

$$\mu_{g,R}(A) = \frac{\left|\left\{C \in \mathcal{M}_{g} \mid \operatorname{Jac}(C)_{p} / P(F) \cong A\right\}\right|}{|\mathcal{M}_{g}|}$$

うして ふゆう ふほう ふほう うらつ

• By definition $\operatorname{Avg}(G, g, q) = \int_{\mathcal{S}_R} f_A \mu_{g,R}$.

- To go from Avg(G, g, q) to $\mu_{g,R}(A)$ need a result of the form: convergence of moments \implies convergence of measures.
- In the setting of groups:

Theorem 3 (Ellenberg-Venkatesh-Westerland (2016))

If $\{\nu_n\}$ is a sequence of probability measures on S such that $\int_{S} f_A d\nu_n \longrightarrow 1$ for all $A \in S$ then $\nu_n(A) \longrightarrow \mu(A)$ for all $A \in S$.

(日) (伊) (日) (日) (日) (0) (0)

Key fact needed to prove Theorem 3:

Proposition (Ellenberg-Venkatesh-Westerland (2016))

For any $\epsilon > 0$ and $A \in S$ there exists a finite set $T \subset S$ and $c \in \mathbb{N}$ such that for all X with |X| > c

$$f_{A}(X) \leq \epsilon \cdot rac{\sum_{A' \in T} f_{A'}(X)}{|T|}.$$

Integrating the above gives $\int_{|X|>c} f_A(X) d\mu_g \le \epsilon$ for all large enough g, that is there is no 'escape of mass'.

Proof sketch

Proof sketch

.

- Define A' to be an s-enlargement of A if there is a surjection A' → A with kernel of size p^s. Let E_s(A) be the set of s-enlargements of A.
- Show that if X is large enough then there exists $A' \in E_s(A)$

$$f_{A'}(X) \ge (p-1)^{s} f_{A}(X)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Proof sketch

Proof sketch continued

Then for any X large enough

$$|E_{s}(A)|\frac{\sum_{A'\in E_{s}(A)}f_{A'}(X)}{|E_{s}(A)|}\geq f_{A'}(X)\geq (p-1)^{s}f_{A}(X)$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

It is easy to see |E_s(A)| ≤ P (s + rkA) where P (n) is the number of partitions of n and that
 P (s + rkA) / (p − 1)^s → 0 as s → ∞. So let
 ε = |E_s(A)| / (p − 1)^s.

- This proof mostly works for *R*-modules, except: it is not necessarily true that |*E_s*(*A*)| is sub-exponential in *s* for *A* ∈ *S_R*.
- Say a ring R has the property of few enlargements if E_s(M) grows sub-exponentially in s for every R-module M

ション ふゆ く は マ く ほ マ く し マ

- Obtaining a bound (assume R = Z_p [X] / P(X) for some polynomial P):
- Suppose $I \subset \mathbb{Z}_p[X]$ is an ideal such that $S = \mathbb{Z}_p[X]/I$ has few-enlargements. Then so does $R_k = R/I^k$ for any k.
- Since R_k has few-enlargements we have lim_{g→∞} µ_{g,R_k} = µ_{R_k} by Lipnowski-Tsimerman

• Furthermore $\lim_{k \to \infty} \mu_{R_k} = \mu_R$.

■ It follows from the definition of $\mu_{g,R}$ that if $R \twoheadrightarrow R_k$ and M is an R_k -module then $\mu_{g,R}(M) < \mu_{g,R_k}(M)$.

Hence

$$\mu_{R_k} = \lim_{g \to \infty} \mu_{g,R_k} > \lim_{g \to \infty} \mu_{g,R}$$

and taking limit in k gives

$$\mu_{R} > \lim_{g \longrightarrow \infty} \mu_{g,R}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Modify EVW's proof to not use all enlargements
- Let $N_s(A) \subset E_s(A)$ be the minimal subset satisfying: for all $M \in S_R$ large enough, if $f_A(M) > 0$ then $f_{A'}(M) > 0$ for some $A' \in N_s(A)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Let
$$n_s(A) = |N_s(A)|$$
.

Theorem (K.)

If $n_s(A) / (|\mathbb{F}_R| - 1)^s \longrightarrow 0$ as $s \longrightarrow \infty$ then Theorem 1 is true for S_R . If R is a PID then $n_s(A) = rkA + 2$. In general

$$egin{aligned} &n_{s}\left(A
ight) \leq \left(\operatorname{rk}A + s\left(s+1
ight)/2
ight) \ & imes \max_{M \in \mathcal{N}_{s}(A)} \left|\operatorname{Hom}\left(R,\operatorname{End}_{\mathbb{Z}}\left(M
ight)
ight)/ \sim \operatorname{Aut}_{\mathbb{Z}}\left(M
ight)
ight| \end{aligned}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

for $A \in \mathcal{S}_R$.

proof sketch

• As before we want to show for any $A \in \mathcal{S}_R$ and $\epsilon > 0$ that

$$\int_{|X|>c}f_{A}(X)\,d\mu_{g}\leq\epsilon$$

ション ふゆ く は マ く ほ マ く し マ

for all large enough g.

Partition the set of X into disjoint subsets $T_{A'}$ indexed by $A' \in N_s(A)$. $T_{A'}$ consists of elements X satisfying $f_{A'}(X) = g(X) f_A(X)$ and $g(X) \ge (|\mathbb{F}_R| - 1)^s$

Theorem 1 for *R*-modules

proof sketch continued

 \blacksquare For some $\delta > \mathbf{0}$

$$\int_{|X|>c} f_A(X) d\mu_g = \sum_{A' \in N_s(A)} \int_{X \in T_{A'}} \frac{1}{g(X)} f_{A'}(X) d\mu_g$$
$$< \frac{n_s(A)}{(|\mathbb{F}_R| - 1)^s} (1 + \delta)$$
$$< \epsilon$$

since $n_{s}\left(A\right)/g\left(X\right) \leq n_{s}\left(A\right)/\left(|\mathbb{F}_{R}|-1\right)^{s} \longrightarrow 0$ as $s \longrightarrow \infty$.

Question: What is the growth of $|\operatorname{Hom}(R,\operatorname{End}_{\mathbb{Z}}(M))| \sim \operatorname{Aut}_{\mathbb{Z}}(M)|$ as $s \longrightarrow \infty$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Thank you!